Image Texture Fundamentals
Texturing

Allows higher-frequency color variation

• Not just interpolated from vertex colors

May be 2D (surface-based) or 3D (volume-based)

• (or even 4D for light fields -- that’s a different lecture)

May be strictly image-based or procedural

• Today we’ll talk about simple image-based
2D Texture Mapping

Requires surface parameterization

- Mapping from 3D surface to 2D parametric domain

Colors defined in 2D parameter space

Parameterization (texture coordinates) used to determine material color at point on surface
2D Texture Diagram

\[F(x,y,z) = (s,t) \]
2D Texture Applications

Most useful for colors that are sitting on the surface, rather than running through the material

- Pictures on the wall
- Printed/painted logos, text, etc.
- Fake wood grain
Other Types of 2D Maps

Bump/normal maps

• Modify or define surface normals

Displacement maps

• Modify surface itself

Environment/reflection maps

• Define environment seen in specular reflections
3D Texture Maps

Colors defined in 3D space

3D coordinates of surface used for mapping

Usually convenient to define 3D texture in object space
3D Texture Applications

More like carving object out of material than pasting a picture on the surface

- wood, marble, etc.
- clouds, fog, fire (hypertextures, using additional density information)
Image-based Texture Mapping (2D)

2D texel array (image) determines colors in texture domain

Given texture coordinates on surface, look up color in image

Lookup may be return nearest texel (*point sampled*) or bilinear interpolation of 4 surrounding texels
Acquiring Texture Images

Photograph
- flat surface
- even lighting (no specularity)

3D Rendering

Procedural synthesis
- Sample a procedural texture
Texture Sampling

Sampling Approaches

Point Sampling

- Pick closest texel
- (Replication/pixel zoom for upsampling)

Interpolation

- Blend closest texels

Area Sampling

- Blend all covered texels
Bilinear Interpolation

\[p = (p_s, p_t) \]

\[p' = \left(\frac{(p_s - a_s)}{(b_s - a_s)}, \frac{(p_t - a_t)}{(c_t - a_t)} \right) \]

\[p_{\text{color}} = \text{lerp}(\text{lerp}(a_{\text{color}}, b_{\text{color}}, p_s'), \text{lerp}(c_{\text{color}}, d_{\text{color}}, p_s'), p_t') \]

\[\text{lerp}(k_1, k_2, t) = (1-t)*k_1 + t*k_2 \]
Texture Area Sampling

If frequency of texture content is higher than sampling rate, may want better filtering

Pixel-sized area on surface covers some area in texture domain

• Curvilinear quadrilateral or ellipse

Perform weighted average of texels covered by pixel-sized piece of surface
Mip-mapped Texture Filtering

Multim im parvo (many things in a small place)

Pre-compute image pyramid to filter texture to various resolutions

Look up colors from the appropriate level(s) of the image pyramid

Approximation to accurate area sampling
Image Pyramid

parent color = average(4 children colors)
Mip-map Organization
Mip-map Filtering Methods

Compute \(d \), the parameter along level space

Sample texture

Option 1: Point sample nearest level

Option 2: Point sample each adjacent level, then linearly interpolate between them

Option 3: Choose nearest level, then bilinearly interpolate within that level

Option 4: Trilinearly interpolate between the 8 samples of two adjacent mip-map levels (2 bilinear interps + 1 linear)
Computing \(d \)

Somewhat tricky, because a circular footprint on the screen is elliptical in the texture domain

Typically either over-filter or under-filter

One possible formulation:

\[
d = \max \left(\sqrt{\left(\frac{du}{dx}\right)^2 + \left(\frac{dv}{dx}\right)^2}, \sqrt{\left(\frac{du}{dy}\right)^2 + \left(\frac{dv}{dy}\right)^2} \right)
\]

(i.e. use the larger of the ellipse dimensions)
Limitations of Mip-Mapping

Assumes circular footprint of pixel in texture domain

- produces only *isotropic* filtering
- will either over-filter or under-filter in some regions (blurry or jaggy)
Efficient Anisotropic Filtering

Use multiple mip-map lookups to produce a non-symmetric filter

Video example: Feline

Figure 19: Trilinear paints blurry text.

Figure 21: “High-efficiency” Simple Feline paints smooth text.
3D Image-based Texture Mapping

Store data in a 3D image (voxel grid)

Point sample using nearest voxel

Linearly interpolate using 8 nearest voxels

Pre-filtering possible using 3D analog to mip-mapping
Acquiring 3D images

Slice and photograph real materials

- e.g. - The Visible Human

Measure density volume using CT scan or MRI, then map densities to colors

Sample a procedurally-generated volume
Canonical Parameterizations

Three common primitives:

• Plane
• Cylinder
• Sphere
Suppose we have a plane with origin O and non-colinear axes, i and j

- \((x,y,z) = (O_x+s_i x+t_j x, O_y+s_i y+t_j y, O_z+s_i z+t_j z)\)
- \((u,v) = (s,t)\)
Suppose we have a circular cylinder of height h about z-axis (with base at $z=0$)

- $(x,y,z) = (r \cos \theta, r \sin \theta, z)$
- $(u,v) = (\theta/2\pi, z/h)$

Or we can choose to cover only a portion of the cylinder:

- $(u,v) = (a(\theta-\theta_0)/2\pi, b(z-z_0)/h)$
We can similarly parameterize the sphere:

• \((x,y,z) = (rcos\theta sin\phi, rsin\theta sin\phi, rcos\phi)\)

• \((u,v) = (\theta/2\pi, \phi/\pi)\)

Note: parameterization degenerate at poles

• “you can’t comb the hair on a sphere”

Cover portion of sphere with texture:

• \((u,v) = (a*(\theta - \theta_0)/2\pi, b*(\phi - \phi_0)/\pi)\)
Two-stage Mapping

1. Map texture onto canonical primitive (the intermediate surface)

2. Map intermediate surface to arbitrary object
 - Position objects with respect to each other
 - Project along normal direction (of either one)
Two-stage Example
Atlas Approaches

Break complex surface into patches

Parameterize / texture each patch

- Parameterizations optimized to minimize distortions

Atlas describes mapping between texture domains and surface domain
Atlas Example

Other Texturing Options

Application Modes: relationship between texture colors and surface colors

- Decal - texture color replaces surface color
- Blend - colors are combined (e.g. multiplied)

Wrap modes: what to do with parameters outside of $[0,1]$

- Clamp
- Repeat