
Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Procedural Texturing and ShadingProcedural Texturing and ShadingProcedural Texturing and Shading

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Procedural Texturing/ShadingProcedural Texturing/Shading

Paradigm for programmability in theParadigm for programmability in the
graphics pipelinegraphics pipeline

Allows for a wide variety of surfaceAllows for a wide variety of surface
materials and embellishmentsmaterials and embellishments

May be facilitated by a custom shadingMay be facilitated by a custom shading
languagelanguage

•• e.g.e.g. Pixar’s RenderMan Pixar’s RenderMan

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Potential Advantages ofPotential Advantages of
Procedural TexturesProcedural Textures

Compact representationCompact representation

No fixed resolutionNo fixed resolution

No fixed areaNo fixed area

Parameterized - generates class of relatedParameterized - generates class of related
texturestextures

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Disadvantages ofDisadvantages of
Procedural TexturesProcedural Textures

Difficult to build and debugDifficult to build and debug

Surprising resultsSurprising results

Slow evaluationSlow evaluation

AntialiasingAntialiasing handled manually handled manually

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Procedural Texture ConventionsProcedural Texture Conventions

Avoid conditionalsAvoid conditionals

•• Convert to mathematical functions whenConvert to mathematical functions when
possiblepossible

•• Makes anti-aliasing easierMakes anti-aliasing easier

Parameterize rather than building inParameterize rather than building in
constantsconstants

•• Assign reasonable defaults which may beAssign reasonable defaults which may be
overriddenoverridden

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Simple Building BlocksSimple Building Blocks

Mix (Mix (lerplerp))

Step,Step, smoothstep smoothstep, pulse, pulse

Min, max, clamp,Min, max, clamp, abs abs

Sin,Sin, cos cos

Mod, floor,Mod, floor, ceil ceil

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

MixMix

0 1

a

b

mix(a,b,x)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

StepStep

1

0 a

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

SmoothstepSmoothstep

1

a b

smoothstep(a,b,x)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

PulsePulse

1

a b

pulse(a,b,x) = step(a,x) - step(b,x)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

ClampClamp

a

b

a b

clamp(x,a,b) = min(max(x,a), b)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

ModMod

1

a 2a 3a 4a

mod(x,a) / a

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Periodic PulsePeriodic Pulse

1

a 2a 3a 4a

pulse(0.4, 0.6, mod(x,a)/a)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example 1 - brick (see handout)Example 1 - brick (see handout)

Brick is primarily a 2D pulseBrick is primarily a 2D pulse

Input parameters may include:Input parameters may include:

•• color of brick and mortarcolor of brick and mortar

•• size of bricksize of brick

•• thickness of mortarthickness of mortar

•• mortar bump sizemortar bump size

•• frequency of brick color variationfrequency of brick color variation

•• etc.etc.

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

BrickBrickBrick

from from EbertEbert,, ed ed., ., Texturing and Modeling: a Procedural Approach, 1994, pages 37-38.Texturing and Modeling: a Procedural Approach, 1994, pages 37-38.

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example 2 - star (see handout)Example 2 - star (see handout)

Exploit symmetry of star geometryExploit symmetry of star geometry

Input parameters may include:Input parameters may include:

•• Inner and outer star radiiInner and outer star radii

•• Number of pointsNumber of points

•• Star and background colorsStar and background colors

•• Star bump parametersStar bump parameters

•• Parameters for star distributionParameters for star distribution

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

StarStarStar

from from EbertEbert,, ed ed., ., Texturing and Modeling: a Procedural Approach, 1994, pages 44-46.Texturing and Modeling: a Procedural Approach, 1994, pages 44-46.

pp11 pp00dd00

(r,a)(r,a)dd11

Rendering Techniques Handout – Brick and Star Shaders

#include "proctext.h"

#define BRICKWIDTH 0.25
#define BRICKHEIGHT 0.08
#define MORTARTHICKNESS 0.01

#define BMWIDTH (BRICKWIDTH+MORTARTHICKNESS)
#define BMHEIGHT (BRICKHEIGHT+MORTARTHICKNESS)
#define MWF (MORTARTHICKNESS*0.5/BMWIDTH)
#define MHF (MORTARTHICKNESS*0.5/BMHEIGHT)

surface
brick(
 uniform float Ka = 1;
 uniform float Kd = 1;
 uniform color Cbrick = color (0.5, 0.15, 0.14);
 uniform color Cmortar = color (0.5, 0.5, 0.5);
)
{
 color Ct;
 point Nf;
 float ss, tt, sbrick, tbrick, w, h;
 float scoord = s;
 float tcoord = t;

 Nf = normalize(faceforward(N, I));

 ss = scoord / BMWIDTH;
 tt = tcoord / BMHEIGHT;

 if (mod(tt*0.5,1) > 0.5)
 ss += 0.5; /* shift alternate rows */
 sbrick = floor(ss); /* which brick? */
 tbrick = floor(tt); /* which brick? */
 ss -= sbrick;
 tt -= tbrick;
 w = step(MWF,ss) - step(1-MWF,ss);
 h = step(MHF,tt) - step(1-MHF,tt);

 Ct = mix(Cmortar, Cbrick, w*h);

 /* diffuse reflection model */
 Oi = Os;
 Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));
}

#include "proctext.h"

surface
star(
 uniform float Ka = 1;
 uniform float Kd = 1;
 uniform color starcolor = color (1.0000,0.5161,0.0000);

 uniform float npoints = 5;
 uniform float sctr = 0.5;
 uniform float tctr = 0.5;
)
{
 point Nf = normalize(faceforward(N, I));
 color Ct;
 float ss, tt, angle, r, a, in_out;
 uniform float rmin = 0.07, rmax = 0.2;
 uniform float starangle = 2*PI/npoints;
 uniform point p0 = rmax*(cos(0),sin(0),0);
 uniform point p1 = rmin*
 (cos(starangle/2),sin(starangle/2),0);
 uniform point d0 = p1 - p0;
 point d1;

 ss = s - sctr; tt = t - tctr;
 angle = atan(ss, tt) + PI;
 r = sqrt(ss*ss + tt*tt);
 a = mod(angle, starangle)/starangle;

 if (a >= 0.5)
 a = 1 - a;
 d1 = r*(cos(a), sin(a),0) - p0;
 in_out = step(0, zcomp(d0^d1));
 Ct = mix(Cs, starcolor, in_out);

 /* diffuse ("matte") shading model */
 Oi = Os;
 Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));
}

