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However, the sky remained clear under the strong north wind .



The Tower of Babel

Pieter Brueghel the Elder (1563)
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Georges Artsrouni’s “mechanical brain”,
patented 1933 (France)
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ENIAC (1946)



When I look at an article
in Russian, I say: “This
1s really written in
English, but it has been
coded in some strange
symbols. I will now
proceed to decode.”

Warren Weaver (1949)



Popular view of MT in 2003

STICK ONE IN YOUR EAR, YOU CAN INSTANTLY
UNDERSTAND ANYTHING SAID TO YOU IN ANY FORM

OF LANGUAGE : THE SPEECH YOU HEAR DECODES THE
BRAIN WAVE MATRIX.




Popular view of MT in 2013

Google
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SDL freeTranslation



Statistical Machine
Translation Live

4 /28 /2006 03:40:00 PM
Franz Och

Because we want to provide everyone with access to
all the world's information, including information
written in every language, one of the exciting projects
at Google Research is machine translation... Now you
can see the results for yourself. We recently launched
an online version of our system for Arabic-English
and English-Arabic. Try it out!
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Arabic
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Bosnian
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Croatian
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Georgian
German
Danish Greek
Dutch
English

Esperanto
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Haitian Creole
| Hebrew
Estonian Hindi
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Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Javanese
Kannada
Khmer
Korean

Lao

Latin
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Lithuanian
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Marathi
Norwegian
Persian
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Portuguese

Romanian
Russian
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Slovak
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Tamil
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Thai

How did they do this?

French English Turkish \

Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
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...But the probability that an event has
happened 1s the same as the probability I
have to guess right if I quess it has
happened. Wherefore the following
proposition 1s evident: If there be two
subsequent events, the probability of the 2d
b/N and the probability both together P/N,
and 1t being 1st discovered that the 2d
event has also happened, the probability I
am right is P/b.

Thomas Bayes
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Thomas Bayes



Bayes’ Rule

p(English|Chinese) =

p(English) x p(Chinese| English)

/

prior

p(Chinese)
|

\

likelihood

normalization term (ensures we’re

working with valid probabilities).



When I look at an article
in Russian, I say: “This
1s really written in
English, but it has been
coded in some strange
symbols. I will now
proceed to decode.”

Warren Weaver (1949)
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Claude Shannon



Bayes’ Rule

p(English|Chinese) =

p(English) x p(Chinese| English)

/

prior

p(Chinese)
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likelihood

normalization term (ensures we’re

working with valid probabilities).



Noisy Channel

p(English|Chinese) =

p(English) x p(Chinese| English)

/ p(Chinese) \

signal model channel model

normalization term (ensures we’re
working with valid probabilities).



Machine Translation

p(English|Chinese) =

p(English) x p(Chinese| English)

/

language model

1

p(Chinese) \

translation model

normalization term (ensures we’re

working with valid probabilities).



p(Chinese|English)

English



p(Chinese|English)

X p(English)

English
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Machine Translation

p(English|Chinese) =

p(English) x p(Chinese| English)

/

language model

1

p(Chinese) \

translation model

normalization term (ensures we’re

working with valid probabilities).



Machine Translation

p(English|Chinese) ~

p(English) x p(Chinese|English)



Machine Translation

p(English|Chinese) ~

p(English) x p(Chinese|English)

What is the probability of an English sentence?



Machine Translation

p(English|Chinese) ~

p(English) x p(Chinese|English)

What is the probability of an English sentence?

What is the probability of a Chinese sentence, given a
particular English sentence?



Language Models

Our language model must assign a probability
to every possible English sentence.




Language Models

Our language model must assign a probability
to every possible English sentence.

Q: What should this model look like?



Language Models

Our language model must assign a probability
to every possible English sentence.

Q: What should this model look like?

Q2: What is the dumbest thing you can think of?



Language Models

Our language model must assign a probability
to every possible English sentence.

Q: What should this model look like?

Q2: What is the dumbest thing you can think of?

A: An n-gram model.



IBM Model 1

Although north wind howls , but sky still very clear .
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IBM Model 1

Although north wind howls , but sky still very clear

ZR b W REsE L 42 X OARAR T4 EE
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p(Chinese word position)
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p(English word|Chinese word)
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IBM Model 1

Although north wind howls , but sky still very clear .
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However , the sky remained clear under the strong north wind .



IBM Model 1

p(despite| & &)
p(however| & )

p(although| &%)

p(northern| it )
p(north| 4t )



IBM Model 1

p(despite| & &) 2?7
p(however| &XK) 2?7

p(although| &%) 277
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p(north| ) 222



IBM Model 1

p(despite| & &)
p(however| & )

p(although| &%)

p(northern| it )
p(north| 4t )

27?7?

22?

22?

27?7

22?
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Although north wind howls , but sky still very clear .
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However, the sky remained clear under the strong north wind .

p(north| At ) = 222



Suppose that we only ever see Jt aligned to
north or northern.

Jt — north Jt — northern



Suppose that we only ever see Jt aligned to
north or northern.

Jt — north Jt — northern

p(north| )  p(northern| it )



Suppose that we only ever see Jt aligned to
north or northern.

Jt — north Jt — northern

p(north| 4t ) 1-p(north| At )
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Jt — north Jt — north
Jt — northern Jt — north
Jt — north Jt — north
Jt — northern Jt — north
Jt — north Jt — northern

p(north| t )7

p(data) = p(north| & )" + p(northern| d )?



Jt — north Jt — north
Jt — northern Jt — north
Jt — north Jt — north
Jt — northern Jt — north
Jt — north Jt — northern

p(north| t )7

p(data) = p(north| & )" +[1 — p(north| 4 )]°



p(data) = p(north| 3 )" +[1 — p(north| 4 )]’

p(data)

p(north| 4t )



p(data) = p(north| & )" 4+ [1 — p(north| 4 )]°

p(data)

p(north| 4t )



p(data) = p(north| & )" 4+ [1 — p(north| 4 )]°




IBM Model 1

Although north wind howls , but sky still very clear .
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However, the sky remained clear under the strong north wind .

p(north| 3 ) = # of times Jb aligns to north

|

# of times bt occurs
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MLE for IBM Model 1 (observed)

1=1

7("™)
) = arg maXH( CRRIPARY Hp (”)\J(")) (fi(n)eg:’“)))



MLE for IBM Model 1 (observed)

number of
sentences

N
= arg max H (

French, English
sentence lengths

alignment of French
word at position i

7("™)
(1) T (a1 p(f el

1—1 A A

)

French, English
word pair



MLE for IBM Model 1 (observed)

7("™)
) = arg maXH( CRRIPARY Hp (”)\J(”)) (fi(n)eg:’“)))

1=1

‘d

constant!



MLE for IBM Model 1 (observed)

N 1(n)

) = arg maxC’ H Hp f(n)\e(”))



MLE for IBM Model 1 (observed)

N\

I

n)
f(”)e(”)))
1=1

log(a) < log(b) <= a < b

N
= arg maxlog( H



MLE for IBM Model 1 (observed)

) = arg maxlog( H (f|e)covntds, e>))
f,e

0



MLE for IBM Model 1 (observed)

§ = arg maxlog C + Zcount((f, e)) logp(fle)
7
f.e

log of product = sum of logs



MLE for IBM Model 1 (observed)

A(B,)) =logC + ) count({f,e))logp(fle)
f.e

) A (Zp(fe) — 1)

W

Lagrange multiplier expresses normalization constraint



MLE for IBM Model 1 (observed)

A(B,)) =logC + ) count({f,e))logp(fle)
f.e

) A (Zp(fe) — 1)

AN _ count(fie)
derivative w(fle) —  p(fle) e




MLE for IBM Model 1 (observed)

Although north wind howls , but sky still very clear .
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However, the sky remained clear under the strong north wind .

p(north| 3 ) = # of times Jb aligns to north

# of times bt occurs



MLE for IBM Model 1 (unobserved)

Although north wind howls , but sky still very clear .
A KR, 2 RE KRR T mE .

However, the sky remained clear under the strong north wind .

p(north| At ) = 222



MLE for IBM Model 1 (observed)
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n)
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1=1

N
= arg maxlog( H



MLE for IBM Model 1 (unobserved)

7(")
f = arg maxlog (C 1[ L Hp f(”)‘e(n) )

n=1 a 1=1

marginalize over alignments:

— :E::]9(j:‘1‘6)



MLE for IBM Model 1 (unobserved)

- arg max log (C’ : Hp(fe)E[CO“”t(<f’e>>])

6 fre



MLE for IBM Model 1 (unobserved)

- arg max log (C’ : Hp(fe)E[CO“”t(<f’e>)])
0

e

Not constant! Depends on parameters,
no analytic solution.



MLE for IBM Model 1 (unobserved)

- arg max log (C’ : Hp(fe)E[CO“”t(<f’e>)])
0

e

Not constant! Depends on parameters,
no analytic solution.

But it does strongly imply an iterative solution.
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[ikelihood Estimation for Model 1

Although north wind howls , but sky still very clear .
BAR O RoeFeR , 2 RE KRR T AR . e

Parameters and alignments are both unknown.

4

[f we knew the alignments, we could [i

calculate the values of the parameters. &%
=

T " If we knew the parameters, we could calculate
" the likelihood of the data.

However , the sky remained clear under the strong north wind .

p(English word|Chinese word)  unobserved!



The Plan: Bootstrapping

® Arbitrarily select a set of parameters (say, uniform).
® Calculate of the unseen events.

® Choose new parameters to maximize likelihood,
using expected counts as proxy for observed counts.

® [terate.

® Guarantee: likelihood will be monotonically
nondecreasing.
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alignment, this line would

either be here (count 1) or it
wouldn’t (count 0).
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The Plan: Bootstrapping

Although north wind howls , but sky still very clear .
2R O R PR, 42 REORK T4 FiEk L e

if we had observed the
alignment, this line would

either be here (count 1) or it
wouldn’t (count 0).
since we didn’t observe the
alignment, we calculate the
probability that it’s there.

However , the sky remained clear under the strong north wind .



Marginalize: sum all alignments containing the link

2R O KN =R 2 R KRAK 4 EE

= = )+

However , the sky remained clear under the strong north wind .

p(

BAR O X sFuR , 2 R=E RAR +4 FE .
) +

However, the sky remained clear under the strong north wind .

p(

22 b X Fw o, A2 RE KRR 4 ik .
<
P | e )

However, the sky remained clear under the strong north wind .




Divide by sum of all possible alignments

BR O R P, A2 RE KRR T FEk
—
p( P ) +
/

However , the sky remained clear under the strong north wind .

BA O W e, 2 RE ORA 4 R .

el ) +

However, the sky remained clear under the strong north wind .

BA A W R, 2 RE ORA o AR .

However, the sky remained clear under the strong north wind .




Divide by sum of all possible alignments

2R O KN =R 2 R KRAK 4 EE

-

However , the sky remained clear under the strong north wind .

BA O W e, 2 RE ORA 4 R .

(| | s

However, the sky remained clear under the strong north wind .

BA A W R, 2 RE ORA o AR .

However, the sky remained clear under the strong north wind .

[s this hard? How many alignments are there?
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Expectation Maximization

probability of an alignment.

factors across words.

p(F,AlE) =p(I|J) Hp ]b filei)

/ \

observed uniform
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Expectation Maximization

marginal probability of
alignments containing link

p(north|dt ) Z p(rest of a)

acA:Jb<north
Z p(north|c) Z p(rest of a) \

ceChinese words acA: ¢ —north \
identical!

marginal probability of all

alignments



Expectation Maximization

p(north| Jt)

ZcEChinese words p(nOTth|C)




Expectation Maximization

marginal probability (expected count) of an
alignment containing the link

p(north| Jt)

ZcEChinese words p(n0rth|c)




Expectation Maximization

marginal probability (expected count) of an
alignment containing the link

p(north| Jt)

ZcEChinese words p(n0rth|c)

For each sentence, use this
quantity instead of 0 or 1



Translation Models
Although north wind howls , but sky still very clear .
BRI R PR, 2 RE KRR T R
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However, the sky remained clear under the strong north wind .

# of times & X aligns to However

p(however| & &) =
# of times & X occurs



Translation Models
Although north wind howls , but sky still very clear .
BRI R PR, 2 RE KRR T R

However, the sky remained clear under the strong north wind .

# of times & &
aligns to However

p(however| & &) =
# of times & X occurs



Expectation Maximization

Why does this even work?

p(north| Jt)

ZcEChinese words p(nOTth|C)
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Observation 1: We are still solving a
maximum likelihood estimation problem.
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Expectation Maximization

Observation 1: We are still solving a
maximum likelihood estimation problem.

p(Chinese|English) = Z p(Chinese, alignment|English)

alignments

MLE: choose parameters that maximize this
expression.

Minor problem: there is no analytic solution.



p( O|X)
\

Objective
function

Current
guess

e

Lower bound Linear
dPprox.

_ 0

(from Minka "98)
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Probability models enable us to
Given a particular Chinese sentence, what is the most
probable English sentence corresponding to it?
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Decoding

Probability models enable us to
Given a particular Chinese sentence, what is the most
probable English sentence corresponding to it?

In math, we want to solve:
argmax g, .15 P(English|Chinese)

problem: there are a lot of English sentences to
choose from!
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X R

substitutions () (5™)

permutations  O(n!)

15,000 possibilities!
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X R

NN\

the strong north wind .

Given a sentence pair and an
alignment, we can easily calculate
p(English, alignment|Chinese)

Can we do this without enumerating O(5"n!) pairs?



Key Idea

X R

NN\

the strong north wind .

There are O(5"n!) target sentences.

But there are only O(5") ways to start them.
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strong
e ©

p(north|START) - p(3k |north)
north
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northern
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north wind
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Key Idea

Work done at sentence beginnings is shared across
many possible output sentences!

p(north|START) - p(3k |north)

north wind
9000 > 000 > ( X
p(wind|north) - p( X lwind)
strong
® O

p(strong|north) - p( ¥ = |strong)
<[P
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Key Idea bad, but much

amount of work: better than
O(5"2") O(5"n!)
o
north, 0.014
O 00
XX X < l
o0 O ® @
each edge labelled \ -

with a weight and a
word (or words)

Dynamic Programming



Weighted languages

® The lattice describing the set of all possible
translations is a

® So is the language model.

® Since regular languages are closed under
intersection, we can intersect the devices and run
shortest path graph algorithms.

® Taking their intersection is equivalent to computing
the probability under Bayes’ rule.



Practical Issues

O(5"2™) is still far too much work.
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Each arc weighted by
translation probability +
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Objective: find shortest path that visits each word once.
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Can we do better?

Probably not: this is the traveling salesman problem.

X R

VYV YN

London Paris NY Tokyo .

Each arc weighted by
translation probability +
bigram probability

Objective: find shortest path that visits each word once.



Two Problems

® Exact decoding requires exponential time.
® This is a consequence of arbitrary permutation.
® But in translation reordering is not arbitrary!

® Parameterization of reordering is weak.

® No generalization!



la empresa tiene enemigos fuertes en Europa .

\ N\ ]

the company has strong enemies in Europe .

Garcia and associates . the clients and the associates are enemies .
Garcia y asociados . J los clientes y los asociados son enemigos .
Carlos Garcia has three associates . the company has three groups .
Carlos Garcia tiene tres asociados . | la empresa tiene tres grupos .
his associates are not strong \ its groups are in Europe .
sus asociados no son fuertes . sus grupos estan en Europa .
Garcia has a company also . the modern groups sell strong pharmaceuticals .
Garcia tambien tiene una empresa . los grupos modernos venden medicinas fuertes .

its clients are angry . the groups do not sell zanzanine .

S/ A

sus clientes estan enfadados . los grupos no venden zanzanina .

r

the associates are also angry . the small groups are not modern .

S/ XN\ S > K

los asociados tambien estan enfadados . los grupos pequenos no son modernos .




la empresa tiene enemigos fuertes en Europa .

\ \ \ —— |

the company has|strong enemies|in Europe .

Garcia and associates . the clients and the associates are enemies .
Garcia y asociados . J los clientes y los asociados son enemigos .
Carlos Garcia has three associates . the company has three groups .
Carlos Garcia tiene tres asociados . | la empresa tiene tres grupos .
his associates are not strong \ its groups are in Europe .
sus asociados no son fuertes . sus grupos estan en Europa .
Garcia has a company also . the|modern groupd sell ptrong pharmaceuticalf .
Garcia tambien tiene una empresa . los grupos modernos venden medicinas fuertes .

its clients are angry . the groups do not sell zanzanine .

S/ A

sus clientes estan enfadados . los grupos no venden zanzanina .

the associates are also angry . e pmall groupd are not modern .

/S XN\ /XX\

los asociados tambien estan enfadados . los grupos pequenos no son modernos .




la empresa tiene enemigos fuertes en Europa .

\ \ \

—— [

the company has|strong enemies|in Europe .

Same pattern:
NN JJ — JJ NN

o] © be) 51 LllJUD Coldll Cl11 J_'JL/lJ_UlJCl .

Garcia has a company also .

\ S

Garcia tambien tiene una empresa .

its clients are angry .

S/

sus clientes estan enfadados .

\

>\

los grupos modernos venden medicinas fuertes .

the|modern groupd sell ptrong pharmaceuticalf .

J

the groups do not sell zanzanine .

s 7/

los grupos no venden zanzanina .

the associates are also angry .

S/ XN\

los asociados tambien estan enfadados .

e pmall groupd are not modern .

/X Koo

los grupos pequenos no son modernos .




la empresa tiene enemigos fuertes en Europa .

\ \ \

—— [

the company has|strong enemies|in Europe .

Same pattern:
NN JJ — JJ NN

Finite-state models do not capture
this generalization.

)

o] © be) 51 LllJUD Coldll Cl11 J_'JL/lJ_UlJCl .

Garcia has a company also .

\ S

Garcia tambien tiene una empresa .

its clients are angry .

S/

sus clientes estan enfadados .

\

>\

los grupos modernos venden medicinas fuertes .

the|modern groupd sell ptrong pharmaceuticalf .

J

the groups do not sell zanzanine .

s 7/

los grupos no venden zanzanina .

the associates are also angry .

S/ XN\

los asociados tambien estan enfadados .

e pmall groupd are not modern .

/X Koo

los grupos pequenos no son modernos .
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Context-Free Grammar

S

S — NP VP /\

NP — watashi wa

NP — hako wo / \ / \
VP —-= NPV

watashi wa NP

/\

hako wo akemasu

V — akemasu

watashi wa hako wo akemasu



Context-Free Grammar

S— NP VP | |
NP — watashi wa Note: this particular grammar
JL\P > hako wo is finite, hence regular.

VP — NPV

V — akemasu | |
watashi wa watashi wa akemasu

watashi wa hako wo akemasu
hako wo hako wo akemasu
hako wo watashi wa akemasu
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Context-Free Grammar

S
S— AB /\
S—-ASB sz 1‘3
A—a a b
B—b
/S\
T
g
|




Context-Free Grammar

S

S— AB /\ q
S—-ASB A B /\
A—a Jl IL A S B
B—b /‘\