Phylogenetic Inference for Language

Nicholas Andrews, Jason Eisner, Mark Dredze

Department of Computer Science, CLSP, HLTCOE Johns Hopkins University Baltimore, Maryland 21218

noa@jhu.edu

April 23, 2013

< □ > < @ > < 注 > < 注 > ... 注

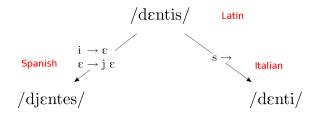
Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **1** Phylogenetic inference?
- 2 Generative model
- 3 A sampler sketch
- 4 Variational EM

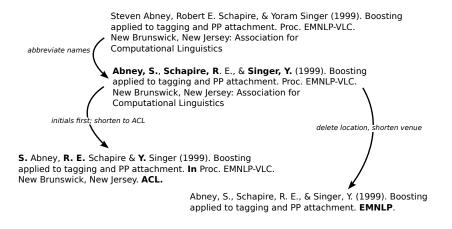
5 Experiments

Language evolution: e.g. sound change¹

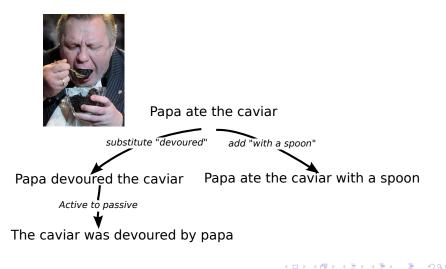


¹(Bouchard-Côté et al., 2007)

Bibliographic entry variation:



Paraphrase:



One Entity, Many Names

فى

Qaddafi, Muammar

Al-Gathafi, Muammar

al-Qadhafi, Muammar

Al Qathafi, Mu'ammar

Al Qathafi, Muammar

El Gaddafi, Moamar

El Kadhafi, Moammar

El Kazzafi, Moamer

2

In each example, there are systematic changes over time:

- Sound change: assimilation, metathesis, etc.
- **Bibliographic variation:** typos, abbreviations, punctuation, etc.
- Paraphrase: synonyms, voice change, re-arrangements, etc.
- Name variation: nicknames, titles, initials, etc.

In each example, there are systematic changes over time:

- Sound change: assimilation, metathesis, etc.
- **Bibliographic variation:** typos, abbreviations, punctuation, etc.
- Paraphrase: synonyms, voice change, re-arrangements, etc.
- Name variation: nicknames, titles, initials, etc.

Outline

1 Phylogenetic inference?

2 Generative model

3 A sampler sketch

4 Variational EM

5 Experiments

What's a name phylogeny?

A phylogeny is a directed tree rooted at \diamondsuit

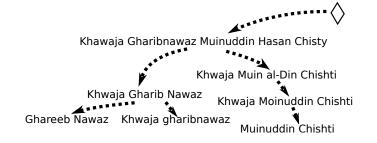


Figure: A cherry-picked fragment of a phylogeny learned by our model.

Objects in the model

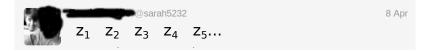
8 Apr

Names are mentioned in context:

Beliebers held up infinity signs at **Justin**'s **concert** tonight. So beautiful. pic.twitter.com/qw/WrlJctP

Observed?	Description	Example
\checkmark	Name	Justin
	Parent	<i>x</i> ₁₃
	Entity	e ₄₄ (= Justin Bieber)
\checkmark	Туре	PERSON
	Topic	6 (= MUSIC)
\checkmark	Document	d ₂₀
\checkmark	Language	English
\checkmark	Token position	100
	Index	729

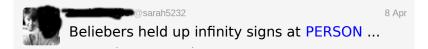
Step 1: Sample a topic z at each position in each document³ (for all documents in the corpus):



³This is just like latent Dirichlet allocation (LDA). $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \Xi \rightarrow \langle \Box \rangle$

Step 1: Sample a topic z at each position in each document³ (for all documents in the corpus):

Step 2: Sample either (1) a context word or (2) a named-entity type at each position, conditioned on the topic:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Step 3: For the *n*th named-entity mention *y*, pick a parent *x*: **1** Pick \diamondsuit with probability $\frac{\alpha}{n+\alpha}$ \diamondsuit

PERSON_n

Step 3: For the *n*th named-entity mention *y*, pick a parent *x*: **1** Pick \diamondsuit with probability $\frac{\alpha}{n+\alpha}$ \diamondsuit

PERSON_n

Pick a previous mention with probability proportional to exp (\(\phi \cdot f(x, y)\)):

\downarrow^{x} \downarrow PERSON_n

Features of x and y: topic, entity type, language

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Step 4: Generate a name conditioned on the selected parent
● If the parent is ◇, generate a name from scratch

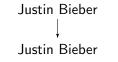
♦ ↓ Justin Bieber

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Step 4: Generate a name conditioned on the selected parent
If the parent is ◊, generate a name from scratch

Justin Bieber

2 Otherwise:



COPY with probability $1-\mu$

Step 4: Generate a name conditioned on the selected parent
● If the parent is ◊, generate a name from scratch

2 Otherwise:

COPY with probability $1-\mu$

MUTATE with probability μ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Name variation as mutations

"Mutations" capture different types of name variation:

- 1. Transcription errors: $Barack \rightarrow barack$
- 2. **Misspellings:** Barack \rightarrow Barrack
- 3. Abbreviations: Barack Obama \rightarrow Barack O.
- 4. Nicknames: Barack → Barry
- 5. Dropping words: Barack Obama \rightarrow Barack

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

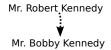
Mutation via probabilistic finite-state transducers

The mutation model is a **probabilistic finite-state transducer** with four character operations: COPY, SUBSTITUTE, DELETE, INSERT

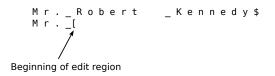
- Character operations are conditioned on the right input character
- Latent regions of contiguous edits
- Back-off smoothing

Transducer parameters θ determine the probability of being in different regions, and of the different character operations

Example: Mutating a name



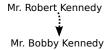
Example mutation



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Mutating a name

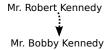


Example mutation

1 substitution operation: (R, B)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Example: Mutating a name



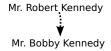
Example mutation

Mr._Robert _Kennedy\$ Mr._[Bob

2 copy operations: (ε, o), (ε, b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Mutating a name



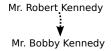
Example mutation

Mr._Robert _Kennedy\$ Mr._[Bob

3 deletion operations: (e, ϵ), (r, ϵ), (t, ϵ)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

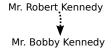
Example: Mutating a name



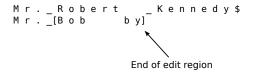
Example mutation

2 insertion operations: (ϵ,b) , (ϵ,y)

Example: Mutating a name

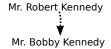


Example mutation



◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Example: Mutating a name



Example mutation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

1 Phylogenetic inference?

2 Generative model

3 A sampler sketch

4 Variational EM

5 Experiments

The latent variables in the model are⁴

- The spanning tree over tokens **p**
- The token permutation **i**
- The topics of all named-entity and context tokens z

Inference requires marginalizing over the latent variables:

$$\mathsf{Pr}_{\phi, \theta}(\mathsf{x}) = \sum_{\mathsf{p}, \mathsf{i}, \mathsf{z}} \mathsf{Pr}_{\phi, \theta}(\mathsf{x}, \mathsf{z}, \mathsf{i}, \mathsf{p})$$

⁴The mutation model also has latent alignments (\Box) , (\Box) , (\Box) , (Ξ) ,

Inference

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The latent variables in the model are

- The spanning tree over tokens **p**
- The token permutation **i**
- The topics of all named-entity and context tokens z

Inference requires marginalizing over the latent variables:

$$\mathsf{Pr}_{\phi, \theta}(\mathbf{x}) = \sum_{\mathbf{p}, \mathbf{i}, \mathbf{z}} \mathsf{Pr}_{\phi, \theta}(\mathbf{x}, \mathbf{z}, \mathbf{i}, \mathbf{p})$$

This sum is intractable to compute ©

Inference

The latent variables in the model are

- The spanning tree over tokens **p**
- The token permutation **i**
- The topics of all named-entity and context tokens z

Inference requires marginalizing over the latent variables:

$$\Pr_{\phi,\theta}(\mathbf{x}) = \sum_{\mathbf{p},\mathbf{i},\mathbf{z}} \Pr_{\phi,\theta}(\mathbf{x},\mathbf{z},\mathbf{i},\mathbf{p})$$
$$\approx \frac{1}{N} \sum_{n=1}^{N} \Pr_{\phi,\theta}(\mathbf{x},\mathbf{z}_n,\mathbf{i}_n,\mathbf{p}_n)$$

But we can sample from the posterior! ©

A block sampler

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key idea: sampling (p, i, z) jointly is hard, but sampling from the conditional for each variable is easy(ier)

A block sampler

Key idea: sampling $({\bf p},i,z)$ jointly is hard, but sampling from the conditional for each variable is easy(ier)

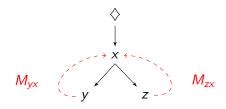
Procedure:

- Initialize (p, i, z).
- For n = 1 to N:
 - **1** Resample a permutation **i** given all other variables.
 - 2 Resample the topic vector **z**, similarly.
 - **3** Resample the phylogeny **p**, similarly.
 - **4** Output the current sample $(\mathbf{p}, \mathbf{i}, \mathbf{z})$.

Steps 1 and 2 are Metropolis-Hastings proposals

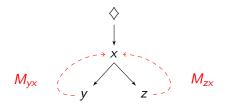
Sampling topics

Step 1: Run belief propagation with messages M_{ij} directed from the leaves to the root \Diamond



Sampling topics

Step 1: Run belief propagation with messages M_{ij} directed from the leaves to the root \Diamond



Step 2: Sample topics z from \diamondsuit downwards proportional to the belief at each vertex, conditioned on previously sampled topics

Sampling permutations

х

ν

(a) Compatible with both (x, y) and (y, x).

(b) Compatible with a single permutation: (x, y).

Sampling permutations

Each edge between non-root vertices yields a constraint on possible permutations:

Example

yields two constraints: $x \prec y$ and $x \prec z$.

Sampling permutations

Each edge between non-root vertices yields a constraint on possible permutations:

Example

yields two constraints: $x \prec y$ and $x \prec z$.

Sampling uniformly from the set of permutations respecting these constraints is a simple recursive procedure:

Sampling phylognies

Conditioned on topics and a permutation of the tokens, sample a parent x for each mention y with probability:

 $\propto \underbrace{\Pr_{\phi}(x,y)} \cdot \underbrace{\Pr_{\theta}(x.n,y.n)}$

affinity model transducer model

No cycles, since the mention permutation i is known.

Outline

1 Phylogenetic inference?

2 Generative model

3 A sampler sketch

4 Variational EM

A simplified model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The sampler is still running ©

A simplified model

The sampler is still running ③

We report experiments from our EMNLP 2012 paper + followup experiments, which use a simpler model:

- No context/topics: only the transducer parameters θ need to be estimated
- Type-level inference and supervision: vertices in the phylogeny represent distinct name types rather than name tokens

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Inference

Input: An unaligned corpus of names ("bag-of-words")

- The order in which the tokens were generated is unknown
- ▶ No "inputs" or "outputs" are known for the mutation model

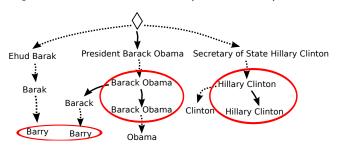
Barack Obana S^rMt Rommey Bersident Barack Obana Mt rommey mitt Barack Obana Barack Mt rommey mitt Barack H. Obana Barry Willed N. Romney Obana Barak Persident Rommey Mr. Romney Marack Obana Cilitoto Ginton Billy will ciritoto Wei Ciritoto Cilitoto Genero Mtt Romney Millary Ciritoto Cilitoto Pesident Bill Cilitoto Hillary Bill Bill Hillary Millan Cilitoto

Output: A distribution over name phylogenies parametrized by transducer parameters θ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Type phylogeny vs token phylogeny

The generative model is over tokens (name mentions)

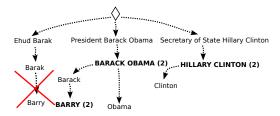


But we do type-level inference for the following reasons:

- 1. Allows faster inference
- 2. Allows type-level supervision

Type phylogeny vs token phylogeny

We collapse all COPY edges into a single vertex



- ► The first token in each collapsed vertex is a MUTATION, and the rest are COPIES
- Every edge in the phylogeny now corresponds to a mutation
- Approximation: disallow multiple tokens of the same type to be derived from mutations

Edge weights

▶ NEW NAMES: edges from ♦ to a name *x*:

$$\delta(x \mid \diamondsuit) = \alpha \cdot p(x \mid \diamondsuit)$$

▶ MUTATIONS: edges from a name *x* to a name *y*:

$$\delta(y \mid x) = \mu \cdot p(y \mid x) \cdot \frac{n_x}{n_y + 1}$$

Approximation: Edges weights are not *quite* edge factored. We are making an approximation of the form

$$\mathbb{E}\prod_{y}\delta(y\mid\mathsf{pa}(y))pprox\prod_{y}\mathbb{E}\delta(y\mid\mathsf{pa})$$

Inference via EM

Iterate until convergence:

- 1. **E-step:** Given θ , compute a *distribution* over name phylogenies
- 2. **M-step:** Re-estimate transducer parameters θ given marginal edge probabilities.
 - This step sums over alignments for each (x, y) string pair using forward-backward
 - Each (x, y) pair may be viewed as a training example weighted by the marginal probability of the edge from x to y

E-step: marginalizing over latent variables

The latent variables in the model are:

- 1. Name phylogeny (spanning tree) relating names as inputs and/or outputs
- 2. Character alignments from potential input names x to output names y

We use the Matrix-Tree theorem for directed graphs (Tutte, 1984) to efficiently evaluate marginal probabilities:

- 1. Partition function (sum over phylogenies)
- 2. Edge marginals

Outline

1 Phylogenetic inference?

2 Generative model

3 A sampler sketch

4 Variational EM

5 Experiments

- We collected a corpus of **Wikipedia redirect strings** used as examples of names variations
 - Filtered down to a subset 77489 people from English Wikipedia (Examples in the next slide!)
- The frequency of each variation is estimated using the Google crosswiki dataset⁵
 - Dictionary of anchor strings linking to English Wikipedia articles
 - Collected "by crawling a reasonably large approximation of the entire web"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ho Chi Minh Ho chi mihn Ho-Chi Minh Ho Chih-minh

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ho Chi Minh Ho chi mihn Ho-Chi Minh Ho Chih-minh
Guy Fawkes Guy fawkes Guy faux Guy foxe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	Ho Chi Minh Ho chi mihn Ho-Chi Minh Ho Chih-minh
	Guy Fawkes Guy fawkes
	Guy faux Guy foxe
	Bill Gates
	Lord Billy
	William Gates III
	William H. Gates

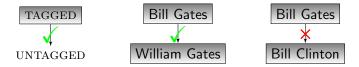
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ho Chi Minh Ho chi mihn Ho-Chi Minh Ho Chih-minh
Guy Fawkes Guy fawkes Guy faux Guy foxe
Bill Gates Lord Billy William Gates III William H. Gates
BillII Clinton William J. Blythe IV William Clinton President Clinton

Incorporating supervision

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Type-level supervision is incorporated by tagging vertices with unique IDs and enforcing that they agree from parent to child:



Experiment 1: Evaluating the transducer

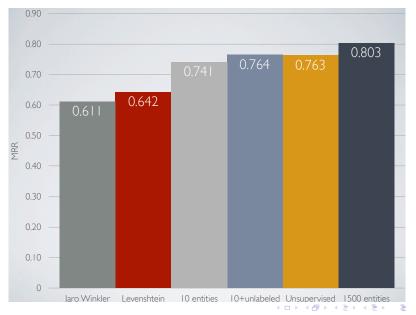
Procedure:

- At train time:
 - 1 Estimate the transducer parameters heta
- At test time:
 - For each name x in the test set, rank all other names y by the transducer probability

$\Pr_{\theta}(y \mid x)$

2 Compute the mean reciprocal rank (MRR) over all names

Experiment 1: Evaluating the transducer



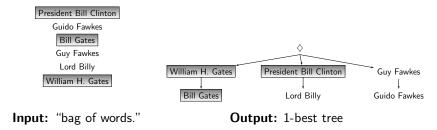
Sac

Step 1: Estimate θ via EM on the training corpus **Step 2:** Find the highest scoring tree ⁶

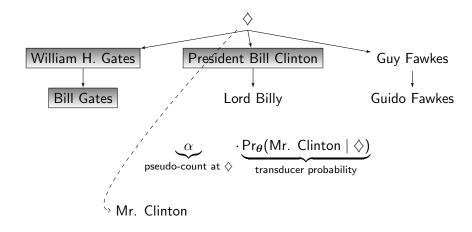
Input: "bag of words."

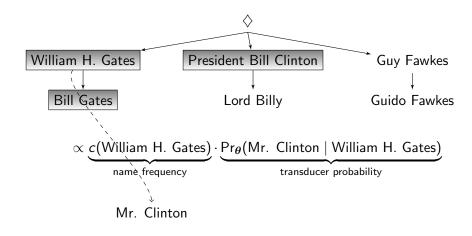
 $^{{}^{6}}O(m \log n)$ for graphs of *n* vertices and *m* edges $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

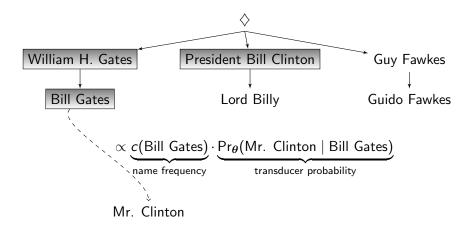
Step 1: Estimate θ via EM on the training corpus **Step 2:** Find the highest scoring tree ⁶

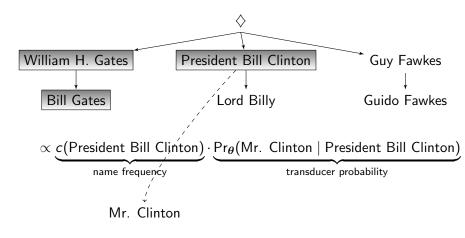


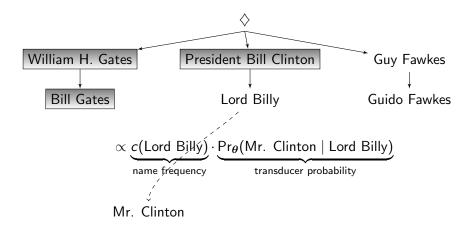
 ${}^{6}O(m \log n)$ for graphs of *n* vertices and *m* edges $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

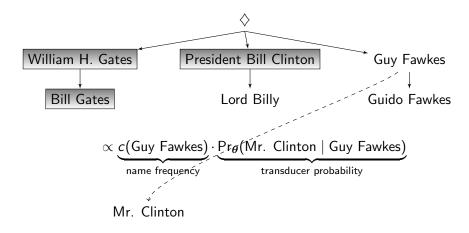


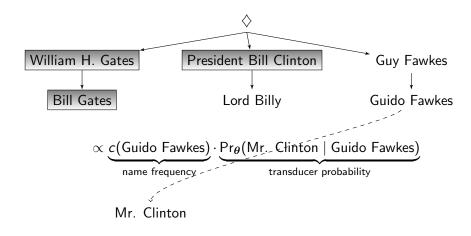




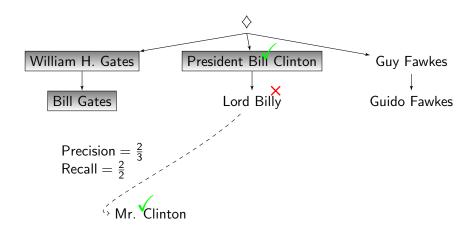




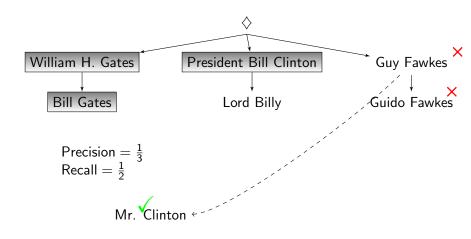




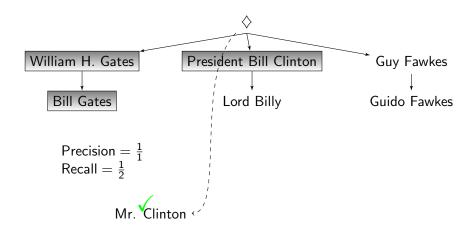
Step 4: Calculate macro-averaged precision and recall for each test name



Step 4: Calculate macro-averaged precision and recall for each test name



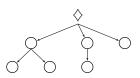
Step 4: Calculate macro-averaged precision and recall for each test name



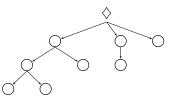
Baselines

We compare to two baselines:

1 Flat tree



Flat tree: depth ≤ 2



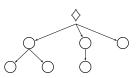
Unrestricted tree

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

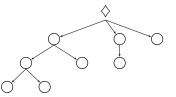
Baselines

We compare to two baselines:

Flat tree



Flat tree: depth ≤ 2

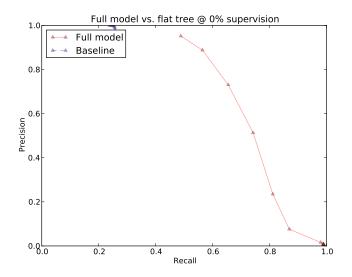


Unrestricted tree

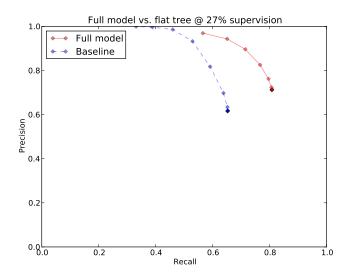
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

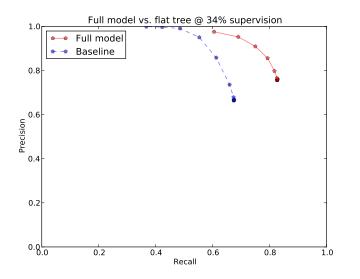
- 2 Weak transducer
 - No latent edit regions
 - Only 3 degrees of freedom: the weights of different edit operations

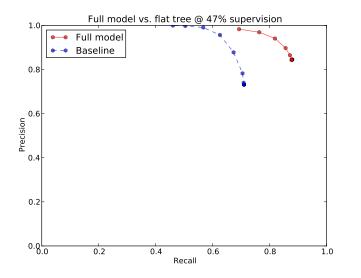
Comparison to flat tree

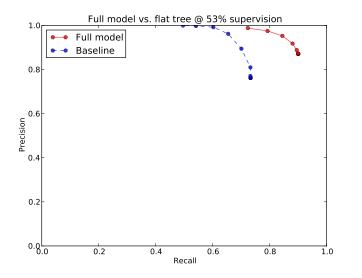


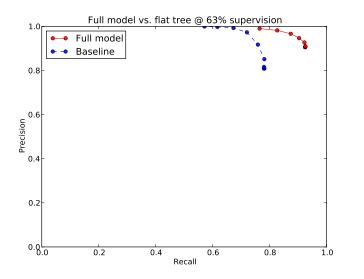
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

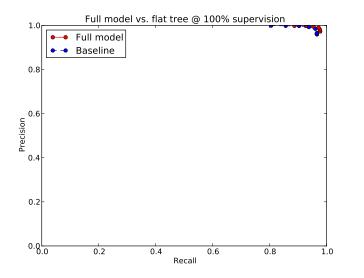


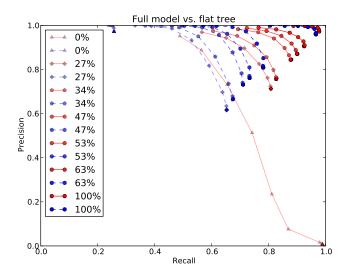




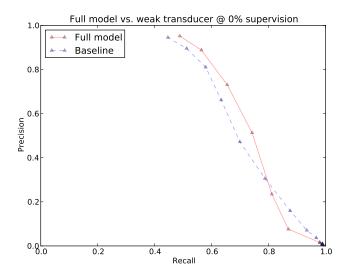


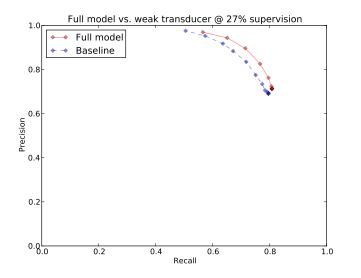


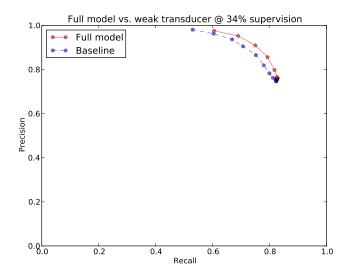


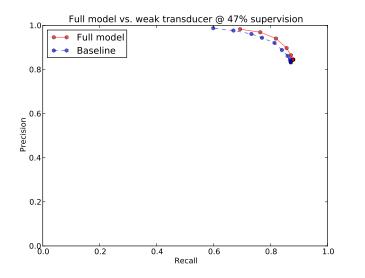


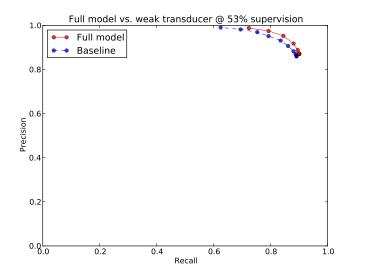
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

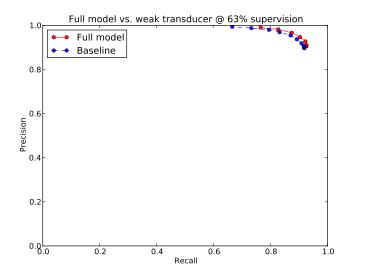


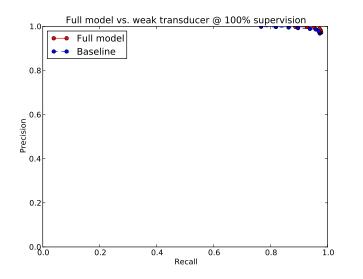


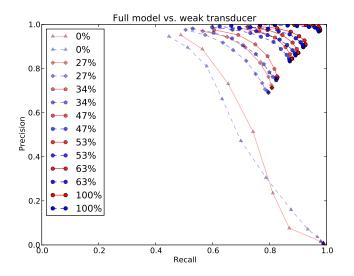






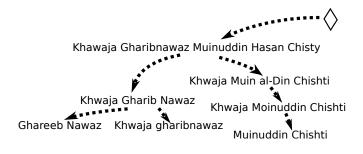






▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The End



Thanks! Questions?