Ray Casting
Ray Casting Algorithm

For each pixel

1. Compute ray from eye through pixel

2. For each primitive
 —Test for ray-object intersection

3. Shade pixel using nearest primitive (or set to background color)
Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)

\[p_t = \text{eye} + t^*v \] (\(v\) typically normalized)

Compute rays to two opposite corners

Compute step sizes, \(\Delta x\) and \(\Delta y\) to go from pixel to pixel

To compute new ray: take step, then normalize
2D ray calculation

view is normalized view direction

right = (view_y, -view_x)
v_a = view - tanθ * right
v_b = view + tanθ * right
step = (v_b - v_a) / num_pixels
v_0 = v_a + step / 2
v_i = v_{i-1} + step

In 3D, we have an additional step size and field-of-view angle as well as an up vector.

Note: take equal-sized steps in viewing plane, not equal angles!

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen
Computing Intersections

Ray is in **parametric** form (t is parameter)
\[x = p + t*v \]

Represent primitive in **implicit** form:
\[f(x,y,z) = 0 \]
(any (x,y,z) on surface evaluates to zero)

Substitute (x,y,z) of ray into f(x,y,z) and solve for t

- degree n implicit function will be degree n in t
- quadric surfaces may be solved with quadratic equation -- pick real solution closest to eye
Example Quadric Functions

Sphere: \((x-a)^2 + (y-b)^2 + (z-c)^2 - r^2 = 0\)

Circular cylinder (parallel to z-axis):

\((x-a)^2 + (y-b)^2 - r^2 = 0\)

Hyperbolic paraboloid:

\(\frac{y^2}{b^2} - \frac{x^2}{a^2} - z = 0\)
General Quadrics

General quadric has form:

\[Ax^2 + 2Bxy + 2Cxz + 2Dx + Ey^2 + 2Fyz + 2Gy + Hz^2 + 2Iz + J = 0 \]

or...

\[x^tQx = 0, \quad \text{where} \quad x^t = [x \ y \ z \ 1] \quad \text{and} \quad Q = \begin{bmatrix}
A & B & C & D \\
B & E & F & G \\
C & F & H & I \\
D & G & I & J
\end{bmatrix} \]
Quadric Intersections

Quadric: \(x^tQx = 0 \)

Ray: \(x = p + tv \)

Substituting ray for \(x \):

\[
(p + tv)^tQ(p + tv) = 0
\]
\[
p^tQp + p^tQtv + tv^tQp + tv^tQtv = 0
\]
\[
(v^tQv)t^2 + (p^tQv + v^tQp)t + p^tQp = 0
\]
\[
(v^tQv)t^2 + (2v^tQp)t + p^tQp = 0
\]

\((Q \text{ is symmetric}) \)
Common Ray-tracing Primitives

Sphere, ellipsoid

Cylinders

Plane, triangle

- $Ax + By + Cz + D = 0$

Torus

Beziers/Nurbs patches

- parametric, so use implicit form of ray

- intersection of two planes
Local Illumination Shading

Compute normal at closest intersection

• $\nabla f = (\partial x, \partial y, \partial z)$ is normal vector field for implicit function, f

For each light

• Use position and normal to compute light contribution

• Accumulate light contributions

Color pixel

• Clamp to avoid overflow
Shadows

Only add contribution from a light if it is visible from the point (and vice versa)

- test for intersections along ray in L direction
- accumulate contribution if no occlusion

(illumination is no longer totally local)
Truncating Primitives

Use another implicit function

- Test which side of the implicit function the intersection is on
- Keep intersection only if it is on the correct side

For example, truncate a cylinder using two plane equations (or perhaps a sphere)

- then cap using the two planes truncated by the cylinder
Constructive Solid Geometry

Perform hierarchical set operations on primitives

Union: ∪

Intersection: ∩

Difference: —
CSG Operators

Square \cup Circle =

Square \cap Circle =

Square \smash{\longrightarrow} Circle =
CSG Hierarchy

Circle

Circle Rectangle

=
Ray Tracing CSG

Each “object” may be a primitive or a CSG hierarchy

Find all ray-primitive intersections for hierarchy

Use CSG operators to determine which intervals are solid or vacant

Use start of nearest solid interval as ray-object intersection
CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is ordered list of intersections, forming solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by applying CSG operator of current node
CSG Example - golf ball

(a-b) - c
Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive