Machine translation: Word-based models and the EM algorithm

Chris Callison-Burch (slides borrowed from Philipp Koehn)

December 3, 2007

Machine translation

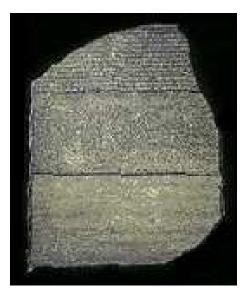
• Task: make sense of foreign text like

華品

木册子爲家長們提供實際和有川的關于毋品 的信息,包括如何減少使用非法毋品的危險. 它有助於您和您的家人討論有關毋品的問題. 這本小册子的主要內容已錄在磁帶上,如果您 想索取一盒免費的磁帶(中文), 請在下面的

- One of the oldest problems in Artificial Intelligence
- Solutions may many encompass many other NLP applications: parsing, generation, word sense disambiguation, named entity recognition, transliteration, pronoun resolution, etc.

The Rosetta stone



- Egyptian language was a mystery for centuries
- 1799 a stone with Egyptian text and its translation into Greek was found \Rightarrow Allowed people to *learn* how to translate Egyptian

Modern day Rosetta stone

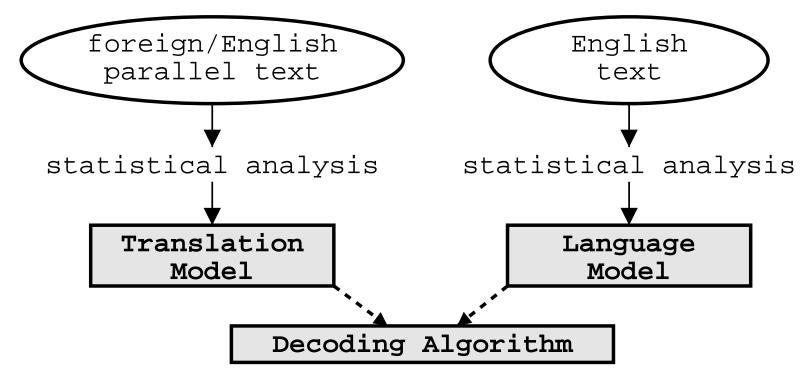
what is more , the relevant cost dynamic is completely under control.	im übrigen ist die diesbezügliche kostenentwicklung völlig unter kontrolle .
sooner or later we will have to be sufficiently progressive in terms of own resources as a basis for this fair tax system.	früher oder später müssen wir die notwendige progressivität der eigenmittel als grundlage dieses gerechten steuersystems zur sprache bringen .
we plan to submit the first accession partnership in the autumn of this year .	wir planen , die erste beitrittspartnerschaft im herbst dieses jahres vorzulegen .
it is a question of equality and solidarity	hier geht es um gleichberechtigung und solidarität .
the recommendation for the year 1999 has been formulated at a time of favourable developments and optimistic prospects for the european economy.	die empfehlung für das jahr 1999 wurde vor dem hintergrund günstiger entwicklungen und einer für den kurs der europäischen wirtschaft positiven perspektive abgegeben.
that does not , however , detract from the deep appreciation which we have for this report .	im übrigen tut das unserer hohen wertschätzung für den vorliegenden bericht keinen abbruch .

Parallel data

- Lots of translated text available: 100s of million words of translated text for some language pairs
 - a book has a few 100,000s words
 - an educated person may read 10,000 words a day
 - $\rightarrow~3.5$ million words a year
 - \rightarrow 300 million a lifetime
 - \rightarrow soon computers will be able to see more translated text than humans read in a lifetime
- \Rightarrow Machines *can learn* how to translated foreign languages

Statistical Machine Translation

• Components: Translation model, language model, decoder



Lexical translation

• How to translate a word \rightarrow look up in dictionary

Haus — house, building, home, household, shell.

- Multiple translations
 - some more frequent than others
 - for instance: *house*, and *building* most common
 - special cases: *Haus* of a *snail* is its *shell*

Collect statistics

• Look at a *parallel corpus* (German text along with English translation)

Translation of <i>Haus</i>	Count
house	8,000
building	1,600
home	200
household	150
shell	50

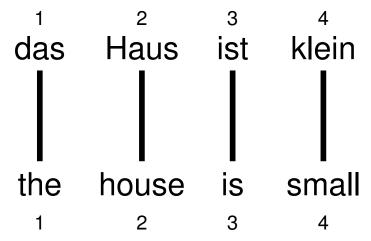
Estimate translation probabilities

• Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house}, \\ 0.16 & \text{if } e = \text{building}, \\ 0.02 & \text{if } e = \text{home}, \\ 0.015 & \text{if } e = \text{household}, \\ 0.005 & \text{if } e = \text{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other



• Word *positions* are numbered 1–4

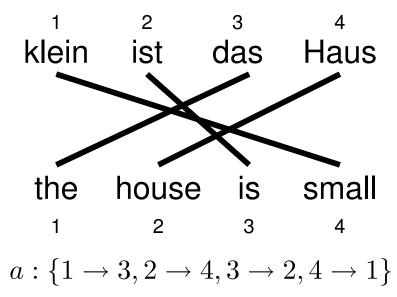
Alignment function

- Formalizing *alignment* with an **alignment function**
- Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a: \{1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4\}$$

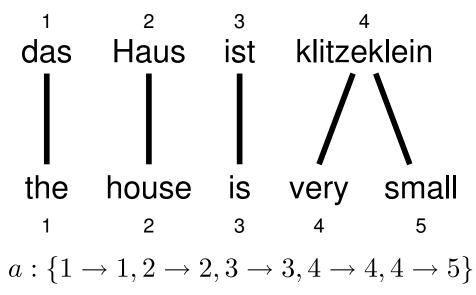
Reordering

• Words may be **reordered** during translation



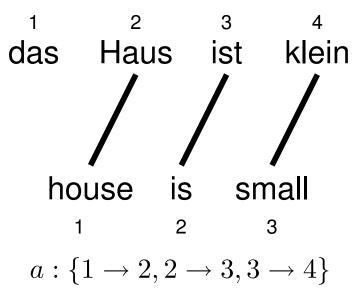
One-to-many translation

• A source word may translate into **multiple** target words



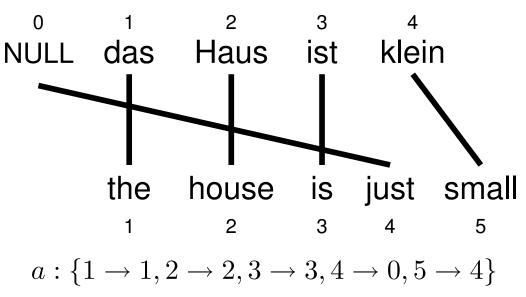
Dropping words

- Words may be **dropped** when translated
 - The German article *das* is dropped



Inserting words

- Words may be **added** during translation
 - The English *just* does not have an equivalent in German
 - We still need to map it to something: special $\ensuremath{\operatorname{NULL}}$ token



IBM Model 1

- Generative model: break up translation process into smaller steps

 IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a | \mathbf{f}) = \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Example

d	as	Haus		ist			klein		
e	t(e f)	e	t(e f)	e	t(e f)		e	t(e f)	
the	0.7	house	0.8	is	0.8		small	0.4	
that	0.15	building	0.16	's	0.16		little	0.4	
which	0.075	home	0.02	exists	0.02		short	0.1	
who	0.05	household	0.015	has	0.015		minor	0.06	
this	0.025	shell	0.005	are	0.005		petty	0.04	

 $p(e, a|f) = t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$ $= 0.7 \times 0.8 \times 0.8 \times 0.4$ = 0.0028

Learning lexical translation models

- \bullet We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the *alignments*,
 - \rightarrow we could estimate the *parameters* of our generative model
 - if we had the *parameters*,
 - \rightarrow we could estimate the *alignments*

EM algorithm

• Incomplete data

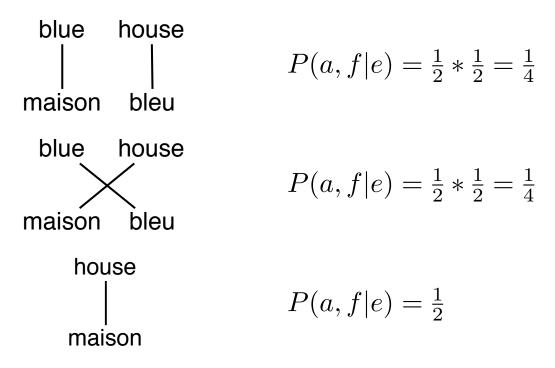
- if we had *complete data*, would could estimate *model*
- if we had *model*, we could fill in the *gaps in the data*
- Expectation Maximization (EM) in a nutshell
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate

- EM Algorithm consists of two steps
- **Expectation-Step**: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until **convergence**

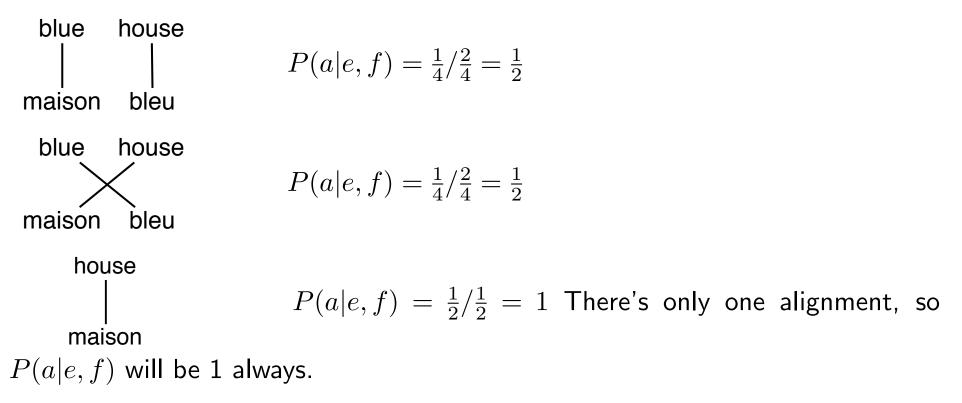
Step 1. Set parameter values uniformly.

 $t(bleu|house) = \frac{1}{2}$ $t(maison|house) = \frac{1}{2}$ $t(bleu|blue) = \frac{1}{2}$ $t(maison|blue) = \frac{1}{2}$

Compute P(a, f|e) for all alignments.



Step 3. Normalize P(a, f|e) values to yield P(a|e, f) values.



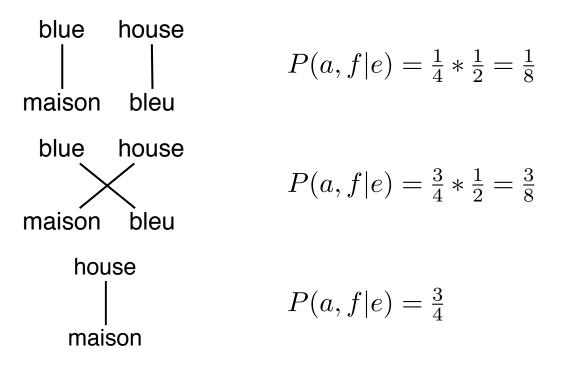
Step 4. Collect fractional counts.

 $tc(bleu|house) = \frac{1}{2}$ $tc(maison|house) = \frac{1}{2} + 1 = \frac{3}{2}$ $tc(bleu|blue) = \frac{1}{2}$ $tc(maison|blue) = \frac{1}{2}$

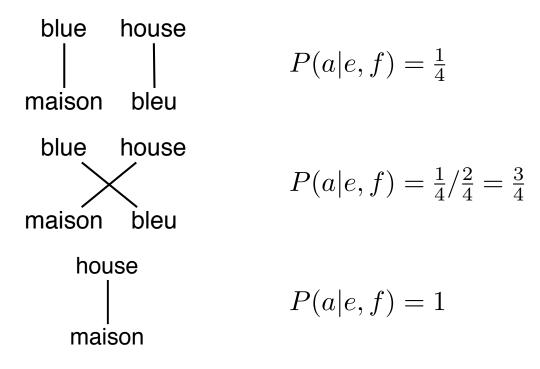
Step 5. Normalize fractional counts to get revised parameter values.

 $t(bleu|house) = \frac{1}{2}/\frac{4}{2} = \frac{1}{4}$ $t(maison|house) = \frac{3}{2}/\frac{4}{2} = \frac{3}{4}$ $t(bleu|blue) = \frac{1}{2}/1 = \frac{1}{2}$ $t(maison|blue) = \frac{1}{2}/1 = \frac{1}{2}$

Repeat Step 2. Compute P(a, f|e) for all alignments.



Repeat Step 3. Normalize P(a, f|e) values to yield P(a|e, f) values.



Repeat Step 4. Collect fractional counts.

 $tc(bleu|house) = \frac{1}{4}$ $tc(maison|house) = \frac{3}{4} + 1 = \frac{7}{4}$ $tc(bleu|blue) = \frac{3}{4}$ $tc(maison|blue) = \frac{1}{4}$

Repeat Step 5. Normalize fractional counts to get revised parameter values.

 $t(bleu|house) = \frac{1}{8}$ $t(maison|house) = \frac{7}{8}$ $t(bleu|blue) = \frac{3}{4}$ $t(maison|blue) = \frac{1}{4}$

Repeating steps 2-5 many times yields:

$$\begin{split} t(bleu|house) &= 0.0001\\ t(maison|house) &= 0.9999\\ t(bleu|blue) &= 0.9999\\ t(maison|blue) &= 0.0001 \end{split}$$

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do
  set count(e|f) to 0 for all e,f
  set total(f) to 0 for all f
  for all sentence pairs (e_s,f_s)
    for all words e in e_s
      total_s = 0
      for all words f in f_s
        total_s += t(e|f)
    for all words e in e_s
      for all words f in f_s
        count(e|f) += t(e|f) / total_s
        total(f) += t(e|f) / total_s
  for all f in domain( total(.) )
    for all e in domain( count(.|f) )
      t(e|f) = count(e|f) / total(f)
until convergence
```


Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model

- Only IBM Model 1 has *global maximum* training of a higher IBM model builds on previous model
- Computionally biggest change in Model 3
 - \rightarrow *exhaustive* count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

Next up: Decoding

Derivations for the Expectation Step

- We need to compute $p(a|\mathbf{e},\mathbf{f})$
- Applying the *chain rule*:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

- We already have the formula for $p(\mathbf{e}, \mathbf{a} | \mathbf{f})$ (definition of Model 1)
- We need to compute $p(\mathbf{e}|\mathbf{f})$

Derivations for the Expectation Step $p(\mathbf{e}|\mathbf{f}) = \sum p(\mathbf{e}, a|\mathbf{f})$ l_f l_f = $\sum \dots \sum p(\mathbf{e}, a | \mathbf{f})$ $a(1)=0 \quad a(l_e)=0$ $= \sum_{i=1}^{l_f} \dots \sum_{j=1}^{l_f} \prod_{i=1}^{l_e} t(e_j | f_{a(j)})$ a(1)=0 $a(l_e)=0$ j=1 l_e l_f $=\prod \sum t(e_j|f_i)$ $i = 1 \ i = 0$

Trick in the last line removes the need for an *exponential* number of products. This makes IBM Model 1 estimation **tractable**

Derivations for the Expectation Step

• Combine what we have:

 $p(\mathbf{a}|\mathbf{e}, \mathbf{f}) = p(\mathbf{e}, \mathbf{a}|\mathbf{f}) / p(\mathbf{e}|\mathbf{f})$ $= \frac{\prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)}$ $= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)}$

Derivations for the Maximization Step

- Now we have to *collect counts*
- Evidence from a sentence pair e, f that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{j=1}^{l_e} t(e|f_{a(j)})} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

Derivations for the Maximization Step

• After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{f} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$