

Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)

 $p_t = eye + t^*v$ (v typically normalized)

Compute rays to two opposite corners

Compute step sizes, Δx and Δy to go from pixel to pixel

To compute new ray: take step, then normalize

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Constructive Solid Geometry
Perform hierarchical set operations on primitives
Union: U
Intersection: \cap
Difference: —
 Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohen