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Procedural Bump Mapping
and Noise

Code and images from Ebert, David S., editor, Texturing and Modeling: a Procedural
Approach. 1994
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Bump Mapping - Computing N’

F(u,v) =
      bump height function
P(u,v) =
      surface position
U = ∂∂f/∂∂u (N x ∂∂P/∂∂v)
V = -∂∂f/∂∂v (N x ∂∂P/∂∂u)
D = U + V
N′′ = (N + D) / | N + D |
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Bump-Mapped Brick
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Example - Bumped Brick

Describe height function in terms of texture
coordinates

Using built-in RenderMan functions:

• displace point along normal according to
height

• find partial derivatives of new surface with
respect to texture coordinates

• cross the partials to get vector normal to new
surface
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Without Special Assistance

Compute ∂∂P/∂∂u and ∂∂P/∂∂v analytically
according to surface geometry (e.g.
sphere)

OR
• Evaluate P at 4 nearby points by varying u

and v slightly, then approximate partial
using differences

Compute ∂∂f/∂∂u and ∂∂f/∂∂v analytically
according to height function

Apply preceding formulas
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Bevelling Effects

Nice ridges along edges of geometric figures

Parameters:

• Total ridge and plateau widths

• slope at top and bottom of ridge

Use perpendicular direction to closest edge
as D (to add to normal), and scale
according to ridge function



4

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Bevelling
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Noise Functions

Break up regularity

Enable modelling of irregular phenomena
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White Noise

Sequence of random numbers

Uniformly distributed

Totally uncorrelated

• no correlation between successive values

Not desirable for texture generation

• Too sensitive to sampling problems

• Arbitrarily high frequency content
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Ideal Noise for Texture Generation

Repeatable pseudorandom function of
inputs

Known range [-1, 1]

Band-limited (maximum freq. about 1)

No obvious periodicities

Stationary and isotropic

• statistical properties invarient under
translation and rotation
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Lattice Noise

Low pass filtered version of white noise

• Random values associated with integer
positions in noise space

• Intermediate values generated by some form
of interpolation

• Frequency content limited by spacing of
lattice
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Generating a Lattice

Generate a fixed-size table of random
numbers

Hashing function indexes into the table to get
value at any lattice point
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Example Lattice Indexing

#define TABSIZE 256

#define TABMASK ( TABSIZE - 1 )

#define PERM(x) perm[ (x) & TABMASK ]

#define INDEX(ix,iy,iz) \
PERM((ix)+PERM((iy)+PERM(iz)))

perm contains random permutation of integers in

[0, TABSIZE - 1]
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Value Noise

Create additional table of random values
(in range [-1,1])

Index table according to permuation-based
INDEX function just presented

(see sample code handout)
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Interpolation Schemes

Linear interpolation -

• not really smooth enough

Quadratic or cubic spline interpolation

• may still have some artifacts resulting from
grid layout

Convolution with radially symmetric filter
kernel
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1D and 2D Value Noise
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Gradient Noise

Store direction vector at each lattice point

Noise values at lattice point is zero

Computing intermediate values:

For each neighboring lattice point

compute displacement along direction

Linearly interpolate between resulting 8 values
to get final value

(see sample code handout)
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1D and 2D Gradient Noise
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Value vs. Gradient Noise

Both noises have limited frequencies

Value noise slightly simpler to compute

Gradient noise has most of the energy in the
higher frequencies

• forced zero crossings

Gradient noise has regularity because of zero
crossings
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Value Gradient Noise

Weighted sum of value and gradient noises



11

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example - Star Wallpaper
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Example - Star Wallpaper

Divide 2D texture space into uniform grid

Decide whether or not to place a star in
each cell

Perturb position of star within each cell

To render a point on surface, check nearby
cells for stars which may cover point

(see code handout)
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Example - Perturbed Texture
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Example - Perturbed Texture

Use noise function to apply perturbation to
texture coordinates

Look up image texture (or generate
procedural texture) using modified
coordinates

(see code handout)
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Example - Blue Marble

Marble vase (right) from Foley, van Dam, Feiner, and Hughes. Computer Graphics: 
Principles and Practice.
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Example - Blue Marble

Use 3D position to compute 3D texture
coordinates

Accumulate noise functions at several
frequencies

• one type of spectral synthesis

Use sum of noise to determine marble color

• using spline interpolation between colors
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Modelling Gases

Represent 3D gas as density volume

Use turbulence function as basic gas
description

Adjust turbulence by raising it to a power,
taking the sine, etc.
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Turbulence
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Turbulence

float turbulence(point Q)
{

float value = 0;
for (f= MINFREQ; f < MAXFREQ; f *= 2)

value += abs(noise(Q*f))/f;
return value;

}

(in practice, don’t use a round number like 2)
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Basic gas

float gas(point P, float max_density,
      float exponent)

{
float turb, density;
turb = turbulence(pt);
/* or turb = (1 + sin(turbulence(pt)*PI))/2 */
density =

pow(turb*max_density, exponent);
return density;

}
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Placing and Shaping Gas

Place some primitive shape to contain
density volume

Attenuate density to account for dissipation

Steaming teacup example

• attenuate according to distance from center
of tea surface

• attenuate according to height above tea
surface
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Steaming Tea Cup
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More Turbulence Uses

Add variation to color of surface textures

Use as bump mapping function to add variety
to normals


