

Illumination Models

Things to Model

Light sources

- What color, intensity, lines through space
- Reflection of light off surfaces
 - How much light reflected in each direction
 - —How are color and intensity changed

Real Lights

Real lights are complicated

- Sun light, iridescent bulbs, fluorescent bulbs
- Different spectra in different directions
 - probably time-varying as well, but we don't perceive much of that

Simpler Light Models

- Point lights
- Directional lights
- Spot (Warn) lights
- Area lights (not really so simple)

Real Reflection

Again, pretty complicated

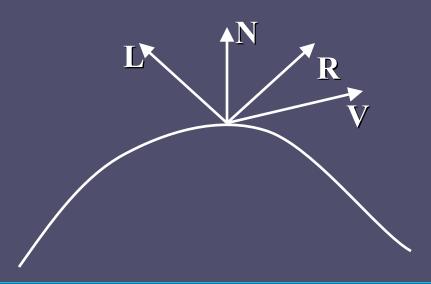
- May be described by bidirection reflectance distribution function (BRDF)
- BRDF is 5D function
 - —2D for incoming light direction
 - —2D for outgoing light direction
 - —1D for wavelength of light

Simpler Reflection Models

Phong illumination

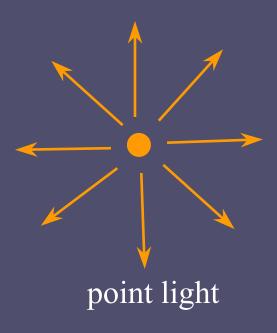
Cook and Torrance illumination

Life on a Surface


L: direction to light

N: normal vector

R: reflection of light about normal


V: direction to viewer (i.e. reflection

direction of interest)

Point Light

Specified by:

- position (x,y,z)
- intensity (r,g,b)

Radiates equal intensity in all directions

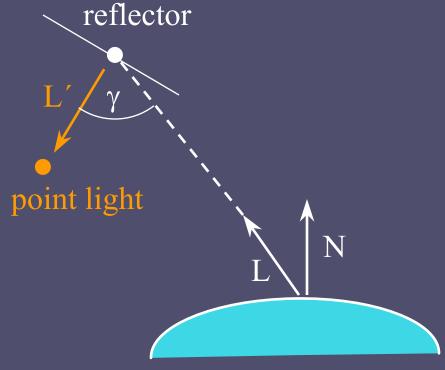
$$L = P_{light} - P_{surface}$$

Directional Light

point light at infinity

Specified by:

- direction (x,y,z)
- intensity (r,g,b)


All light rays are parallel

L = -direction

Spot (Warn) Light

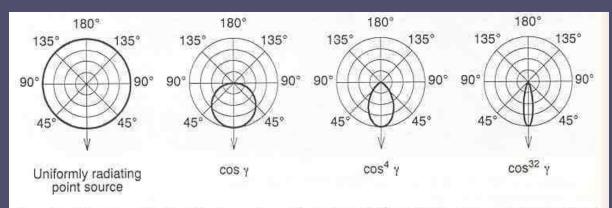
Specular reflection of point light source

Specified by:

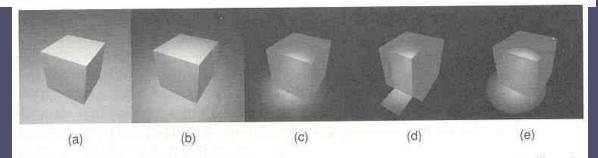
- position of reflector
- position of point light (or direction to point light)
- intensity of point light
- falloff exponent

$$I_{\text{warn}} = I_{\text{point}} \cos^p \gamma = I_{\text{point}} (V'.R')^p = I_{\text{point}} (-L.L')^p$$

Warn Light (cont.)


Also possible to truncate region of effect

- flaps
- cone (used in OpenGL spotlight)



Warn Light Profile and Examples

Fig. 16.14 Intensity distributions for uniformly radiating point source and Warn light source with different values of *p*.

Fig. 16.15 Cube and plane illuminated using Warn lighting controls. (a) Uniformly radiating point source (or p=0), (b) p=4. (c) p=32. (d) Flaps. (e) Cone with $\delta=18^{\circ}$. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 732, 733

Phong Illumination

Empirically divides reflection into 3 components

- Ambient
- Diffuse (Lambertian)
- Specular

Ambient Light

Independent of location of viewer, location of light, and curvature of surface

$$I = I_a k_a$$

- I_a is intensity of ambient light
- k_a is ambient coefficient of surface

Note: this is a total hack, of course

Diffuse Reflection

Component of reflection due to even scattering of light by uniform, rough surfaces

Depends on direction of light and surface normal

$$I_{d} = I_{p}(L.N)$$

• I_p is intensity of point light

Important Note

When we write:

(N.L)

we often really mean:

 $\max(N.L,0)$

- The latter computes 1-sided lighting
- For 2-sided lighting, use:

abs(N.L)

Diffuse Reflection Examples

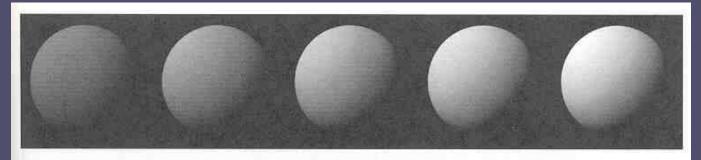


Fig. 16.3 Spheres shaded using a diffuse-reflection model (Eq. 16.4). For all spheres, $I_p = 1.0$. From left to right, $k_d = 0.4$, 0.55, 0.7, 0.85, 1.0. (By David Kurlander, Columbia University.)

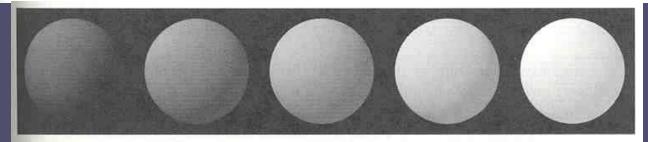
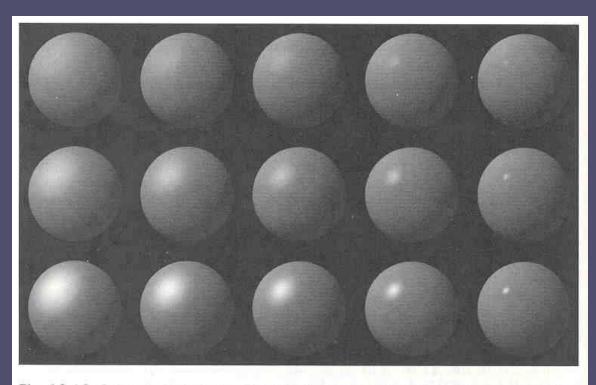


Fig. 16.4 Spheres shaded using ambient and diffuse reflection (Eq. 16.5). For all spheres, $I_a = I_p = 1.0$, $k_d = 0.4$. From left to right, $k_a = 0.0$, 0.15, 0.30, 0.45, 0.60. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 725

Specular Reflection

Component of reflection due to mirror-like reflection off shiny surface


Depends on perfect reflection direction, viewer direction, and surface normal

$$I_s = I_p(R.V)^n$$

• n is specular exponent, determining falloff rate

Phong Illumination Example

Fig. 16.10 Spheres shaded using Phong's illumination model (Eq. 16.14) and different values of k_s and n. For all spheres, $l_a = l_p = 1.0$, $k_a = 0.1$, $k_d = 0.45$. From left to right, n = 3.0, 5.0, 10.0, 27.0, 200.0. From top to bottom, $k_s = 0.1$, 0.25, 0.5. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 730

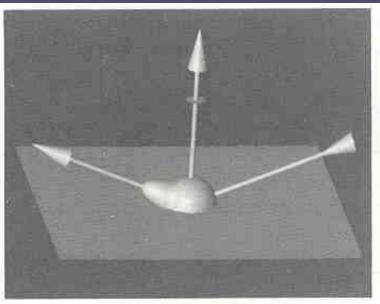
Illumination with Color

Surface reflection coefficients and light intensity may vary by wavelength

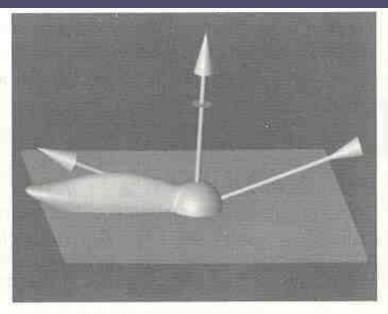
For RGB color

- Light intensity specified for R, G, and B
- Surface reflection coefficients also for R, G, B
- Compute reflected color for R, G, and B

Cook and Torrance Illumination


Replace specular component with more physically accurate model

$$\rho_{s} = F_{\lambda}DG/\pi[(N.V)(N.L)]$$


- F_{λ} is Fresnel term, which accounts for change of highlight color with respect to angle of incidence
- D is microfacet distribution term, for more accurate measurement specular reflection off tiny microfacets
- G is geometry term, which models selfshadowing effects

Phong vs. Cook/Torrance Example

(a) Phong model

(b) Torrance-Sparrow model

Fig. 16.44 Comparison of Phong and Torrance-Sparrow illumination models for light at a 70° angle of incidence. (By J. Blinn [BLIN77a], courtesy of the University of Utah.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 768