

Illumination Models

Things to Model

Light sources

• What color, intensity, lines through space

Reflection of light off surfaces

How much light reflected in each direction

-How are color and intensity changed

Real lights are complicated

- Sun light, iridescent bulbs, fluorescent bulbs
- Different spectra in different directions

— probably time-varying as well, but we don't perceive much of that

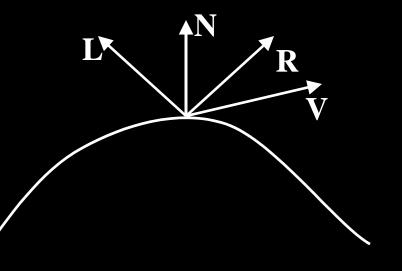
Simpler Light Models

- Point lights
- Directional lights
- Spot (warn) lights
- Area lights (not really so simple)

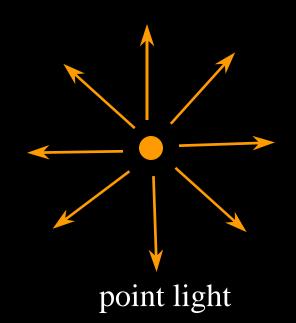
Real Reflection

Again, pretty complicated

- May be described by bidirection reflectance distribution function (BRDF)
- BRDF is 5D function
 - -2D for incoming light direction
 - -2D for outgoing light direction
 - **—1D for wavelength of light**


Simpler Reflection Models

Phong illumination Cook and Torrance illumination


Life on a Surface

- L: direction to light
- N: normal vector
- **R:** reflection of light about normal
- V: direction to viewer (i.e. reflection direction of interest)

Point Light

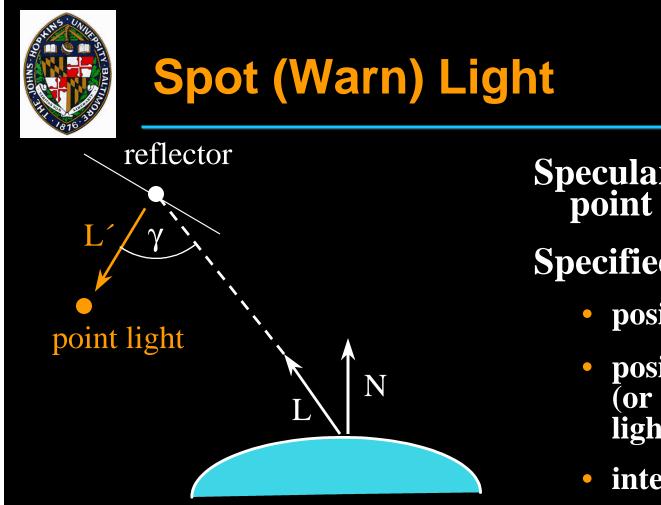
Specified by:

- position (x,y,z)
- intensity (r,g,b)

Radiates equal intensity in all directions

 $\mathbf{L} = \mathbf{P}_{\text{light}} - \mathbf{P}_{\text{surface}}$

Directional Light


point light at infinity

Point light at infinity Specified by:

- direction (x,y,z)
- intensity (r,g,b)

All light rays are parallel

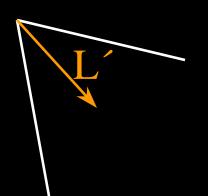
L = -direction

Specular reflection of point light source

Specified by:

- position of reflector
- position of point light (or direction to point light)
- intensity of point light
- falloff exponent

$$I_{warn} = I_{point} \cos^{p} \gamma = I_{point} (V'.R')^{p} = I_{point} (-L.L')^{p}$$



Warn Light (cont.)

Also possible to truncate region of effect

• flaps

• cone (used in OpenGL spotlight)

Warn Light Profile and Examples

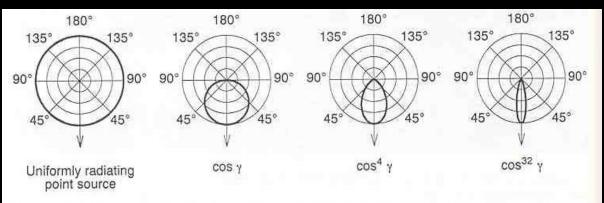
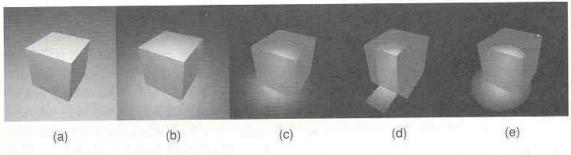



Fig. 16.14 Intensity distributions for uniformly radiating point source and Warn light source with different values of *p*.

Fig. 16.15 Cube and plane illuminated using Warn lighting controls. (a) Uniformly radiating point source (or p = 0). (b) p = 4. (c) p = 32. (d) Flaps. (e) Cone with $\delta = 18^{\circ}$. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 732, 733

Empirically divides reflection into 3 components

- Ambient
- Diffuse (Lambertian)
- Specular

Ambient Light

Independent of location of viewer, location of light, and curvature of surface

- $I = I_a k_a$
 - I_a is intensity of ambient light
 - k_a is ambient coefficient of surface
- Note: this is a total hack, of course

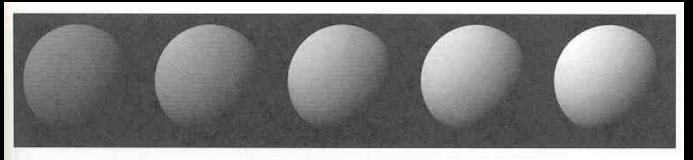
Component of reflection due to even scattering of light by uniform, rough surfaces

Depends on direction of light and surface normal

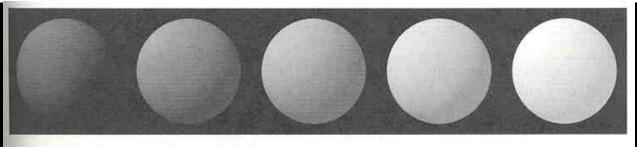
- $\mathbf{I}_{d} = \mathbf{I}_{p}(\mathbf{L}.\mathbf{N})$
 - I_p is intensity of point light

Important Note

- When we write:
 - (**N.L**)
- we often really mean:


max(N.L , 0)

- The latter computes 1-sided lighting
- For 2-sided lighting, use:


abs(N.L)

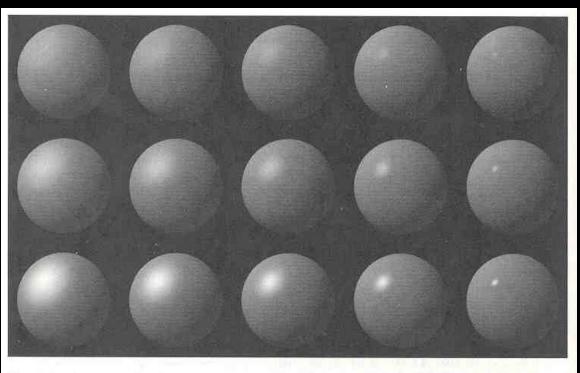
Diffuse Reflection Examples

Fig. 16.3 Spheres shaded using a diffuse-reflection model (Eq. 16.4). For all spheres, $l_p = 1.0$. From left to right, $k_d = 0.4, 0.55, 0.7, 0.85, 1.0$. (By David Kurlander, Columbia University.)

Fig. 16.4 Spheres shaded using ambient and diffuse reflection (Eq. 16.5). For all spheres, $I_a = I_p = 1.0$, $k_d = 0.4$. From left to right, $k_a = 0.0$, 0.15, 0.30, 0.45, 0.60. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 725

Component of reflection due to mirror-like reflection off shiny surface


Depends on perfect reflection direction, viewer direction, and surface normal

$$\mathbf{I}_{s} = \mathbf{I}_{p}(\mathbf{R}.\mathbf{V})^{n}$$

• n is specular exponent, determining falloff rate

Phong Illumination Example

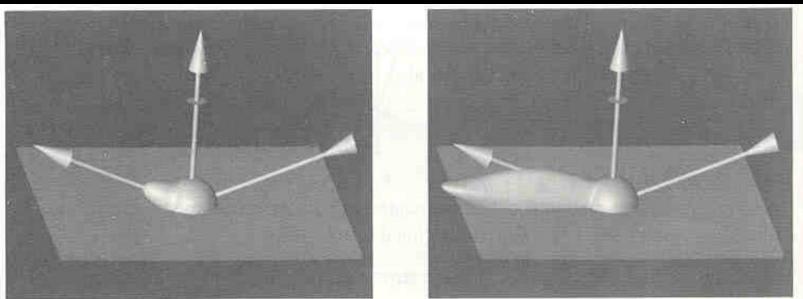
Fig. 16.10 Spheres shaded using Phong's illumination model (Eq. 16.14) and different values of k_s and n. For all spheres, $l_a = l_p = 1.0$, $k_a = 0.1$, $k_d = 0.45$. From left to right, n = 3.0, 5.0, 10.0, 27.0, 200.0. From top to bottom, $k_s = 0.1, 0.25, 0.5$. (By David Kurlander, Columbia University.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 730

Surface reflection coefficients and light intensity may vary by wavelength

For RGB color

- Light intensity specified for R, G, and B
- Surface reflection coefficients also for R, G, B
- Compute reflected color for R, G, and B


Cook and Torrance Illumination

Replace specular component with more physically accurate model

- $\rho_{\rm s} = \mathbf{F}_{\lambda} \mathbf{D} \mathbf{G} / \pi [(\mathbf{N}.\mathbf{V})(\mathbf{N}.\mathbf{L})]$
 - F_{λ} is Fresnel term, which accounts for change of highlight color with respect to angle of incidence
 - D is microfacet distribution term, for more accurate measurement specular reflection off tiny microfacets
 - G is geometry term, which models selfshadowing effects

Phong vs. Cook/Torrance Example

(a) Phong model

(b) Torrance-Sparrow model

Fig. 16.44 Comparison of Phong and Torrance-Sparrow illumination models for light at a 70° angle of incidence. (By J. Blinn [BLIN77a], courtesy of the University of Utah.)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 768