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STRING COM

* L evenshtein distance

» Edit distance between two strings

* Jaro Winkler

PARISON

» Measures matching characters and transpositions




STRING COM

* L evenshtein distance

* Jaro Winkler

» Edit distance between two strings

PARISON

* Measures matching characters and transpositions

Mark Dredze vs. Mark Drezde (e.g. typo, name variant)

) Mark Dredze vs. Benjamin Van Durme




NAME VARIATION

* Nicknames: Benjamin Van Durme vs. Ben Van Durme
» Aliases: Caryn Elaine Johnson vs.Whoopi Goldberg
 Chinese Names: Zhang Wel vs.Wel Zhang

* Arab Names:
Muhammad ibn Saeed ibn Abd al-Aziz al-Filasteen

er M lhamimaga
vs. Abu Kareem
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FINITE STATE

* Probabllistic finite state transducers
encode a probability distribution
over strings given a string

» Character operations: copy,
Ellesnjidite celete, Insert

* [rain parameters on name pairs

—RS

Latent-Variable Modeling of String Transductions
with Finite-State Methods”

Markus Dreyer and Jason R. Smith and Jason Eisner
Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218, USA

Abstract

String-to-string transduction is a central prob-
lem in computational linguistics and natural
language processing. It occurs in tasks as di
verse as name transliteration. spelling correc-
tion, pronunciation modeling and inflectional
morphology. We present a conditional log-
linear model for string-to-string transduction,
which employs overlapping features over la-
tent alignment sequences. and which learns la
tent classes and latent string pair regions from
incomplete training data. We evaluate our ap-
proach on morphological tasks and demon
strate that latent variables can dramatically
improve results. even when trained on small
data sets. On the task of g
phological forms, we outperform a baseline
method reducing the error rate by up to 48%.
On a lemmatization task, we reduce the error
rates in Wicentowski (2002) by 38-92%.

nerating mor-

1 Introduction

A recurring problem in computational linguistics
and language processing is transduction of charac-
ter stri . words. That is, one wishes to model
ematic mapping from an input string « to
an output string y. Applications include:

o phonolog
representation

underlying representation < surfa

® orthography: pronunciation — spelling

o morphology: inflected form — lemma, or differ-
ently inflected form

o fuzzy name matching (duplicate detection) and
spelling correction: spelling < variant spelling

“This work was supported by the Human Language Tech-
nology Center of Excellence and by National Science Founda-
tion grant No. 0347822 1o the final author. We would also like
10 thank Richard Wicentowski for providing us with datasets for

lemmatization. and the anonymous reviewers for their valuable
feedback.

arkus, jsmith, jas

s.jhu.edu

o lexical translation (cognates, loanwords, translit-
erated names): English word < foreign word

We present a configurable and robust framework
for solving such word transduction problems. Our
results in morphology generation show that the pre-
sented approach improves upon the state of the art.

2 Model Structure

A weighted edit distance model (Ristad and Yian-
ilos, 1998) would consider each character in isola-
tion. To consider more context, we pursue a very
natural generalization. Given an input &, we evalu-
ate a candidate output y by moving a sliding window
over the aligned (i, y) pair. More prec
many alignments are possible, we sum over all these
possibilities, evaluating each alignment separately.'

At each window position. we accumulate log-
probability based on the material that appears within
the current window. The window is a few charac-
ters wide, and successive window positions over-
lap. This stands in contrast to a competing approach
(Sherif and Kondrak. 2007: Zhao et al.. 2007)
that is inspired by phrase-based machine translation
(Koehn et al., 2007), which segments the input string
into substrings that are transduced independently ig-
noring context.”

sely. since

'At the other extreme. Freitag and Khadivi (2007) use no
nment; each feature takes its own view of how (z, y) relate.
We feel that this independence is inappropriate. By anal-
. it would be a poor idea for a languag
string highly if it could be segmented into independently fre-
Rather, language models use overlapping n-

¢ model to score a

quent n-gram
grams (indeed. it is the la ¢ model that rescues phrase-
based MT from producing disjointed translations). We believe

phrase-based MT avoids overlapping phrases in the channel
model only because these would complicate the modeling of
reordering (thoug g.. Schwenk et al. (2007) and Casacu-
berta (2000)). Butin the problems of section 1., letter reordering
is rare and we may assume it is local (o a window.
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* |deal: matched name pairs

Ronald Fairoaiss
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* |deal: matched name pairs

Ronald Fairoaiss

FORndla Fairnairn

Willlam Ronald Dodds Fairbairn

W. R. D. Fairbairn

» Sets of matching names
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William Ronald Dodds Fairbairn

* |deal: matched name pairs

Ronald Fairoaiss

FORndla Fairnairn

Willlam Ronald Dodds Fairbairn
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» Sets of matching names




William Ronald Dodds Fairbairn Ronald Fairoaiss

* |deal: matched name pairs

FORndla Fairnairn W. R. D. Fairbairn

Willlam Ronald Dodds Fairbairn

» Sets of matching names

John Wilkins Mikhail Dobuzhinsky
Samuel Loyca James Beach VWaketfield
Mstislav Dobuzhinsky James VWaketfield

* Unorganized set of names




William Ronald Dodds Fairbairn

 |deal: matched nam

e palrs

Ronald Fairoaiss

FORndla Fairnairn

W. R. D. Fairbairn

Key Insight
>t | Learn name phylogenies
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Samuel Loyc

Mstislav Dobuzhins

S

James Beach Wakefield

James Waketfield

* Unorganized set of

HlclENIES




¢

o

William Ronald Dodds Fairbairn  James Beach Wakefield

AN |

Ronald Fairbairn ~ W. R. D. Fairbairn James VWaketfield
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WHY A NAM

PHYLOGENY?

» Aligns matching names for transducer
* Organizes names into connected components (clusters)

* We can jointly estimate a phylogeny and a mutation model
(transducer)

* A mutation model gives a phylogeny

* A phylogeny provides training data for a mutation model

11




« Generative model
 Inference

* Experiments

OUTLIN
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NAME VARIATION

* A generative model of strings that can explain observed name variation

Mitt Romney

President Barack Obama

Ealkeietd ©®Dama

Secretary of State Hillary Clinton
Hillary Clinton

Barack Obama

Clinton

Obama

* \WWhat are the sources of variation for names?

14
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NAME VARIAT

* Suppose an author decides to write a name

= hEere @o mames come from!

 Copy a previous mention

- Mutate a previous mention

* According to mutation model \,ﬂ'

=@ reate a new nhame
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» Select a previous mention at random (uniformly)

* Copy It with probability |-
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MUTAI

PREVIOUS MENTION

» Select a previous mention at random (uniformly)

* Mutate it with probability M

* Sample a new mutation from the mutation model given the
mention

17




CREATE A NEW NAM

- Select the root of the phylogeny 4 with probability

proportional to &

* Sample a new name from a character language model




SUMMARY

» To generate the next mention

* Pick an existing name mention w with probability |/(x + k)
* Copy w verbatim with probability | — U
* Mutate w with probability Y

* Decide to talk about a new entity with probability o/(X + k)

 Generate a name for it

19
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-M ALGORITHM

s E-step

» Given mutation model 0, compute a distribution over phylogenies
« M-step

* Re-estimate O given marginal edge probabilities

 Sum over alignments for all (xy) string pairs via forward-
backward

» Each pair is training example weighted by the marginal probability

21




SUMMARY

* Learn a name matching algorithm

» O (transducer/mutation model)
* Phylogeny: a means to an end

* Part of the reason for a distribution over phylogenies
* Question: Is B better than other name matching algorithms?

» Can 0 find matching names more accurately?

22




o b

-NTS




DATA

* English Wikipedia (201 |') to create lists of name variants

* Wikipedia redirects are human-curated pages to resolve
common name variants to the correct page (unambiguously)

* Use Freebase to restrict to redirects for Person entities

* Applied some further filters to remove redirects that were
clearly not names (e.g. numbers)

« Use LDC Gigaword to obtain a frequency for each name variant

24
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Ghareeb Nawaz
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Thomas R. Pynchon Jr.
Khawaja Gharibnawaz Muinuddin Hasan Chisty
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Thomas R. Pynchon
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Our Algorithm
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Our Algorithm
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Our Algorithm O (Transducer)
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Our Algorithm O (Transducer)

Thomas Ruggles Pynchon, Jr.

/ —N

Khawaja Gharibnawaz Muinuddin Hasan Chisty

/ — Te A Thomas Ruggle!Pynchon Jr.

Khwaja Muin al-Din Chishti Thomas R. pynxon, Jr.

M~ T N

Thomas R. Pynchon Jr. Thomas Pynchon, Jr.

e =ohanb Nawaz Khwaja Moinuddin Chishti

Ghareeb Nawaz Khwaja gharibnawaz _ _ ukr
Muinuddin Chishti Thomas R. Pynchon Thomas Pynchon Jr.
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ERPERIM

* Input: query (name)

-NT: RANKING

» Output: ranked list of possible aliases

e hablenswhere s correct alias in list?

* Mean Reciprocal Rank (MRR) (higher Is better)

26




SETUP

& Dara

* Train: 1500 entities (~6000 names)

- Test: 1500 different entities (~6000 names)

B iihos

» Train O on a set of “supervised” pairs (varying levels of training)

» Baselines: other name matching algorithms

27
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FUTUR

- WORK

* Include context for full entrty disambiguation

* Increase matching speed

- More sophisticated mutation models

* Incorporate internal name structure

* Informal genres

* Cross lingual data




QUESTIONS

Nicholas Andrews, Jason Eisner, Mark Dredze.
Name Phylogeny: A Generative Model of String
Variation. Empirical Methods in Natural
Language Processing (EMNLP),2012.

Name Phylogeny: A Generative Model of String Variation

Nicholas Andrews and Jason Eisner and Mark Dredze

Department of Computer Science and Human Language Technology Center of

ixcellence

Johns Hopkins University

3400 N. Charles St.. Bal

Abstract

Many linguistic and textual processes involve
transduction of sirings. We show how 1o learn
a stochastic transducer from an unorganized

collection of sirin; er than siri

The role of the ransducer is 1o organize the
collection.  Our generative model explains

similar

among the strings by supposing

that some strings in the collection were not

ated ab initio, but were instead derived

by transduction from other nilar” strings
I EM learn

ates this phy

in the collection. Our variatic

ing algorithm alternately re

eny and the transducer parameters. The fi

nal learned transducer can quickly link any test
ni

ve into the final phylogeny. thereby locat

ariants of the test name. We find that our

hod can effectively find name variants in

a corpus of web strings used 1o refer 1o per

sons in Wikipedia, improving over standard

untrained distances such as Jaro-Winkler and
Levenshiein distance.

1 Introduction

Systematic relationships between pairs of strings
are at the core of problems such as transliteration
(Knight and Grachl, 1998). morphology (Dreyer and
Eisner, 2011), cross-document coreference resolu-
ton (Bagga and Baldwin., 1998), canonicalization
(Culotta et al., 2007), and paraphrasing (Barzilay and
Lee, 2003). Stochastic transducers such as proba-

bilistic finite-state transducers are often used to cap-
ture such relationships. They model a conditional
distribution p(y | x). and are ordinarily trained on
input-output pairs of strings (Dreyer et al.. 2008).
In this paper. we are interested in learning from
an unorganized collection of strings, some of which
might have been derived from others by transforma-

nve linguistic processes such as abbreviation, mor-

phological derivation, historical sound or sp

ling

lumore, MD 21218 USA

change, loanword formation. translation. transliter-
ation, editing, or transcription error. We assume that
cach string wa

derived from at most one parent, but
may give rise to any number of children.

The difficulty is that most or all of these parent-
child relationships are unobserved. We must recon-
struct this evolutionary phylogeny. At the same time,
we must fit the parameters of a model of the relevant
linguistic process p(y | x). which says what sort of
children y might plausibly be derived from parent
Learning this model of p(y | x) helps us organize the
training collection by reconstructing its phylogeny,
and also permits us to generalize to new forms.

We will focus on the problem of name varia-

tion. We observe a collection of person names—full
names. nicknames, abbreviated or misspelled names,
etc. Some of these names can refer to the same per-
son; we hope to detect this. It would be an unlikely
coincidence if two mentions of John Jacob Jingle-
heimer Schmidt referred to different people, since
this is a long and unusual name. Similarly, John Ja-
cob Jingethimer Smith and Dr. J. J. Jingleheimer may
also be related names for this person. That is, these

names may be derived from one another. via unseen
relationships, although we cannot be sure

Readers may be reminded of unsupervised clus-
tering. in which “suspiciously similar” points can be
explained as having been generated by the same clus-
ter. Since each name is linked to at most one parent,
our setting resembles single-link clustering—with a

learned, asymmetric distance measure p(y | x)

We will propose a generative process that makes
explicit assumptions about how strings are copied
with mutation. Itis assumed to have generated all the
names in the collection, in an unknown order. Given
learned parameters, we can ask the model whether a
name Dr. J. J. Jingelheimer in the collection is more
likely to have been generated from scratch, or denived
from some previous name.
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