Image-Based Rendering to Accelerate Interactive Walkthroughs

Daniel G. Aliaga
Lucent Technologies Bell Labs
Murray Hill, NJ

aliaga@bell-labs.com

3D Models

2.0M primitives

1.0M primitives

0.9M primitives

Why Use Images?

Independent of scene complexity

640x480 pixels

640x480 pixels

Flight Simulators

- Mid-1980's
 - E&S CT-6 one of first to use real-time photo textures
- Hand-selected objects:
 - Terrain, trees, airplanes, buildings, etc.
- 30-60 Hz
 - High visual fidelity

Outline

- Replacing Geometry with Images
- Displaying Images
 - Texture-mapping and error metrics
 - Geometry and image warping
 - Meshes, Lightfield/Lumigraph
- Image Placement
 - Automatically Bounding Model Complexity
 - Cells and Portals
- Conclusions

Replacing Geometry with Images

- Algorithm
 - Select subset of model
 - Create image of the subset
 - Cull subset and replace with image
- Why?
 - Image displayed in (approx.) constant time
 - Image reused for several frames

Simple Example

Simple Example

Simple Example

Outline

- Replacing Geometry with Images
- Displaying Images
 - Texture-mapping and error metrics
 - Geometry and image warping
 - Meshes, Lightfield/Lumigraph
 - Image Placement
 - Automatically Bounding Model Complexity
 - Cells and Portals
 - Conclusions

Geometric Discontinuity

 If we move from the center-of-projection, discontinuities appear at the border

Temporal Discontinuity

 While moving, if we switch between geometry and image, a sudden pop occurs

Approaches

- Geometric and Temporal Continuity
 - Error metrics
 - Geometry warping
 - Image warping
 - Lightfield/Lumigraph

Error Metrics

Use an error metric to control amount of discontinuity

[Maciel95][Shade96][Schaufler96]

Error Metric

 Relies on "angular-deviation" measuring the visual quality of using the (same) image

Video Segment I

- Pre-rendered Impostors
 - Maciel95
- Dynamic Image-Caching
 - Shade 96, Schaufler 96

[Aliaga96]

Surrounding geometry warped (incorrect perspective)

Correct perspective

Surrounding geometry warped to match

image Viewpoint Center-of-projection Surrounding Geometry

Video Segment II

- Geometry Warping
 - Aliaga96

Image Warping

- Change the image itself
 - Re-project the image to the current viewpoint
 - [Chen93][McMillan95][Max95][Shade98]
 - Display image as a (simplified, textured) mesh
 - [Darsa97][Sillion97]

Image Warping

 A raster scan of each sheet produces a back-to-front ordering of warped pixels

Image Warping

McMillan and Bishop's Warping Equation

$$x_2 = \delta(x_1) P_2^{-1} (c_1 - c_2) + P_2^{-1} P_1 x_1$$

Move pixels based on ~Texture mapping distance to eye

Example...

- Image outlined in yellow
- Viewed from image's center-of-projection

3D Image Warp

Layered Depth Image Warp

- Multiple samples per pixel
 - Previous occlusions are filled-in

[Popescu98]

Meshes

- (Simplified) Textured Depth Mesh
 - Per-pixel depth creates mesh that approximates 3D parallax effects
 - Image is texture-mapped onto mesh

Video Segment III

- 3D Image Warping
 - McMillan95
- Textured Meshes
 - Darsa97, Sillion97

Lightfield/Lumigraph

- Flow of light at all positions and directions
 - [Levoy96][Gortler96]
- Large number of images are used as 2D slices of a 4D light function

Video Segment IV

- Light field
 - Levoy96
- Lumigraph
 - Gortler96

Outline

- Replacing Geometry with Images
- Displaying Images
 - Texture-mapping and error metrics
 - Geometry and image warping
 - Meshes, Lightfield/Lumigraph
- Image Placement
 - Automatically Bounding Model Complexity
 - Cells and Portals
 - Conclusions

Automatic Image-Placement

- As a preprocess
 - Select geometry to replace with an image in order to limit the number of primitives to render for any frame
- At run time
 - Display selected geometry as a (depth) image
 - Render remaining geometry normally

Automatic Image-Placement

Example Rendering

Geometry

Final Scene

- Overview
- Image Placement
- Displaying Images
- Conclusions

Key Observation

- Example model
- Too much geometry in view frustum

Key Observation

 Geometry is replaced by image to limit the number of primitives to render

Key Observation

 Less geometry is in the view frustum from the eye than the one from the grid viewpoint

Recursive Subdivision

Example Grid

Wireframe rendering

3D grid of 1557 viewpoints

Sample Path

Images Per Triangle

Preprocessing Summary

Model	No. of Images	Prep. Time (hours)	Estimated Space (MB)
Power Plant (2M)	239-5815	1.2-21.7	156-3802
Torpedo Room (850k)	181-2333	1.1-11.8	72- 933
Brooks House (1.7M)	561-2492	11.4-28.4	388-1725
Pipes (1M)	282- 893	2.4- 4.6	175- 554

Video Segment V

- Automatically Bounding Geometric Complexity by Using Images
 - Aliaga99

Cells and Portals

Portal Images

Creating Portal Images

Ideal portal image would be one sampled from the current eye position

Creating Portal Images

Display one of a large number of pre-computed images (~120)

Creating Portal Images

or...

Warp one of a much smaller number of reference images

Brooks House

Brooks House

Video Segment VI

- Architectural Walkthroughs using Portal Images
 - Aliaga97, Rafferty98

Outline

- Replacing Geometry with Images
- Displaying Images
 - Texture-mapping and error metrics
 - Geometry and image warping
 - Meshes, Lightfield/Lumigraph
- Image Placement
 - Automatically Bounding Model Complexity
 - Cells and Portals

Image Quality

- What about measuring quality?
 - Need a perceptual quality metric!

- We know
 - Texture-mapping: bad perspective, small distortions believable (geometry warping)
 - IBR: correct perspective, disocclusions
 - Meshes: stretching of skins

Limitations

- Diffuse illumination
 - Deferred shading?
- Static models
 - Incremental updating?
- Cannot sample all visible surfaces
 - Smarter reconstruction/resampling?
- Can only sample surfaces at a fixed resolutions
 - Multi-resolution reference images?

Acknowledgments

- Authors of the Video Segments
- Models
 - Discreet Logic, UNC Walkthrough Group
- UNC-Chapel Hill
 - Walkthrough, PixelFlow, ImageFlow
- NSF, NIH, DARPA
- Lucent Technologies Bell Labs