Radiosity
Radiosity Concept

Global computation of diffuse interreflections among scene objects

Diffuse lighting changes fairly slowly across a surface

- Break surfaces up into some number of patches
- Assume diffuse illumination constant across each patch

Diffuse reflection independent of viewing direction

- Interactive rendering possible
Cornell Box

Steel Mill (55,000 elements)

Radiosity - fundamentals

Radiosity: energy per unit area leaving a surface patch per unit time

$\text{Radiosity} \times \text{area} = \text{emitted energy} + \text{reflected energy}$

$B_i dA = E_i dA_i + R_i \int_{j} B_j F_{ji} dA_j$

Radiosity will be color of rendered surface

- total energy generated by rendering some number of pixels
Form Factor

Describes geometric relationship between two surface patches

\[F_{ij} = \text{energy leaving } A_i \text{ that strikes } A_j \text{ directly} \]
\[\text{energy leaving } A_i \text{ over entire hemisphere} \]

\[\Sigma_i F_{ij} = 1 \text{ for all } j \]
\[F_{ii} = 0 \text{ for planar patches} \]

Reciprocity relationship: \[F_{ij} \, dA_i = F_{ji} \, dA_j \]
$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \cos \phi_i \cos \phi_j / (\pi r^2) \, dA_j \, dA_i$$

Differential-Finite Area Form Factor

\[F_{dA_iA_j} = \int_{A_j} \cos\phi_i \cos\phi_j / (\pi r^2) \, dA_j \]

Form factor between \(dA_i \) and \(A_j \)

Position \(dA_i \) at center of \(A_i \) and assume result is valid for entire patch

- reasonable when \(r \) is large with respect to areas

Now reasonable to consider projection of patch rather than patch itself...
Patch Projections

All three representations have the same form factor

A: patch itself
B: patch on hemicube
C: patch on hemisphere

Hemicube Illustration

Hemicube Form Factor Method

For each patch, i
 For each patch, j
 Render patches into item buffer for each hemicube face (with Z-buffering)
 For each hemicube pixel
 Look up pixel form factor
 Accumulate into form factor for appropriate patch pair (i,j)
Radiosity Computation

Compute form factors

Solve $N\times N$ matrix equation

$$B_i = E_i + R_i \sum_j B_j F_{ij}$$

$$\begin{bmatrix}
I & -R_1 F_{11} & -R_1 F_{12} & \cdots & -R_1 F_{1n} \\
-R_2 F_{21} & 1 & -R_2 F_{22} & \cdots & -R_2 F_{2n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-R_n F_{n1} & -R_n F_{n2} & \cdots & 1 & -R_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
=
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}$$
Gathering Method of Radiosity Computation

Compute form factors

Solve matrix equation using Gauss-Seidel iteration

Solve for one patch radiosity at a time

Plug solution into matrix for solutions to future radiosities

Iterate until it converges
Shooting Method of Radiosity Computation

At each iteration, emit from one patch to all other patches

- Useful for progressive radiosity
- Possibly add ambient when viewing preliminary results

Order the patch emissions by magnitude of energy to be emitted
Shooting Example

Shooting + Ambient Example

Creating Patches from Polygons

Uniform subdivision (pre-process)

Regular subdivision (on-line)

Irregular subdivision (on-line)
Uniform Subdivision

Subdivide polygons with regular grid before any radiosity computation

Set some threshold to determine level of subdivision

- number of patches per polygon
- maximum patch size

Doesn’t provide much control in error of form factor or radiosity computation
Regular Subdivision

Begin with coarse (or no) uniform subdivision of polygons

After computing radiosities, measure gradient between adjacent patches (using differences)

Subdivide patches with high gradient

Incrementally update radiosity solution
Reducing Subpatch Computations

Initialize subpatch radiosities from patch radiosity

Compute only subpatch-patch form factors

- not patch-subpatch form factors
- not subpatch-subpatch form factors

Subdivision effectively increases matrix from $N \times N$ to $M \times N$ (but not $M \times M$)
Hierarchical Radiosity

Apply regular subdivision to patches that require refinement

For each patch-patch interaction, use an appropriate level of subdivision

Can be implemented using matrix block operations

- portions of matrix are computed as block
- bounds on computational error used to determine which computations may be grouped
Irregular Subdivision
(Discontinuity Meshing)

Subdivide patches along discontinuities, rather than regular subdivision

Discontinuities

- 0 order: contacts between surfaces
- 1st, 2nd order: changes in visibility

Requires less refinement along discontinuities than regular subdivision

Typically try to subdivide so most patch elements completely visible or invisible
Discontinuity Mesh Examples

Discontinuity vs. Regular Subdivision

Other Topics of Interest

- Combining effects of initial polygons
- Using non-constant patch radiosities
- Rendering polygons with higher-order color interpolation
- Radiosity as textures
Combining Polygon Contributions

For polygonal curved surfaces, simplification allows hierarchical representation

Possibly combine light contributions through volumes of space
Non-constant Patch Radiosities

Require fewer patches by allowing radiance to vary across a patch

Higher-order Color Interpolation

Using higher-order color interpolation decreases number of polygons rendered

Higher-order color interpolated polygons take longer to render

Determine optimum mode for rendering each patch based on number of polygons and rendering cost

Explored on Pixel-Planes 5 hardware ~1995
Radiosity as Textures

Accurate radiosity dramatically increases polygon count

- Extra geometry is redundant
- All new information is about colors

Create textures for new color information and use original geometry

Like higher-order interpolation, texture-mapping is more expensive than color interpolation, so optimize cost/benefit
Radiosity as Textures Resampling