## Approaches to Polygonal Model Simplification

## Geometric Replacement

## Replace complex objects with simpler objects

## Reduces transformation and communication time

## Rasterization time not changed

- replacements should cover similar number of pixels


## Ford Bronco Model


courtesy of Division and Viewpoint
Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

## Automatic Simplification

## Preprocess

- create multiresolution representation


## Run-time

- extract appropriate resolution model based on viewing parameters and rendering load


## Important Questions

1. What are the input restrictions?
2. How much is primitive count reduced?
3. How fast are primitives rendered?
4. How good can the results look?
5. How much space is used?
6. How much pre-processing time?

## What I'll Talk About

## Performing Simplification

- Simplification Operations
- Error Measures

Employing Simplification

- Static and Dynamic Representations
- Run-time Control


## Simplification Operations

## Types of operations

- Vertex cluster
- Vertex remove
- Edge collapse
- Vertex pair

Each operation reduces model complexity by small amount

Apply many operations in succession to achieve large reductions

## Vertex Cluster



## Merge vertices based on geometric proximity

## Triangles with repeated vertices degenerate to edge or point

General and robust
Not usually attractive

## Vertex Remove



Remove vertex and adjacent faces
Fill hole with new triangles (reduction of 2)

- many possible triangulations (exponential)

Requires manifold surface around vertex
Preserves local topological structure

- typically more attractive


## Edge Collapse



Merge two edge vertices to one

- choose position and attributes for vertex

Delete degenerate triangles

- those containing both vertices (entire edge)
- 2 triangles for manifold edge

Smooth transitions

- animate edge collapse(s) over time


## Half-Edge Collapse



## Collapse to endpoint of edge

- Vertex subset property of vertex remove
- Smooth transition property of edge collapse


## Vertex Remove vs. Edge Collapse



Vertex Remove

- Affects neighborhood around 1 vertex
- Does not introduce new vertices
- Many possible tesselations
- Smooth transitions difficult

Edge Collapse

- Affects neighborhood around 2 vertices
- Freely positions one new vertex
- Single possible tesselation
- Smooth transitions natural


## Vertex Pair



Merge any two vertices

- based on geometry, topology, etc.

More flexibility than edge collapse
More local control than vertex cluster

## Operation Considerations

Attention to topology promotes better appearance
Allowing non-manifolds increases robustness and ability to simplify

Collapse-type operations allow smooth transitions
Vertex remove affects smaller portion of mesh than edge collapse

Subset of vertex remove equivalent to subset of edge collapse

## Performing Simplification

Measure cost of possible operations according to error measure

- Crucial to simplification quality

Place operations in queue according to error

Perform operations in queue

- After each operation, re-evaluate error of operations in neighborhood


## What I'll Talk About

## Performing Simplification

- Simplification Operations
- Error Measures

Employing Simplification

- Static and Dynamic Representations
- Run-time Control


## Why Measure Error?

## Guide simplification process

- Making better choices produces better simplifications

Know quality of results

- Object-space error bounds describes quality

Know when to show a particular LOD

- Which LOD for a given screen-space error

Balance quality for large environments

- What error bound for a given polygon count


## Geometric Error Measures

## Promote accurate 3D shape preservation

Also preserves screen-space shape

- Silhouettes
- Pixel coverage


## Classifying Geometric Error Metrics

Vertex-Vertex Distance
Vertex-Plane Distance
Point-Surface Distance
Surface-Surface Distance

## Vertex-Vertex Distance

$\mathrm{E}=\max _{\mathrm{v}}^{\mathrm{v}}\left(\left\|\mathrm{v}_{3}-\mathrm{v}_{1}\right\|, \|_{\mathrm{v}_{3}-\mathrm{v}_{2} \|}^{\mathrm{v}_{3}}\right.$
Appropriate during topology changes

- Rossignac and Borrel 93
- Luebke and Erikson 97

Loose for topology-preserving collapses

## Vertex-Plane Distance



- Error based on distance from vertex to planes
- When vertices are merged, merge sets

Ronfard and Rossignac 96

- Store plane sets, compute max distance

Error Quadrics - Garland and Heckbert 96

- Store quadratic form, compute sum of square distances


## Point-Surface Distance



Used in Hoppe 93 and 96
Map point set to closest points on simplified surface

Compute sum of square distances

## Surface-Surface Distance



Bound maximum distance between input and simplified surfaces

- Tolerance Volumes - Guéziec 96
- Simplification Envelopes - Cohen/Varshney 96
- Hausdorf Distance - Klein 96
- Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97


## Vertex-Vertex l= Surface-Surface



Error is zero at vertices and exterior edges
Error is non-zero everywhere else

- not captured by vertex-vertex or vertexplane metrics


## Memoryless Simplification

## Lindstrom/Turk 98

No measure of error from original mesh

- Incremental rather than total error

Preserve volume and area as simplification progresses

Error demonstrated to be low using after-the-fact error measurement

- Metro - Cignoni et al. 96


## Geometric Error Observations

Vertex-vertex and vertex-plane distance

- Fast
- Low error shown after-the-fact, but not guaranteed by metric

Cannot guarantee quality without surfacesurface distance bound

Hoppe's point-surface approximates one-sided surface-surface

Good error measures useful at run-time

- 3D average or maximum error distance


## Attribute Error Metrics

Attributes include colors, normals, and texture coordinates

Promote accuracy of final pixel colors

- Vertex-Vertex Distance
- Vertex-Plane Distance
- Point-Surface Distance
- Surface-Surface Distance


## Vertex-Vertex Distance

## GAPS point clouds - Erikson/Manocha 98

- Measure sum of square distances from vertex to its constituent vertices (area-weighted)
- Used for colors, normals, and texture coordinates
- Stored as 5 floats for 3D attributes (e.g. rgb)

Normal cones

- Luebke/Erikson 97, Xia et al. 97


## Vertex-Plane Distance

## Higher-dimensional error quadrics

- Garland and Heckbert 98
- Vertices live in higher-dimensional position + attribute space
- Planes defined in this space

Multiple attribute quadrics

- Hoppe 99
- Decouples affects of position and attributes
- Reduces storage and computational complexity


## Point-Surface Distance

Extension of geometric point-surface distance

- Hoppe 96

Geometric correspondences found between original surface samples and simplified surface

Sum of square attribute distances minimized
Used primarily for vertex colors

## Surface-Surface Distance

## Bajaj / Schikore 96

- Geometric projections provide local mappings
- Maximum distance of scalar attributes measured over surface


## Appearance-Preserving Simplification

## Cohen et al. 98

- Colors and normals stored in texture and normal maps
- Texture deviation computed using parametric correspondence
- Preserves colors and normals, bounding texture motion in object and screen space


## Appearance-Preserving Simplification

7,809 tris


## 488 tris

975 tris

## 1,951 tris

## 3,905 tris

## model courtesy of Stanford and Caltech

## Attribute Metric Observations

## Open problem

- Employ bounds on color and normal deviation at run-time
- Guarantee appearance, but simplify more as objects recede
Texture and normal map approach
- Requires parameterization, texture management, and improved shading hardware


## What I'll Talk About

## Performing Simplification

- Simplification Operations
- Error Measures

Employing Simplification

- Static and Dynamic Representations
- Run-time Control


## ti-resolution Representations

## Static levels of detail

- Individual, complete simplified meshes

Dynamic representations

- Tree structure traversed $\&$ adapted at runtime
- DeFloriani et al. 97, Hoppe 97, Luebke/Erikson 97, Xia et al. 97


## Static Levels of Detail



Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

## Static Levels of Detail

## Pre-process

- Generate set of independent levels of detail

Run-time

- Select level of detail based on distance from viewpoint
Advantages
- Fairly efficient storage (2x original)
- No significant run-time overhead

Disadvantages

- Requires per-object simplification
- Not good for spatially large objects


## Dynamic Levels of Detail



## from Luebke and Erikson, SIGGRAPH 97

## Dynamic Levels of Detail

## Pre-process

- Generate tree of simplification operations

Run-time

- Refine/coarsen current model according to viewpoint
Advantages
- Allows finer control of tessellation

Disadvantages

- More run-time computation and complexity
- Difficult for retained-mode graphics


## What I'll Talk About

## Performing Simplification

- Simplification Operations
- Error Measures

Employing Simplification

- Static and Dynamic Representations
- Run-time Control


## Run-time Goals

A) Guarantee frame rate, maximize quality

- For multiple objects, knapsack problem (Funkhouser/Sequin 93)
- Tricky for dynamic simplification (Luebke/Erikson 97, Hoppe 97)


## or

B) Guarantee quality, maximize frame rate

- Easier (if good quality metric available)
- Each object or refinement may be considered independently


## Screen-space Geometric Error



Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

## Screen-space Attribute Error

Texture coordinates work like geometric error

- Cohen et al. 98

Normal error controls dynamic refinement around highlights

- Xia et al. 97, Klein 98
- Doesn't allow more simplification as objects recede

Color control??

## Questions Revisited

1. What are the input restrictions

- Vertex cluster and vertex pair allow general triangle input
- Vertex remove and edge collapse usually apply to manifold meshes

2. How much is primitive count reduced?

- Topology modifying algorithms can often reduce more for complex environments
- Dynamic simplification can reduce more than static for a given error bound


## Questions Revisited (2)

3. How fast are primitives rendered

- Static LODs are processed more efficiently
- Normal-mapped primitives require constant additional shading time (currently BIG)

4. How good can the results look

- Topology-preserving techniques usually produce prettier results than object merging
- Attention to attributes as well as geometry important for preserving appearance


## Questions Revisited (3)

5. How much space is used?

- Dynamic simplification requires more space at run-time than static

6. How much pre-processing time?

- Vertex-vertex and vertex-plane metrics generally faster than point-surface and surface-surface metrics


## Video: Appearance-Preserving Simplification

## References

- Bajaj, Chandrajit and Daniel Schikore. Error-bounded Reduction of Triangle Meshes with Multivariate Data. SPIE. vol. 2656. 1996. pp. 34-45.
- Cohen, Jonathan, Dinesh Manocha, and Marc Olano. Simplifying Polygonal Models using Successive Mappings. Proceedings of IEEE Visualization '97. pp. 395-402.
- Cohen, Jonathan, Marc Olano, and Dinesh Manocha. AppearancePreserving Simplification. Proceedings of ACM SIGGRAPH 98. pp. 115122.
- Cohen, Jonathan, Amitabh Varshney, Dinesh Manocha, Gregory Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. Simplification Envelopes. Proceedings of SIGGRAPH 96. pp. 119-128.
- DeFloriani, Leila, Paola Magillo, and Enrico Puppo. Building and Traversing a Surface at Variable Resolution. Proceedings of IEDE Visualization '97. pp. 103-110.
- Erikson, Carl and Dinesh Manocha. GAPS: General and Automatic Polygonal Simplification. Proceedings of 1999 ACM Symposium on Interactive 3D Graphics. pp. 79-88.


## References

- Garland, Michael and Paul Heckbert. Simplifying Surfaces with Color and Texture using Quadric Error Metrics. Proceedings of IDEE Visualization '98. pp. 263-269, 542.
- Garland, Michael and Paul Heckbert. Surface Simplification using Quadric Error Bounds. Proceedings of SIGGRAPH 97. pp. 209-216.
- Guéziec, André. Surface Simplification with Variable Tolerance. Proceedings of Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery (MRCAS '95). pp. 132-139.
- Hoppe, Hugues. Progressive Meshes. Proceedings of SIGGRAPH 96. pp. 99108.
- Hoppe, Hugues. View-Dependent Refinement of Progressive Meshes. Proceedings of SIGGRAPH 97. pp. 189-198.
- Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh Optimization. Proceedings of SIGGRAPH 93. pp. 19-26.
- Hoppe, Hugues H. New Quadric Metric for Simplifying Meshes with Appearance Attributes. Proceedings of IEEE Visualization '99. pp. 59-66.


## References

- Klein, Reinhard, Gunther Liebich, and Wolfgang Straßer. Mesh Reduction with Error Control. Proceedings of IEEE Visualization '96.
- Lindstrom, Peter and Greg Turk. Fast and Memory Efficient Polygonal Simplification. Proceedings of IEEE Visualization '98. pp. 279-286, 544.
- Luebke, David and Carl Erikson. View-Dependent Simplification of Arbitrary Polygonal Environments. Proceedings of SIGGRAPH 97. pp. 199-208.
- Ronfard, Remi and Jarek Rossignac. Full-range Approximation of Triangulated Polyhedra. Computer Graphics Forum. vol. 15(3). 1996. pp. 67-76 and 462.
- Rossignac, Jarek and Paul Borrel. Multi-Resolution 3D Approximations for Rendering. Modeling in Computer Graphics. Springer-Verlag1993. pp. 455-465.
- Xia, Julie C., Jihad El-Sana, and Amitabh Varshney. Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models. IEEE Transactions on Visualization and Computer Graphics. vol. 3(2). 1997. pp. 171-183.

