Ray Casting

Ray Casting Algorithm

For each pixel

1. Compute ray from eye through pixel
2. For each primitive
-Test for ray-object intersection
3. Shade pixel using nearest primitive (or set to background color)

Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)
 $\mathrm{p}_{\mathrm{t}}=$ eye $+\mathbf{t}^{*} \mathrm{~V}$ (v typically normalized)

Compute rays to two opposite corners
Compute step sizes, Δx and Δy to go from pixel to pixel

To compute new ray: take step, then normalize

Computing Intersections

Ray is in parametric form (\mathbf{t} is parameter)
Represent primitive in implicit form:
$\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathrm{z})=\mathbf{0}$
(any (x, y, z) on surface evaluates to zero)
Substitute (x, y, z) of ray into $f(x, y, z)$ and solve for t

- degree \mathbf{n} implicit function will be degree \mathbf{n} in t
- quadric surfaces may be solved with quadratic equation -- pick real solution closest to eye

Example Quadric Functions

Sphere: $(\mathrm{x}-\mathrm{a})^{2}+(\mathrm{y}-\mathrm{b})^{2}+(\mathrm{z}-\mathrm{c})^{2}-\mathbf{r}^{2}=0$
Circular cylinder (parallel to z-axis):

$$
(x-a)^{2}+(y-b)^{2}-r^{2}=0
$$

Hyperbolic paraboloid:

$$
\mathbf{y}^{2} / \mathbf{b}^{2}-\mathbf{x}^{2} / \mathbf{a}^{2}-\mathbf{z}=\mathbf{0}
$$

General Quadrics

General quadric has form:

$$
\begin{aligned}
& A x^{2}+2 B x y+2 C x z+2 D x+E y^{2}+2 F y z+ \\
& 2 G y+H z^{2}+2 I z+J=0
\end{aligned}
$$

or...
$x^{t} Q x=0, \quad$ where $x^{t}=\left[\begin{array}{lll}x & y & z\end{array}\right]$ and

$$
\mathbf{Q}=\left[\begin{array}{llll}
\bar{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\mathbf{B} & \mathbf{E} & \mathbf{F} & \mathbf{G} \\
\mathbf{C} & \mathbf{F} & \mathbf{H} & \mathbf{I} \\
\mathbf{D} & \mathbf{G} & \mathbf{I} & \underline{J}
\end{array}\right]
$$

Quadric Intersections

Quadric: $x^{t} Q x=0$
Ray: $\mathrm{x}=\mathrm{p}+\mathrm{tv}$
Substituting ray for x :

$$
\begin{aligned}
& (p+\mathbf{t} v)^{t} Q(p+\mathbf{t} v)=\mathbf{0} \\
& p^{\mathrm{t}} \mathrm{Q} p+\mathrm{p}^{\mathrm{t}} \mathrm{Qtv}+\mathbf{t}^{\mathrm{t}} \mathrm{Q} p+\mathbf{t v}^{\mathrm{t}} \mathrm{Qtv}=\mathbf{0} \\
& \left(v^{t} Q v\right) \mathbf{t}^{2}+\left(p^{t} Q v+v^{t} Q p\right) \mathbf{t}+p^{t} Q p=\mathbf{0} \\
& \left(v^{t} Q v\right) \mathbf{t}^{2}+\left(2 v^{t} Q p\right) t+p^{t} Q p=\mathbf{0} \\
& \text { (} \mathrm{Q} \text { is symmetric) }
\end{aligned}
$$

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Common Ray-tracing Primitives

Sphere, ellipsoid
Cylinders
Plane, triangle

- $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=\mathbf{0}$

Torus

Bezier/Nurbs patches

- parametric, so use implicit form of ray
-intersection of two planes

Local Illumination Shading

Compute normal at closest intersection

- $\nabla \mathbf{f}=(\partial \mathbf{x}, \partial \mathbf{y}, \partial \mathrm{z})$ is normal vector field for implicit function, f

For each light

- Use position and normal to compute light contribution
- Accumulate light contributions

Color pixel

- Clamp to avoid overflow

Shadows

Only add contribution from a light if it is visible from the point (and vice versa)

- test for intersections along ray in L direction
- accumulate contribution if no occlusion

(illumination is no longer totally local)

Truncating Primitives

Use another implicit function

- Test which side of the implicit function the intersection is on
- Keep intersection only if it is on the correct side

For example, truncate a cylinder using two plane equations (or perhaps a sphere)

- then cap using the two planes truncated by the cylinder

Constructive Solid Geometry

Perform hierarchical set operations on primitives

Union: \cup
Intersection: \cap
Difference: -

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Hierarchy

Circle Rectangle

Ray Tracing CSG

Each "object" may be a primitive or a CSG hierarchy

Find all ray-primitive intersections for hierarchy

Use CSG operators to determine which intervals are solid or vacant

Use start of nearest solid interval as rayobject intersection

CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is ordered list of intersections, forming solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by applying CSG operator of current node

Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive

