

Non-Photorealistic Rendering

Pen-and-Ink Illustration

Johns Hopkins Department of Computer Science

Stylized Illustrations

As compared to photorealistic images, sometimes:

- · Convey more information
- · Allow more compact storage
- · More easily reproduced
- More attractive

Johns Hopkins Department of Computer Science

Illustration Applications

Architectural design

Medical texts

Industrial repair manuals

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques, Professor: Jonathan Cohe

Types of Non-Photorealistic Rendering

Pen-and-ink Drawings Paintings Rendering enhancements

Other artistic modalities

• e.g. screening, floral ornamentation, cartoons, etc.

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Coh

Pen and Ink Concepts

Strokes

Curved lines of varying thickness and density of placement

Texture

• Character conveyed by collection of strokes, e.g. crisp and clean vs. rough and sketchy

Tone

• Perceived gray level across the image

Outline

Boundary lines which disambiguate structure information

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Algorithm Goal

Place strokes on surfaces to achieve particular tone functions

Figure 2 Controlled-density hatching for a perspective view of a sphere. Again, rendering isoparametric curves with constant thickness results in an image with varying tones (left). Using varying stroke thicknesses keeps the "apparent tone" constant (right). from Winkenbach and Salesin. "Rendering Parametric Surfaces in Pen and Ink." *Proceedings of* SIGGRAPH 96. Page 471.

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques. Professor: Jonathan Coher

Algorithm Components

Tone specification

Stroke placement

Stroke width computation

Johns Hopkins Department of Computer Science

Tone Specification

Gray levels may be assigned according to conventional rendering:

- · Local/global Illumination
- · Material color
- · Texture mapping
- · Bump mapping
- · Environment mapping
- · Shadow mapping

Johns Hopkins Department of Computer Science

Stroke Placement

Places strokes along isoparameter lines of parameterized surface

Choose density according to maximum gray level and maximum allowable stroke width

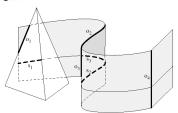
Johns Hopkins Department of Computer Science arse 600.456; Rendering Techniques, Professor: Jonathan Cohe

Planar Maps

Compute visibility and store in planar map

- · Planar map is partition of image plane
- Each partition corresponds to a visible portion of a primitive (curved surfaces are tessellated).
- Shadows may be explicitly represented as map partitions

Clip strokes according to planar map


 Reduces computation and allows rendering with hidden surfaces already removed

Create outlines from partition boundaries

Johns Hopkins Department of Computer Science Course 600.456; Rendering Techniques, Professor: Jonathan Coher

Planar Map Example

Figure 3 Several cases must be considered when tracing outlines (edges labeled o_1 to o_4), and clipping strokes (edges labeled s_1 to s_3).

from Winkenbach and Salesin. "Rendering Parametric Surfaces in Pen and Ink." *Proceedings of* SIGGRAPH 96. Page 474.

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques. Professor: Jonathan Coher

Stroke Width

Vary width across each stroke line

S:
$$(u,v) \rightarrow (x_w,y_w,z_w)$$

$$V: (x_w, y_w, z_w) \rightarrow (x_s, y_s)$$

$$M = V S : (u,v) \rightarrow (x_s,y_s)$$

Use Jacobian of M to estimate divergence of lines in screen space

Adjust width to account for divergence and desired tone along each stroke

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques, Professor: Jonathan Cohen

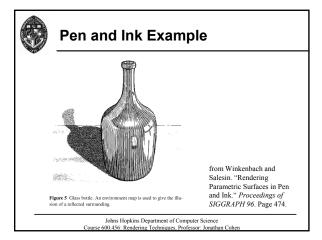
Advanced Techniques

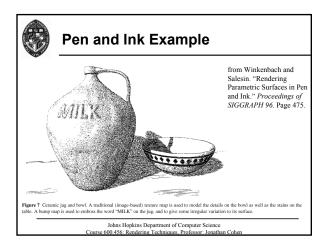
Recursive filler strokes

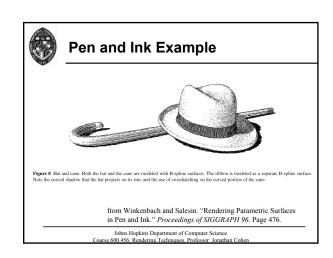
• Allow larger gaps between strokes, then fill gaps by adding new strokes

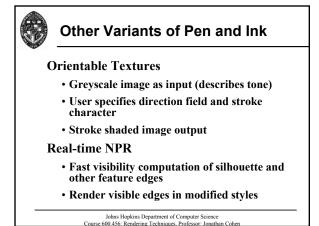
Stippling

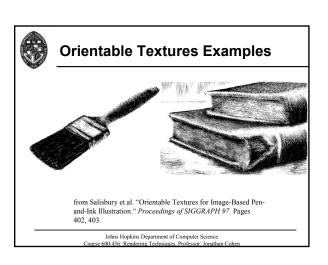
· draw stipple pattern along strokes

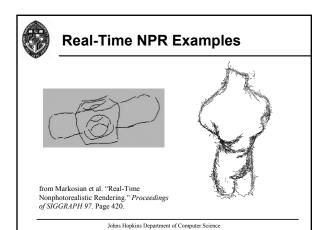

Cross hatching


· use more than one hatching direction


Prioritized strokes


• stroke thicknesses determined in prioritized order


Johns Hopkins Department of Computer Science



Videos

- Salisbury, Wong, Hughes, and Salesin. "Orientable Texture for Image-Based Penand-Ink Illustration." *Proceedings of SIGGRAPH 97.*
- Markosian, Kowalski, and Hughes. "Real-Time Nonphotorealistic Rendering." Proceedings of SIGGRAPH 97.
- (Banks and Turk. "Image-guided Streamline Placement." *Proceedings of* SIGGRAPH 96.)

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohe