
1

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Procedural Bump Mapping
and Noise

Code and images from Ebert, David S., editor, Texturing and Modeling: a Procedural
Approach. 1994

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Bump Mapping - Computing N’

F(u,v) =
 bump height function
P(u,v) =
 surface position
U = ∂∂f/∂∂u (N x ∂∂P/∂∂v)
V = -∂∂f/∂∂v (N x ∂∂P/∂∂u)
D = U + V
N′′ = (N + D) / | N + D |

2

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Bump-Mapped Brick

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Bumped Brick

Describe height function in terms of texture
coordinates

Using built-in RenderMan functions:

• displace point along normal according to
height

• find partial derivatives of new surface with
respect to texture coordinates

• cross the partials to get vector normal to new
surface

3

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Without Special Assistance

Compute ∂∂P/∂∂u and ∂∂P/∂∂v analytically
according to surface geometry (e.g.
sphere)

OR
• Evaluate P at 4 nearby points by varying u

and v slightly, then approximate partial
using differences

Compute ∂∂f/∂∂u and ∂∂f/∂∂v analytically
according to height function

Apply preceding formulas

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Bevelling Effects

Nice ridges along edges of geometric figures

Parameters:

• Total ridge and plateau widths

• slope at top and bottom of ridge

Use perpendicular direction to closest edge
as D (to add to normal), and scale
according to ridge function

4

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Bevelling

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Noise Functions

Break up regularity

Enable modelling of irregular phenomena

5

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

White Noise

Sequence of random numbers

Uniformly distributed

Totally uncorrelated

• no correlation between successive values

Not desirable for texture generation

• Too sensitive to sampling problems

• Arbitrarily high frequency content

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ideal Noise for Texture Generation

Repeatable pseudorandom function of
inputs

Known range [-1, 1]

Band-limited (maximum freq. about 1)

No obvious periodicities

Stationary and isotropic

• statistical properties invarient under
translation and rotation

6

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Lattice Noise

Low pass filtered version of white noise

• Random values associated with integer
positions in noise space

• Intermediate values generated by some form
of interpolation

• Frequency content limited by spacing of
lattice

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Generating a Lattice

Generate a fixed-size table of random
numbers

Hashing function indexes into the table to get
value at any lattice point

7

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example Lattice Indexing

#define TABSIZE 256

#define TABMASK (TABSIZE - 1)

#define PERM(x) perm[(x) & TABMASK]

#define INDEX(ix,iy,iz) \
PERM((ix)+PERM((iy)+PERM(iz)))

perm contains random permutation of integers in

[0, TABSIZE - 1]

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Value Noise

Create additional table of random values
(in range [-1,1])

Index table according to permuation-based
INDEX function just presented

(see sample code handout)

8

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Interpolation Schemes

Linear interpolation -

• not really smooth enough

Quadratic or cubic spline interpolation

• may still have some artifacts resulting from
grid layout

Convolution with radially symmetric filter
kernel

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

1D and 2D Value Noise

9

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Gradient Noise

Store direction vector at each lattice point

Noise values at lattice point is zero

Computing intermediate values:

For each neighboring lattice point

compute displacement along direction

Linearly interpolate between resulting 8 values
to get final value

(see sample code handout)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

1D and 2D Gradient Noise

10

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Value vs. Gradient Noise

Both noises have limited frequencies

Value noise slightly simpler to compute

Gradient noise has most of the energy in the
higher frequencies

• forced zero crossings

Gradient noise has regularity because of zero
crossings

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Value Gradient Noise

Weighted sum of value and gradient noises

11

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Star Wallpaper

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Star Wallpaper

Divide 2D texture space into uniform grid

Decide whether or not to place a star in
each cell

Perturb position of star within each cell

To render a point on surface, check nearby
cells for stars which may cover point

(see code handout)

12

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Perturbed Texture

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Perturbed Texture

Use noise function to apply perturbation to
texture coordinates

Look up image texture (or generate
procedural texture) using modified
coordinates

(see code handout)

13

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Blue Marble

Marble vase (right) from Foley, van Dam, Feiner, and Hughes. Computer Graphics:
Principles and Practice.

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Blue Marble

Use 3D position to compute 3D texture
coordinates

Accumulate noise functions at several
frequencies

• one type of spectral synthesis

Use sum of noise to determine marble color

• using spline interpolation between colors

14

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Modelling Gases

Represent 3D gas as density volume

Use turbulence function as basic gas
description

Adjust turbulence by raising it to a power,
taking the sine, etc.

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Turbulence

15

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Turbulence

float turbulence(point Q)
{

float value = 0;
for (f= MINFREQ; f < MAXFREQ; f *= 2)

value += abs(noise(Q*f))/f;
return value;

}

(in practice, don’t use a round number like 2)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Basic gas

float gas(point P, float max_density,
 float exponent)

{
float turb, density;
turb = turbulence(pt);
/* or turb = (1 + sin(turbulence(pt)*PI))/2 */
density =

pow(turb*max_density, exponent);
return density;

}

16

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Placing and Shaping Gas

Place some primitive shape to contain
density volume

Attenuate density to account for dissipation

Steaming teacup example

• attenuate according to distance from center
of tea surface

• attenuate according to height above tea
surface

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Steaming Tea Cup

17

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

More Turbulence Uses

Add variation to color of surface textures

Use as bump mapping function to add variety
to normals

