
1 INTRODUCTION
Level of detail (LOD) techniques are widely used today among
interactive 3D graphics applications, such as CAD design,
scientific visualization, virtual environments, and gaming,
allowing applications to trade off visual fidelity for interactive
performance. Many excellent algorithms exist for LOD generation
as well as for LOD management [Luebke 2003]. However, no
widely accepted programming model has emerged as a standard
for incorporating LOD into programs.

Existing tools generally fall into two categories: mesh simplifi-
ers and scene graph toolkits. Mesh simplifiers address the LOD
generation problem, taking a complex object and producing
simpler LODs, but they do not attempt to address LOD manage-
ment at all. Scene graphs such as OpenGL Performer [Rohlf
1994] perform LOD management, but go to the opposite extreme;
they provide heavyweight “all or nothing” solutions that lump
LOD in with myriad other aspects of an interactive computer
graphics system, constraining the form of the overall application.

In this poster we present GLOD, a tool for geometric level of
detail that provides a full LOD pipeline in a lightweight and
flexible application programmer’s interface (API). This API is a
powerful, extendible, yet easy-to-use LOD system, supporting
discrete, continuous, and view-dependent LOD, multiple simplifi-
cation algorithms, and multiple adaptation modes. GLOD is not a
scene graph system; instead, it is an API integrated with OpenGL,
an existing and popular low-level rendering API. With this
formulation, we start to think of geometric level of detail as a
fundamental component of the graphics pipeline, much like mip-
mapping is a fundamental component for controlling detail of
texture images. The system itself should be an excellent tool for
interactive visualization applications written using OpenGL.

2 GLOD API
Our design goals for the GLOD API (see Figure 3) focus on
providing a lightweight model for the creation, management, and
rendering of geometry. To maximize its appeal to multiple
audiences, GLOD should be fast, extensible to different LOD
algorithms, and easy to integrate into existing applications.
Furthermore, it should allow incremental adoption rather than
locking developers into all pieces of the GLOD framework. To
accomplish these goals, GLOD API is tightly integrated with the
industry standard OpenGL API, so our design decisions are
guided as if GLOD were a component of OpenGL.

The data handled by GLOD is organized into three principal
units: patches, objects, and groups. A patch is the principal unit

of rendering. A patch is specified to GLOD using the OpenGL
vertex array interface. Drawing a patch is much like drawing a
vertex array, the chief difference being that what you get is an
LOD of the original arrays. The application may change rendering
state, such as bound textures, on a per-patch basis at the time of
rendering; GLOD does not interfere with rendering state.

An object is the principal unit of LOD generation. The applica-
tion designates one or more patches as an object before initiating
the LOD generation process. Thus multiple patches may be
simplified together into crack-free levels of detail. GLOD also
supports memory-efficient instancing of objects to provide
efficient LOD management for applications which render objects
in multiple locations.

A group is the principal unit of LOD management. An applica-
tion places one or more objects into a group. At each frame,
GLOD adapts the LOD of all patches of all objects in each group
according to the specified adaptation mode and current OpenGL
viewing matrices.

The GLOD pipeline is designed to allow flexible motion of
data into and out of it as desired by the application, as illustrated
in Figure 1. The original geometry is specified as patches using
the vertex array mechanism. The application can then set a
number of per-patch and per-object LOD generation parameters to
determine how the LOD hierarchy is constructed. For example,
parameters may be used to select a simplification operator, error
metric, hierarchy type (e.g. discrete, continuous, view-dependent),
importance values, etc. A special hierarchy type allows the
programmer to manually build discrete hierarchies from a set of
existing LODs. An entire hierarchy may be read back by the
application to save it to disk, allowing it to be re-used in a later
execution without regenerating it. Group parameters specify
management modes such as the error mode (object-space or
screen-space), adaptation mode (error threshold or triangle
budget), morphing parameters, etc. After adapting a group, the
individual adapted patches may be read back, again through the
vertex array mechanism. The application can store these vertex
arrays, pass them to OpenGL for rendering, etc. This complete set
of data paths allows applications to incrementally adopt GLOD.

3 DISCUSSION
We have currently limited the scope of GLOD to filtering geomet-
ric detail without interfering with rendering state. This has several
benefits. The application may safely employ complex rendering
algorithms, including multi-pass algorithms, as well as custom
vertex and fragment programs. For example, applications can use
normal mapped LODs without difficulty in GLOD. Many user-

GLOD: A Geometric Level of Detail System at the OpenGL API Level
Jonathan Cohen* David Luebke+ Nathaniel Duca* Brenden Schubert+

*Johns Hopkins University +University of Virginia
http://www.cs.jhu.edu/~graphics/GLOD

Figure 1: The GLOD object and dataflow model.

Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

defined vertex program parameters can pass through GLOD
filtering. However, this is not applicable for all vertex programs.
Also, our non-interference policy makes some forms of LODs,
such as textured impostors, difficult to support because they
require us to change rendering state.

At the time of this writing, a pre-release version of the GLOD
system is available from our web site:

http://www.cs.jhu.edu/~graphics/GLOD

The current implementation supports both discrete and view-
dependent hierarchy formats, several simplification operators,
error threshold and triangle budget adaptation modes, etc. We
hope that this open source system will provide a viable and
convenient pathway for level of detail research to migrate from
the research lab to full deployment. With a wide array of simplifi-
cation algorithms, hierarchical data representations, and manage-
ment policies in their hands, all available through the setting of a
few parameters, application developers will have tremendous
power to select the implementations that meet their needs.

REFERENCES
Luebke, D., M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.

Huebner. Level of Detail for 3D Graphics. Morgan Kaufman.
2003.

Rohlf, J. and J. Helman. IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics. Proceed-
ings of SIGGRAPH 94. July 24-29. pp. 381-395.

glodNewGroup(grpname);
glodDeleteGroup(grpname);

Create a group to contain and manage objects. Delet-
ing a group deletes all its objects.

glodNewObject(objname, grpname, format);

Create an object for a particular hierarchy format and
place in the named group.

glodInsertArrays(objname, patchname, mode,
 first, count, level, error);
glodInsertElements(objname, patchname, mode,
 count, type, indices,
 level, error);

Put a patch into an object using vertex arrays. Level
and error can be used to load an LOD generated
elsewhere into a discrete hierarchy, but are typically
set to 0.

glodBuildObject(objname);

Complete an object and convert to hierarchy in the
selected output format.

glodInstanceObject(objname, instname, grpname);

Instantiate an existing object by sharing its geometry
hierarchy data, and place into a group.

glodDeleteObject(objname);

Delete an object (which removes it from its group).

glodBindAdaptXform(objname);

Capture an object’s viewing parameters for adapting
(not drawing – GLOD does not change the OpenGL
transformation state).

glodAdaptGroup(grpname);

Adapt LOD for all the objects in a group according to
the group’s ADAPT_MODE.

glodDrawPatch(objname, patchname);

Draw one patch of an object.

glodFillArrays(objname, patchname, first);
glodFillElements(objname, patchname, type,
 elements);

Read back current adapted object into vertex arrays

glodGetObject(objname, data);
glodLoadObject(objname, data);

Read back an object’s hierarchy so it may be saved
and later reloaded to GLOD.

Figure 3: The GLOD API

Figure 2: Bunny rendered in GLOD using a multipass
rendering algorithm, demonstrating GLOD’s policy of
non-interference with the underlying graphics system.

Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

