
vLOD: High-Fidelity Walkthrough of Large
Virtual Environments

Jatin Chhugani, Budirijanto Purnomo, Shankar Krishnan, Jonathan Cohen,

Suresh Venkatasubramanian, David Johnson, and

Subodh Kumar, Member, IEEE Computer Society

Abstract—We present visibility computation and data organization algorithms that enable high-fidelity walkthroughs of large

3D geometric data sets. A novel feature of our walkthrough system is that it performs work proportional only to the required detail in

visible geometry at the rendering time. To accomplish this, we use a precomputation phase that efficiently generates per cell vLOD: the

geometry visible from a view-region at the right level of detail. We encode changes between neighboring cells’ vLODs, which are not

required to be memory resident. At the rendering time, we incrementally construct the vLOD for the current view-cell and render it. We

have a small CPU and memory requirement for rendering and are able to display models with tens of millions of polygons at interactive

frame rates with less than one pixel screen-space deviation and accurate visibility.

Index Terms—Interactive walkthrough, levels of detail, visibility computation, compression.

�

1 INTRODUCTION

COMPUTER modeling is essential to visualize data in fields
such as engineering, flight training, military exercises,

medical and other simulations. Geometric models are used
for training, planning, design, and other analyses in these
fields. It is not surprising then that models have been quickly
growing in complexity and richness, making interactive
walkthrough of these models challenging. Fortunately, the
3D model-display capability of widely available graphics
hardware has been growing steadily. However, the sizes of
models have grown faster. Models like ships, factories, and
cities may require tens of millions of polygons or more and
may not even fit in the main memory. In practice, graphics
hardware can barely display such models once in a few
seconds, but interactive walkthroughs require the display of
over 10–20 frames every second.

As a result, CPU-based algorithms are commonly used to
reduce the number of polygons sent to the hardware
pipeline. This typically includes some preprocessing, such
as model simplification, as well as some per frame
computation. Often this CPU load is still too high for
interactive display. Furthermore, in applications where
simulations such as collision detection need to be performed
in conjunction with the visualization, this CPU overload can
become especially acute.

Main Contributions. Our main contribution is a techni-
que that enables high-fidelity walkthrough of large models
using low CPU load. These three desirable properties have
been tough to achieve simultaneously in any system so far.

In our approach, these strengths are combined by
precomputing levels of detail and visibility in an integrated
way. Done naively, this can require prohibitively large
computation time and storage. We address these issues
using the following algorithms:

. From-region occlusion computation. Our algorithm
is simple to implement, yet very effective. It is scalable
and accelerates well on graphics hardware. It admits
concave occluders and does not require heuristic
preselection of a small number of occluders.

. Object Reordering. We provide a formulation of the
disk layout problem for out-of-core model geometry
and its solution. This customized disk layout helps
reduce the time taken to load data needed in any
given frame.

. Visibility mask compression. Raw encoding of
visibility information for an entire viewing space is
prohibitively large. We provide a new customized
compression algorithm to achieve 34x compressionon
average, significantly better than prior approaches. In
addition, the decompression speed is extremely fast.

Using a combination of these algorithms, we obtain
interactive display of large out-of-core models. Furthermore,
we are able to guarantee high-fidelity by employing LODwith
conservative error bounds at an extremely low setting of only
one pixel screen-space deviation and by using a fully
conservative 3D visibility algorithm. We incur a low CPU load
by precomputing the composition of LOD and visibility to
generate vLOD, a representation of thevisible geometry at the
correct level of detail for all locations in the desired viewing
space. This eliminates the need for expensive visibility
computations at run time, reducing the online algorithm to
abasic caching system for retrieving the appropriate visibility
information and associated geometry. The precomputation
parallelizes very well and can be performed efficiently using
a cluster of workstations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005 1

. J. Chhugani, B. Purnomo, J. Cohen, and S. Kumar are with Johns Hopkins
University, 224 NEB, 3400 Johns Hopkins University, Baltimore, MD
21218. E-mail: {jatinch, bpurnomo, cohen, subodh}@cs.jhu.edu.

. S. Krishnan, S. Venkatasubramanian, and D. Johnson are with AT&T
Labs, 180 Park Ave., Florham Park, NJ 07932.
E-mail: {krishnas, suresh, dsj}@research.att.com.

Manuscript received 26Aug 2003; revised 15May 2004; accepted 16 June 2004.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0076-0803.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

2 PREVIOUS WORK

Much of the related research has concentrated on visibility

precomputation and detail reduction.
Visibility computation is a challenging problem and has

been the focus of significant research. It usually includes
occlusion culling, back-face culling, and view-frustum cul-
ling. We perform all these in our system. Object-based
visibility computation algorithms hierarchically compute
the visibility for a groupof triangles from thegivenviewpoint
[9], [20], [22], [26], [47]. On the other hand, from-region (or
cell-based) visibility algorithms [7], [13], [36], [40], [44], [45]
precompute conservative visibility from a region of space. At
rendering time, objects visible from the view cell may be
further refined for each viewpoint or simply sent to the
graphics pipeline to generate the final image. From-region
visibility computation has become popular recently due to its
relatively low cost at the rendering time.

An exact and effective from-region visibility algorithm
could be based on the computation of aspect graphs [17] or
visibility complex [11], [12]. However, with size complexity
of Oðn9Þ and Oðn4Þ, respectively, and similarly high
computational complexity, such approaches are infeasible
for large models. The more practical approach is to
subdivide space, say using an octree, and precompute
visibility from each cell in the space. Exact visibility from a
given cell requires ray intersection tests in a four-dimen-
sional space [33] and is too slow. Hence, only conservative
overestimation of the visible set from each given view-cell is
practical. These methods retain some hidden geometry but
do not cull any visible geometry. Standard graphics Z-buffer
hardware eventually displays only the visible geometry,
discarding every hidden geometry.

Of the recent conservative 3D occlusion computation
algorithms, only the ray-space factorization algorithm [28]
comes close to speeds that are necessary for precomputing
visibility of models with tens of millions of polygons from a
large number of view-regions. It is designed to work well
on “3D-�” scenes, where the vertical depth complexity is
significantly lower than the horizontal depth complexity. It
computes the visibility of each cell in several seconds on
average. In comparison, our technique is simpler and faster

and can compute the visibility for each cell in less than a
second on average.

Geometry simplification methods precompute a hierar-
chy of levels of detail (LODs) and, at rendering time,
traverse a data structure to select the LOD appropriate for
the current viewpoint [15], [21], [46]. Other methods replace
distant geometry by their images (imposters) [31].

Although each of these methods provides significant
rendering speed up, they must be used in combination to
ensure that the number of polygons used in a view remain
bounded even if the actual model is arbitrarily large. Too
many highly detailed objects visible in the distance can slow
down display. Similarly, too many hidden objects, even if
viewed at low detail, can quickly increase complexity. One
common approach to combine both visibility and detail
reduction is to use an “estimate of the visibility” of an object
to derive its required detail. Objects unlikely to be visible
from the current viewpoint are drawn at reduced detail.
El Sana et al. [14] use a density-based heuristic to compute a
probability function to measure visibility. Objects with low
probability of visibility are rendered at lower detail.
Andújar et al. [3] similarly define “hardly visible sets”
and reduce the detail of partially occluded objects by
increasing the geometric error allowed for it. Others
compute visibility from a region. Wang et al. [42] compute
visibility by hierarchically subdividing rays originating
from a region in space into beams. At the leaf levels, if a
beam contains too many polygons, they prerender them
and sample the color. At rendering time, they simply select
the appropriate beams to process. The algorithm by Law
and Tan [27] is similar in spirit. They precompute
conservative visibility from regions of space and use this
information to guide the occlusion preserving LOD refine-
ment during rendering. These algorithms process a large
amount of geometry at the rendering time and hence incur
too much overhead to be practical for massive models.

Funkhouser et al. [16] presented one of the earliest
comprehensive frameworks integrating visibility and detail
control into a single system. They only considered axis
aligned cells for region-based visibility precomputation,
however. This was suited for many building models. Due to
smallermodel sizes, theydidnot need sophisticated layout or
compression algorithms. An important characteristic of this

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

Fig. 1. (a) UNC power plant model with 13 million triangles. (b) Furnace area of the original model with view frustum culling alone (6.2 million

triangles). (c) Furnace area with vLOD, conservative from-region visibility, and less than one pixel screen space deviation due to LOD (3.2 million

triangles). Notice that rendering with vLOD preserves the fidelity of the scene.

and most other recent algorithms is that they precompute
visibility for each view cell as well as a set of LODs for the
objects in themodel and later determine the appropriate LOD
for the potentially visible set at rendering time.

Aliaga et al. [1] present MMR, a comprehensive render-
ing system that integrates the different methods. In their
system, the different LODs, visibility, and image imposters
are separately processed in a pipeline. Viewpoint-based
visibility computation is performed at rendering time and is
expensive. Recent works [4], [19], [41] speed up display by
employing multiple processors and machines and by
accepting increased latency and increased error, sometimes
10–15 pixels large, to guarantee interactive speeds. Our
goals are different.

We believe that, as models grow large, any significant
per-viewpoint computation becomes prohibitive for inter-
active visualization on commodity workstations. As a
result, one must either compromise on quality or complete
much of the computation beforehand. The first approach is
well explored in the literature. In the second approach, one
could predictively compute region visibility for cells in the
neighborhood of the viewpoint. Current region visibility
algorithms are not able to provide results fast enough. One
could argue that if the cells were large enough and the
viewpoint changed slowly, one might be able to devise an
algorithm to finish this precomputation in time. On the
other hand, large cells imply large overestimates and result
in too much geometry per frame. One would need to further
reduce this set by using a per-viewpoint approach. We have
decided to explore the extreme end of this spectrum. We do
most of our computation in a preprocessing phase and thus
allow the online rendering algorithm to perform work
proportional only to the geometry visible from the current
view-region, already reduced to an appropriate detail. In
order to achieve a high degree of fidelity while maintaining
a low working set of polygons online, the precomputation
phase first determines the acceptable LOD for a view cell
and then keeps reducing its visible set until this working set
is small in size. If the visible set remains large, it refines the
view-cell and reiterates. In contrast, previous works first
compute or estimate visibility and then reduce the LOD as
much as necessary to obtain a low working set. As a result,
they are limited by either a large working set or low fidelity.

3 OVERVIEW

In this section, we provide an overview of our system as
well as define some of the terms that will be used in the rest
of the paper. Our system has two main parts—the
precomputation phase and the runtime system. A conceptual
view of our system is shown in Fig 2.

In our systemdesign, the precomputation phasedoesmost of
the work to keep the CPU load at a minimum during the
walkthrough. We start by subdividing the view space into
view-cells (or simply cells) using an octree-based partitioning
scheme. The next step is to simplify the given 3D model and
generate a set of discrete LODs. The granularity that the
simplification algorithm operates on is at the level of
topologically connected components of the model. We refer
to these components as objects in the paper. Each object has a
unique ID associatedwith it. The output of the simplification
algorithm is LODs of all the objects in the model.

The next step is responsible for the generation of vLODs.

A vLOD, from a given cell, refers to the visible portions of

the original model at the right level of detail from any

viewpoint (and view direction) inside the cell. The LOD for

each object is chosen to conservatively maintain our one

pixel error threshold as seen from all points in the cell.

Based on this criteria for LOD selection, we determine the

visibility information inside the cell using a from-region

visibility algorithm. The granularity at which this informa-

tion is computed can be different from that used for

simplification, although, in our system, we do not distin-

guish between the two.
The next stage in our system pipeline is vLOD storage. The

total size of the vLODs generated in the previous phase is

usuallymuch larger than theoriginalmodel and is too large to

be stored directly on disk. Fortunately, the coherence in the

vLODs between adjacent cells allows significant compres-

sion.We compute thedifferences invLOD information across

neighboring cells and encode this information using the

object IDs. We refer to this information as �I and the

associated geometry as�G. The�I can be compressed using

standard compression algorithms, but a clever reordering of

the object IDs can achieve significantly better compression.

Another benefit of the reordering algorithm is that it yields a

layout of the model geometry on the disk that reduces disk

latency. Given this permutation of the object IDs,we store the

compressed �I and the permuted geometry on disk. This

completes the precomputation phase.
The runtime part of our system is lightweight. It runs

two threads: renderer and prefetcher. The renderer sends the

current cell’s vLOD to the graphics pipeline. The prefetcher

loads, decompresses, and caches the �I and �G for each

boundary of the current cell. When a new cell is entered, the

renderer computes the vLOD for the new frame by

updating the previous cell’s vLOD with the corresponding

boundary’s �G.

4 vLOD COMPUTATION

The first portion of our preprocessing involves the

computation of vLOD, our description of the visible

geometry at the right level of detail for all places in the

viewing space. To solve this problem, we decompose the

viewing space into viewing cells. Both the visibility and the

level of detail are held constant for all viewpoints within a

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 3

Fig. 2. Block diagram of the system architecture.

cell and the quality guarantees are designed to be
conservative for the entire range of the cell.

The relationship between visibility and the level of detail
is somewhat complex. Adjusting the level of detail of the
objects affects both the computational complexity and the
output of a visibility algorithm. Similarly, changes in the
visibility affect the bound on LOD error as well as the LOD
number that may be used to achieve a given triangle count.

At a high level, our strategy for computing vLOD is as
follows: For a given viewing cell, we compute a consistent
level of detail for the entire scene to guarantee a high-
fidelity rendering (i.e., with less than one screen pixel of
surface deviation). Then, we compute the conservative
from-region visibility for this cell. If the vLOD resulting
from this visibility is larger than some threshold, we
attempt to repeatedly reduce the vLOD size by shrinking
the size of the cell.

Notice that our optimization for offline, from-region
visibility is different for the approach used by online
visibility computations. Such online systems are more
constrained by processing times, so they typically make
one quick pass at a visibility computation and then decrease
the LOD fidelity until the target visible set size is reached.
This produces qualitatively different results from our
offline computation, which provides high-fidelity render-
ing, including correct (conservative) visibility. We next
describe our simplification procedure before presenting the
visibility computation algorithm.

Polygon Simplification. Before performing the simplifi-
cation procedure, we partition the model into components
we call objects. For architectural and CAD models, it is
convenient to perform this partitioning by applying a
connected component’s algorithm and assigning each
connected component an object ID. We perform an iterative
edge collapse algorithm [21] to simplify each of these
individual objects into a discrete LOD hierarchy, reducing
the number of polygons by roughly a factor of two at each
successive LOD.

Many such simplification algorithms are usable [30].
The main criterion for our system is that the algorithm
should output a conservative bound on the maximum
object-space surface deviation for each discrete LOD. We
apply the simplest such metric, accumulating our error
bound from the lengths of the collapsed edges, similar to
Rossignac and Borrel [35].

For a given view-cell, we select an LOD for each part so
that the screen-space surface deviation is less than a pixel.
The ratio of the object-space error to screen-space error is
computed by maximizing the projection of a unit vector at
any point of the object [6] from any point in the view cell
(we assume a maximum screen resolution for this computa-
tion). This LOD is consistent over the entire scene and
guarantees high geometric fidelity when used from any-
where in the cell. Furthermore, this small screen-space
deviation fits well with our desire to use simplified
geometry during subsequent visibility computation.

5 VISIBILITY COMPUTATION

In our system, we cull both polygons that are back-facing as
well as those that are occluded from the current view-cell.

These computations are done entirely offline. We describe

these algorithms next.

5.1 Hierarchical Back-Face Culling

Back-face culling is a simple, yet effective technique to

prune out polygons that face away from the viewer. Instead

of testing individual polygons, significant gains can be

obtained if a collection of polygons can be classified as front

or back-facing using a single test [26]. This test can be used

as part of a hierarchical strategy for performing back-face

culling. However, instead of performing the test from a

single viewpoint, our test needs to determine their orienta-

tion from all viewpoints inside a single cell.
We start with a collection of polygons, its axis-aligned

bounding box, B, and a view cell (see Fig. 3). We first

compute a cone, ðN̂N; �Þ, bounding the normals of these

polygons, where N̂N is the axis and � is the half angle of the

cone. We use a modified version [6] of an algorithm by

Sederberg and Meyers [37] to compute this bounding cone,

which may have its apex anywhere inside B. For the sake of

argument, let this point be v.
Consider the set of all view rays starting at v and ending

anywhere inside the view cell. These rays can be bounded by

another cone whose apex is at v and that bounds the vectors

from v to the vertices of the view cell. We call this cone the

visibility cone, ðV̂vVv; �vÞ. Fig. 3 shows the visibility cone.
Given these two cones, we can now test if any of the

polygons at v is front or back-facing from anywhere

inside the view cell as follows: Let us denote by �v ¼
cos�1 N̂N � V̂vVv þ �v þ � and �v ¼ cos�1 N̂N � V̂vVv � �v � �, the

maximum and minimum possible angles between two

vectors, one chosen to lie within the normal cone and the

other chosen to lie within the visibility cone. Since v can

lie anywhere inside B, we compute visibility cones from

the eight corners of the bounding box B and update the

extremal values of �v and �v. Let the overall maxima and

minima be � and �, respectively.
If � < �

2 , then any polygon inside B is front-facing with

respect to the view cell. If � > �
2 , then any polygon inside B

is back-facing with respect to the view cell. If neither of these

conditions are satisfied, the result is inconclusive and we

partition the set of polygons into two halves and proceed

recursively. At the end of the recursion, we have a set of

polygons classified as front-facing, back-facing, or neither. We

discard the set if it is back-facing.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

Fig. 3. Cell-based hierarchical back-face culling.

5.2 Occlusion Culling

Most 3D cell-visibility computation techniques are simply
impractical for large models. We exploit the significant
hardware rendering speeds available on the graphics cards
using an effective, yet practical algorithm. It is fast enough to
potentially use all polygons as occluders. On the other hand,
small polygons (relative to the cell size) shrink to null. Hence
it combines adjacent polygons to form larger occluders.
Furthermore, it performs occluder fusion, detecting if an
object is hidden jointly by a combination of occluders inmany
cases. It parallelizes well and is highly scalable.

Given a set of polygons P , occlusion culling is the
process of finding the subset Hv that is completely hidden
from a view point v by a set of polygons fOjO � Pg [10],
[25], [28], [43], [44], [47]. We call O the set of occluders. Given
a view-cell V , it is also possible to compute HV , the set of
polygons hidden from every viewpoint v 2 V . Clearly,
HV � Hv and, hence, all polygons in HV continue to be
invisible from v. In our system, view-cell-based visibility
precomputation is used to speed up rendering.

Recall that our goal is to eliminate polygons in the
shadow of other polygons when viewed from the cell. If we
could use the hardware to clip against this umbra region,
we would obtain an efficient algorithm. Unfortunately, the
umbra is bounded by ruled quadratic surfaces with
negative curvature [38] and is tough to compute precisely.
On the other hand, we can find volumes completely
contained in the umbra and bounded only by planes. That
is our goal. To achieve this, we shrink the volume further to
transform it into a frustum and thus reduce volume-
shrinkage to occluder-shrinkage. This allows us to exploit
the graphics hardware by simply drawing the shrunk
occluder polygons.

Consider the 2D illustration in Fig. 4, with view-cell Vi

and occluder Oj. If we construct the supporting planes [9],
tangential to both Vi and Oj, we obtain a shadow area (light

shaded area) contained in the umbra. Now, consider a
point v contained within the supporting planes. If we draw
planes passing through v and parallel to the supporting
planes, we obtain a view frustum (dark shaded area)
contained in the shadow. Every polygon hidden by pq,
(thick line), when seen from v, is hence guaranteed to be
hidden by Oj from every point on Vi. We call pq the shrunk
version of Oj. The shrinking depends on the choice of point
v. This shrinkage is different from that by Durand et al. [13]
because we shrink occluders directly in the object space
instead of the screen space and do not need to expand the
occludees. It is also different from the shrinkage used by
Wonka et al. [44]. Their shrinking is a function of the radius
of the view-cell. Thus, long or thin view-cells cause over
shrinking. Furthermore, they shrink in all directions in 3D,
requiring the occluders to have large interiors. Décoret et al.
[10] reduce the overestimation for 2.5D models by using the
Mikowski difference of occluders and the view-cell, but it is
difficult to generalize in 3D. In contrast, we allow
3D occluders but need to shrink only in the planes of the
triangles of an occluder and do not even require them to
have an interior. Thus, we can use more polygons as
occluders and do not suffer when cells have large aspect
ratios. We accept a single triangle or a group of connected
triangles as occluders.

We partition occluders into clusters based on their
direction from v to simplify rendering. To compute
visibility with respect to each cluster, we first construct
the shadow frustum for each occluder (see Fig. 5). We next
find a projection point v contained in all frusta of the cluster.
We then shrink each occluder in the cluster by its reduced-
shadow planes: planes parallel to shadow planes and
passing through v. Occlusion behind shrunk occluders can
be efficiently determined using the NVIDIA Occlusion
Query OpenGL extension. We render the shrunk occluders
first. We then draw the occludees with depth-buffer write
disabled and the Occlusion Query extension enabled. The
query returns a zero for occludees not visible. The others
form a visible list. This visible list is progressively reduced
by rendering against each occluder cluster. We are able to
compute the visibility of an object from a view-cell with
respect to an occluder cluster by drawing all polygons of
the object and checking if any pixel was written. Assigning
a single occlusion query ID to each object allows us to
process all objects in a single pass.

For multiple occluders, Oi, note that v must lie in the
shadowfrustaofalloccluders.Wefindthebest locationforv in

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 5

Fig. 4. View-cell visibility computed from a point.

Fig. 5. 3D Visibility Pipeline: (a) Displays two triangle occluders with a viewcell. (b) Shows their shadow frusta. (c) Marks the projection point and the

shrunk shadow frusta. (d) Visualizes the depth map from the projection point for six orthogonal directions.

the intersection of the frusta by maximizing the sum of
volumesofallshrunkfrusta.Werefertovastheprojectionpoint.

Computing the projection point. Having computed the
shadow frustum for each of the occluders, we proceed to
find the optimal projection point from which the shrunk
shadow frusta determine conservative visibility. We for-
mulate this as a convex quadratic optimization problem.
Ideally, the projection point has the following properties:

1. For each occluder, Oj, the projection point must lie
inside its shadow frustum.

2. The shrunk shadow frusta must maximize the
amount of geometry lying completely inside them.

We relax constraint 2 to find the point that maximizes the
sum of the volumes of the shrunk frusta. It can be shown
that the constraint space under this formulation is convex
with a quadratic objective function that does not have a
unique maxima. Hence, we derive a dual objective function
that is related to the sum of volumes

�jhðv� pjÞ; n̂jnji2;

where pj is the optimal projection point for occluder Oj, n̂jnj

is the normal to planar occluder, and h; i denotes inner
product. For nonplanar occluders, n̂jnj is the average of
normals. It can be shown [6] that this objective function
minimizes the total reduction in the sum of volumes of the
shrunk frusta. Intuitively, if the chosen point v is not at pj,
the shrinkage is minimized if v is only moved away from pj
along n̂jnj or �n̂jnj. Recall that v must also satisfy the (linear)
constraints imposed by property 1 above. This is the special
case of a convex program called Second-Order Cone Program
for which efficient interior point algorithms are known [29].

Using the above optimization decreases the visible set of
most of our view-cells by 5-10 percent (over using a
randomly selected point). The average time for solving the
optimization problem is around 0.02 seconds.

Once v is determined, each occluder Oj is clipped to the
frustum rooted at v with planes parallel to the supporting
planes for Oj (or its umbra).

Note that rendering from the projection point using the
graphicshardwareneednotbeconservative.Apixelmayonly
bepartially coveredby the occluders, butmayyet be assigned
their depth value causing occludees to be mis-classified as
hidden. We perform conservative rendering by using alpha
cut-off.We enable blending such that partially covered pixels
result in an alpha value of less than one and, hence, are not
updated with the depth value of the rendered occluders.

We compare some properties of a few recent from-region
visibility algorithms in Table 1. The results quoted in the

table are necessarily incomplete and approximate, but help
provide a rough idea of the recent state of from-region

visibility computation. We list both 2.5D and 3D visibility
algorithms and any restrictions on the occluder type.

Although Durand et al. [13] also present a single-plane
projection variant that is more efficient than the one quoted

in the table, we skip that data-point as that variant is well
suited only for convex occluding polygons. The algorithm

by Schaufler et al. [36] is highly memory intensive and is
impractical for much larger models. Cell Time (the time for

visibility computation per region) is quoted from the paper
on the largest model (Model Size column) demonstrated in

the respective papers. Naturally, these numbers are for
different models and use different computers, but still are

useful for comparison. These papers do not provide a

consistent notion of the percentage of hidden geometry not
culled (overestimation) and, hence, that statistic is not

included in the table.

6 DATA STORAGE

Although the size of vLOD geometry for each cell is only a

small fraction of the total model size, it is impractical to
store the vLOD of each cell separately on the disk due to the

ensuing severe replication. For example, all cells of the
power plant model in our experiment would require over

250 gigabytes. (The model itself is less than one gigabyte,
including the LODs.) Furthermore, the disk bandwidth

required to read each cell’s vLOD would be beyond the
capability of current disks.

In most cases, the vLODs of two adjacent cells exhibit

high coherence and have mostly common geometry. j�Gj,
the cardinality of the set difference between adjacent cells, is

much smaller (of the order of 1 percent) than the full
geometry. �G consists of two components, a list of

geometry to be added, �þG; and a list of geometry to be
deleted, ��G.

We store a list of IDs, �I, for the geometry in �G for
each boundary. This is conceptually similar to Durand et al.
[13], but they store all the geometry in memory. This is not
possible for larger models and �I as well as �G must be be
fetched from the disk. We have devised a disk layout
scheme that reduces the number of disk accesses by storing
together on the disk objects that tend to be fetched together.
The storage is still prohibitive, however, for large models
with multiple LODs and, hence, further processing is
necessary.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

TABLE 1
Properties of Some Recent From-Region Visibility Algorithms

Sufficiently compressing the vLODs further [34] is a
tough problem. We present in this section an algorithm that
drastically reduces the storage requirement as well as the
disk bandwidth requirement. Even more importantly, the
decompression algorithm is extremely fast and does not
impose any noticeable overhead at rendering time. For both
disk layout and compression, we need the objects that are
likely to be fetched together to have IDs close together. We
solve this reordering problem next.

6.1 Object Reordering

For our application, the ideal layout is the one thatminimizes
a cost function that depends on the latency in disk reads. One
formulation of this problem is to reorder the objects on the
disk (or generate a permutation) so that objects fetched
together always appear contiguouslyon thedisk. This, in fact,
is rarely possible without replicating objects on the disk.
Funkhouser et al. [16] solved this problem by simply loading
geometry in large clusters andkeeping those clusters together
on the disk. While increasing disk I/O granularity, this
solution does not address coherence between clusters.
Instead, we provide a finer grained solution that reduces
the number of disk seeks required to fetch any desired object
set. Solving this also improves the compression ratios we can
achieve later: A simple run-length encoding scheme can now
perform quite well.

Let us construct a binary matrix where the rows
correspond to the face boundaries between adjacent cells
and the columns to the object IDs.Consider a single rowof the
abovematrix, viewed as a sequence of 0s and 1s. The number
of disk seeks required is precisely the number of maximal
consecutive sequences of 1s, also called the number of runs in
the sequence. The number of runs can be changed by
reordering the columns. An appropriate reordering, by
reducing the number of runs, will reduce the number of
seeks required to retrieve the data from this row. For a fixed
row, it is always possible to reorder the columns to yield only
one run; this may not be the best solution for other rows.

The reordering problem can therefore be restated as:
Find a reordering of the object IDs (columns) so that the
total number of runs (summed over all rows of the matrix)
is minimized. This problem is closely related to the well-
known traveling salesman problem (TSP) [23].1

For two binary vectors u; v of the same length, the
Hamming distance between u and v is defined as the number
of bit positions in which they differ. It is easy to see that, if
we consider each column of the matrix to be a binary vector
and compute the traveling salesman tour of minimum
distance (under the Hamming metric) between these
vectors, the resulting permutation also minimizes the total
number of runs [2]. While the matrix reordering problem is
NP-hard (by reducing the Hamiltonian path to it [24]), its
connection to TSP suggests an algorithmic strategy. We can
use fast heuristics for solving TSP [23] to obtain a reordering
of high quality. The challenge in our case is dealing with the
huge size of the matrix; Meneveaux et al. [32] used a
number of heuristics to solve TSP to speed up radiosity

computation, but those do not work well with the much
larger matrix sizes in our problem.

There are two sources of complexity in using
TSP methods for the reordering problem. As mentioned
above, the size of the matrix precludes the use of most
standard TSP methods. Second, and less obvious, the large
number of rows in the matrix yields points in a very high-
dimensional Hamming space, which makes even a single
distance computation an expensive operation.

The best implementation for computing a near-optimal
TSP tour of points in a metric space uses a seed tour that is
then refined by heuristics that break the tour and recombine
it to achieve a local improvement [23]. This seed tour is
computed using nearest neighbors; start at some point, pick
its nearest neighbor, and then repeat, choosing, for each
point, its closest neighbor that is not already in the tour (the
nearest unvisited neighbor). In practice, the algorithm
constructs a list of the k nearest neighbors for each point
in a preprcessing phase: If k is chosen suitably, then, for all
but a small fraction of points, the nearest unvisited neigbour
will be in this list and a general pairwise nearest neighbor
query will be unnecessary. The design goal of our algorithm
is thus two-fold: Find a small number of representative
neighbors of a given point in the Hamming space (i.e., a
column in the matrix) and use these to determine a viable
tour that can be optimized further. We will use sampling to
achieve these goals; the algorithm is described below. The
constant k will be fixed later.

1. For each point, sample a fixed number of points at
random and record the distances between this point
and these samples. Sort this set and store the
smallest k of them.

2. Initialize a TSP tour to be the first point.
3. While the TSP tour is not complete,

a. Find the nearest unvisited neighbor among the
samples for the current endpoint of tour.

b. If no unvisited neighbor exists, pick any
unvisited point and append that to the tour,
using a dummy large cost for this edge.

c. Perform local edge flips on the current tour for
further optimization.

Nearest neighbor-based methods work well for Eucli-
dean instances of TSP, giving answers within 25 percent of
the optimal solution [23]. On smaller instances of the cell
visibility data (for which we could compute the optimal
permutation), we found that nearest neighbor heuristics are
within a few percent of the optimal solution and using
sampled data only decreases the quality slightly.

For Euclidean metrics, computing such nearest neigh-
bors is relatively easy using data structures like kd-trees [5],
but, for the Hamming metric, these strategies do not work.
Thus, sampling is crucial to our algorithm to reduce the size
of the input (and its dimensionality). A closer look at the
data reveals the following observation, illustrated in Fig. 6.
On average, if we determine the nearest neighbor of a point
and consider the set of points within distance twice that of
the nearest neighbor, then this set is extremely large,
approaching a constant fraction of the entire point set.
Moreover, although the maximum distance between a
random point and its furthest point can be large, most of

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 7

1. It is interesting to note that a similar problem arises in reordering the
computation of hierarchical radiosity of clusters of geometry to increase
coherence [39], mining large graph structures, and association rule mining
[24].

the points lie reasonably close to it (in terms of the ratio to
the nearest neighbor distance). This suggests (and has been
born out by preliminary experiments) that standard
approaches for doing approximate Hamming metric nearest
neighbor computations [8] are likely to perform badly
because even a factor-two approximation to the nearest
neighbor contains a large set of candidates to consider,
driving the cost of determining nearest neighbors to OðnÞ
per point (and Oðn2Þ overall). However, this anomalous
behavior has a positive side; since a constant fraction of
points lie within this ball, it implies that a constant-sized
sample of points will contain at least one point within this
ball with constant probability. Even more striking is the fact
that a single sample set will suffice to provide near
neighbors for all point sets. Formally, let 0 < � < 1 be the
fraction of points lying in the ball of radius 2rp around a
point p, where rp is the distance from p to its nearest
neighbor. Then, with probability ð1� 1=nÞ, a sample of size
c logn=� will contain at least one point in this ball. In fact,
there exists a constant c0 such that a sample of size c0 logn=�
points will contain a point within the ball of each point in
the set. For experiments with our data, � is approximately
0.25, the sample size for one point c0 logn=� was 16, and k
was chosen as 700.

This observation yields an approximation heuristic that
runs in time Oðn lognÞ instead of Oðn2Þ. We will not discuss
this in detail here, but the above sampling can be designed to
work in a disk-sensitive fashion so that it can be implemented
on a system with small memory. This sampling strategy,
alongwith providing fast access to near neighbors for a given
point, also scales linearly with input size and is thus very
well-suited for the large models we address.

We performed experiments on a 400,000 � 350,000
power plant visibility matrix and a 790,000 � 700,000
city modelmatrix (here, columns correspond to the input size
of the TSP and rows indicate the dimension of the problem).
In both cases, the average sparcity of each columnwas about
1,300, though the variance of the distribution was much
higher in the second example. For the power plant example,
we generated 700 near neighbors for each point from a
sample of size 11,200 in slightly under 3 hours. For the city
model example, we generated 700 near neighbors from a
sample size of 22,400 in 7 hours. Computing the TSP tour
itself is very fast: It rarely took more than 10-15 minutes for
any input.

The total number of runs as a result of the TSP tour was
found to be 64 percent fewer than a random permutation
for the power plant model and 52 percent fewer for the city
model. This improves read-speed and compression, as
shown in the results section.

6.2 �I Compression

There has been recent research in compressing precomputed
visibility information [34], [18]. Panne and Stewart [34], for
example, represent the visibility information in a table of cell
bit-masks. Each row corresponds to a cell and stores 1 bit per
polygon,which is set toone for those that arevisible.Columns
and rows are collapsed based on a similarity metric to
generate compressed version of the table. Unfortunately, in
our case, due to the large number of polygons, such bit-mask
based encoding of vLODs [18], [34] is prohibitively

expensive. In fact, even simply storing each ID in �I as an
integer already produces files more than 6–7 times smaller
than raw bit-masks, which compares well with the compres-
sion ratios of 4–7 obtained by [34]. Our methods produce
much higher compression.

To compress a �I, we start by sorting its IDs and then
variable-length encoding the offsets between consecutive
IDs. Due to our object reordering algorithm, the IDs in a �
are near each other, if not consecutive. This ensures that the
offsets are small. Furthermore, due to an abundance of
consecutive runs of offsets equal to one, this is well-suited
for run-length encoding. Thus, our compression reduces to
pairs of small numbers: ðOi;RiÞ, Oi is the offset from the
previous ID in the offset list and Ri is the number of
consecutive 1s in the offset list.

TechniquesbasedonHuffmanencodingusuallyworkwell
with variable length encoding of text strings. However,
literature on compressing a short list of small integers is scant.
Thefrequenciesofdigitsinsuchalistofnumbersareuniformly
distributed, thus affording Huffman coding little advantage
over fixed length encoding. Furthermore, the overhead of
storing a frequency table per � is significant. Statistical
algorithms do notworkwell on small sequences either.

We use a two-bit delimiter-based technique for our
compression. This achieves compression much more than
gzip and Huffman encoding for our �s and is much faster
for both compression and decompression. Our compression
and decompression algorithms make only a single pass over
the input with no look-ahead and are described in
Appendix A.

Due to the simplicity of the algorithm, our decompres-
sion is very fast and requires only a few microseconds per
�I. We obtain better than 34x compression over the raw bit-
masks. Our delimiter-based compressor generates output
over 35 percent smaller than LZW compression of our run-
length encoded data and our compressor as well as
decompressor are nearly twice as fast. Table 2 shows the
average compression over raw bit-mask and time to
decompress each �I. To evaluate only the delimiter
algorithm, we run LZW and Huffman on the pairs of small
numbers after our run-length encoding. (The overall
differences are even greater if we use LZW or Huffman
algorithms directly on the original list of numbers.)

7 RUNTIME SYSTEM

A major strength of our system is the simplicity of its run
time display algorithm, as most of the hard work is finished
beforehand. The renderer simply needs to reconstruct the

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

TABLE 2
Performance of our Compression Algorithm

Column 1 shows the compression of raw bit-masks after the offsets are
run-length encoded to obtain a sequence of small numbers. Columns 2,
3, and 4 compare further compression of that sequence. So, overall
compression of our algorithm is a factor of 34.2 (9� 3:8).

vLOD of the cell the viewpoint enters. Assume the previous
cell is Cprev and the current cell is Ccurr. Also assume that
vLODðCprevÞ is known in the steady state.

When the user moves to a new cell, we compute the
sequence of face-boundaries, fBig, intersected by the path
from Cprev to Ccurr. In most cases, there is a single boundary
crossed. We update the current vLOD for each boundary Bi

as follows:

1. Fetch �IðBiÞ.
2. Decompress �þIðBiÞ.
3. Fetch geometry �þGðBiÞ and append to vLOD.
4. Decompress ��IðBiÞ.
5. Discard geometry ��GðBiÞ.
In practice, we prefetch and cache �I and objects. Our

current scheme is quite simple. The prefetcher thread
generates a request for � of each cell adjacent to the current
cell when the user enters a cell. It is also possible to
configure the system to prefetch farther neighbors.

The cache manager sends a request to the disks for any
data not already in cache. The cache uses the least recently
used policy to replace objects or �Is when reading new
data. When an object is added to the current vLOD, it is
locked in cache so that it may not be discarded from the
cache. When an object is deleted from vLOD, it is unlocked
and enabled for replacement.

Once the vLOD for the current cell is generated, it is
passed to the view-frustum culler, which is not expensive as
its input is only the objects in the vLOD. Objects found to
intersect the view-frustum are finally sent to the rendering
hardware.

8 DISCUSSION OF RESULTS

We have implemented our preprocessing algorithm on a
Beowulf cluster of AMD 1.53 GHz PCs with 1GB RAM each.
Each machine is equipped with an NVIDIA GeForce 4
TI4200 graphics card which supports occlusion queries. The
walkthrough system has been implemented on SGI-IRIX,
Linux-based PC, and Windows-based PC platforms. We
report results from a Pentium IV 2.8 GHz PC with
1GB RAM. The card on this PC is an NVIDIA GeForce FX
5800. We designated 512MB as the maximum cache size.

We have run our system on the UNC power plant model
(13 million triangles, Fig. 1) and an artificial city model
(34 million triangles, Fig. 11). We created the city model by
stacking cubes and adding several CAD and scannedmodels
to form a large city simply to verify the scalability of our
system. Themodel contains several high detail areas and has
a highly dynamic range of detail. For example, there are
50 cars on the street, each containing over 100,000 triangles.
The cars are distributed in the city in groups of four to eight.
Buildings also contain internal geometry. There is a high
concentration of detailed geometry in the gallery, one of the
city buildings. We maintained 10–20 frames for most of the
city walkthrough. Since the UNC power plant model is well-
known and publicly available, we focus our discussion
primarily on that model.

Due to a large number of small polygons and open areas
in the power plant model, this is a particularly tough case
for occlusion culling. We maintain interactive rates on this
model, as is evident in the example shown in Fig. 7. If the
original polygons were sent to the model, the average frame
rendering time is 3 seconds. Using only LOD (at 1 pixel
error) improves this to nearly 1 second per frame.

In spite of our high rendering rate, the CPU load remains
under 50 percent, all the time displaying high quality
images. As shown in Fig. 1b and Fig. 1c, our LODs result in
hardly any noticeable artifacts. Our visibility computation is
strictly conservative and no polygon of the appropriate
LOD that should be visible is discarded. We chose to accept

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 9

Fig. 6. Distance distribution statistics for a random point. In all cases, the
numbers were obtained by averaging over multiple trials. (a) Density of
points within a small ball around a random point. The y-axis plots the
fraction of points within the ball and the x-axis shows the number of
points in the point set. (b) Fraction of points contained in balls of
increasing radius around a random point. The x-axis is the distance
divided by the nearest neighbor distance.

Fig. 7. Performance of system for two paths through the power plant

model—path 1 and path 2.

only geometric LOD errors but no visibility error, as even
small visibility errors are quite noticeable and distracting.

We have performed experiments to check the coherence
between vLODs of adjacent cells taking several paths
through the model. The average size of compressed �I is
less than 750 bytes. The average number of polygons in each
�G is less than 180,000.

In Figs. 9 and 10 we present some statistics for path 2,
whichwas contrived to be a tough input for anywalkthrough
system. This path starts just outside the power plant and
moves quickly to the most dense area of the model with a
complex of pipes, looking directly at the pipes. Path 1, in
contrast, starts with a bird’s eye view of the whole power
plant and the viewer flies in. The viewermoves fast, crossing
1-2 boundaries every second on average (cells are several
inches to a few feet wide). No 3D region visibility algorithm
can dynamically precompute the visibility from 2-3 cells and
several of their neighbors per second for a 3D environment.
That is why they are all precomputed in our approach.

We only try to maintain the � with respect to the six
faces of an octree cube in the main memory. We use
asynchronous reads to prefetch the relevant � from the
disk. Fig. 12 shows the speed-up in disk-reads due to our
layout algorithm. There was an almost 60 percent reduction
in the number of disk reads and about 39 percent overall
speed-up in rendering due to that.

In the precomputation stage, we partition an expanded
bounding box of the model into nearly 500,000 view cells.

Most of these cells are concentrated in the area of complex
pipes as the octree refinement goes deeper in those cells. The
precomputation, running on a Beowulf cluster of 16 1.53GHz
AMD Athlon-based Linux PCs, takes a cumulative total of
128 hours (the individual PCs taking from 8 to 10 hours). This
produces a total of 7GB storage for �I. The time to compute
vLOD is 0.4 to 2.2 seconds per view-cell. Of this, the time to
shrink occluders is 0.16 seconds, while rendering and
performing occlusion query takes about 0.2 to 2 seconds.
Our Linux machines can render approximately 3-4 million
triangles per second using vertex arrays and 50-250K
occlusion queries per second.

In our hierarchical subdivision scheme, we employ two
stopping criteria, which are the number of visible triangles
and the level of the octree. About 30 percent of the view-
cells that reach the lowest level octree require further

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

Fig. 8. Effectiveness of view frustum culling, view frustum culling plus

LOD, and view frustum culling + vLOD along path 2.

Fig. 9. Memory size of each �I along path 2 through power plant.

Fig. 10. Number of polygons in each �G along path 2 through power

plant.

Fig. 11. A bird’s eye view of the artificial city.

Fig. 12. Disk access speed-up due to object reordering during path 2

walkthrough.

subdivision. Their average vLOD size is about 1.5 times our
triangle threshold.

We also perform an informal comparison of our cell
visibility result versus estimated vLOD by taking the union
of 125 sample points inside a view cell. The overestimation
of our cell visibility algorithm is about two to 10 times the
sampling result (which is itself an underestimate of vLOD
for the view-cell).

For path 2 through the UNC power plant, we had to cross
128 cells. For most of the boundary transitions, we fetch less
than 1kilobyte of compressed IDand less than 2megabytes of
geometry data. For the same path, we plot the number of
triangles rendered by our system and the number rendered
after view frustum culling alone (Fig. 8). The number of
triangles rendered by our system is much less than the
number intersecting the view frustum. About half of the
reduction comes from the use of high-fidelity LODs and the
rest comes from discarding hidden geometry. On this path,
we achieve an average rendering rate of nearly 30 frames per
secondwith a screen space error of less than1pixel, leading to
almost no visual difference from the full detail model.

Although the city model is larger (67 million polygons
including LODs), it has only vertical walls used as occluders.
In 2.5D our visibility precomputation is even more efficient
[6]. The city was preprocessed in 14 (cumulative) hours,
generating nearly 90,000 cells for a per-cell threshold of 0.5
million triangles. This results in 1.1 GB of storage for the
compressed �. Fig. 13 shows the rendering performance of
our system on the city model for a path that starts at one end,

passes the densely populated region, and ends at the gallery.
Figs. 14 and 15 exhibit coherence similar to the power plant
model. Observe that the size of� does not grow as fast as the
model size.

9 CONCLUSION

Wehave presented a novel 3D visibility algorithm and a new
technique to combine visibility computation and model
simplification into a common framework. In fact, as more
efficient simplification and visibility algorithms are devel-
oped, they can be easily incorporated into our system. This
framework is particularly well-suited for models with high
occlusion complexity and large spatial extent. We present
algorithms to compress and organize the intermediate data
on the disk that allow efficient fetching and decompression.
Our implementation, even though lacking inmany optimiza-
tions, is able to accurately and interactively display models
with around 40 million polygons. This is significantly faster
than has been achieved before. Our initial experimentation
exhibits a high degree of scalability. With more accurate
visibility precomputation and smarter partitioning, we
believe our framework can eliminate graphics subsystem
bottlenecks for a large class of visualization applications.

The memory footprint of our system is extremely low
and we have been able to display large models even on
commodity laptop computers. We can handle models larger
than the main memory size as we only store the vLOD of
the current view-cell and the � of its neighbors in memory
at a time. Manageable hard disk storage overhead, low
memory requirement, and interactive rendering speed
make our framework an excellent vehicle for static model
walkthrough and some computer games.

A number of optimizations can be performed on our
existing system. The performance of the rendering algo-
rithm is directly dependent on the size of the vLODs and
this size can be reduced significantly by performing more
aggressive occlusion culling and increasing the occluder set.
Our current implementation is not able to bound the size of
the vLOD for each cell; some cells still have large vLODs.
Subdividing the view-cell further only increases the storage
requirement without sufficient improvements in the vLOD
size. We believe that a better spatial partitioning algorithm
is needed to further improve the performance of this
system. We currently allow no update of detail at the
rendering time; this is an interesting area for future

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 11

Fig. 13. Rendering performance of the system for the city model.

Fig. 14. Memory size of each �I for the city model.

Fig. 15. Number of polygons in each �G for the city model.

research. It would also be useful to allow some animation or
other dynamic changes to the models. We believe small
coherent changes can be handled in our framework.

APPENDIX A

COMPRESSION AND DECOMPRESSION

A.1 Delimiter-based variable length compression

Our compressor requires a single pass over the input bit
stream. In the following, we use italics to mark delimiter bits
(after we recognize them as such). Note that the number 0 is
never in the input. All other numbers are stripped off of their
leading zeros and passed to the following compressor rules:

1. Add a two bit delimiter 11 between consecutive
numbers in the sequence. This implies a string of 111
signifies the start of a new number at the last 1.

2. Replace instances of 11 in the input by 110 (note that
delimiting 11 is always followed by a 1).

3. If a number ends in a 01 (possibly after applying rule
2), replace it by 011. This helps disambiguate the
case of finding delimiters after a 1 (i.e., 111 from
111), as seen later.

A.2 Decompression

The decompression algorithm is also simple and per-
forms a single pass over its input bit stream. It has the
following steps:

1. If a 11111 sequence is encountered in a string, append
a 1 to the output and end the number, the last one in
this sequence starts a new number. Note that this
sequence could also be broken down as delimiter 11
followed by a new number. We mark this number as
ambiguous and continue until we discover we have
made a mistake.

Justification:A 11110 is not allowed to appear at the
start of a newnumber in the output. Note that the first
1 does belong to the new number but could not be
alone as all instances of 1 get replaced by 11 in the
compressed data by Rule 3. This happens if we have
consumed an extra 11 in Step 1 before. We fix this by
shifting right the ambiguous number last found by 1
bit.Note that the ambiguity only happens just before a
string of 1s in the output and is discovered at the first
non-1 number encoded in the data.

2. Otherwise, if a 111 is encountered, the current
number is ended and a new one started at the last 1.

3. Otherwise, if a 110 is encountered, we discard the 0.
4. Otherwise, simply shift the next bit into the output.

REFERENCES

[1] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K.
Hoff, T. Hudson, W. Stuerzlinger, R. Bastos, M. Whitton, F.
Brooks, and D. Manocha, “MMR: An Integrated Massive Model
Rendering System Using Geometric and Image-Based Accelera-
tion,” Proc. Symp. Interactive 3D Graphics, pp. 101-106, 1999.

[2] F. Alizadeh, R.M. Karp, L.A. Newberg, and D.K. Weisser,
“Physical Mapping of Chromosomes: A Combinatorial Problem
in Molecular Biology,” Proc. ACM/SIAM Symp. Discrete Algorithms,
pp. 371-381, 1993.

[3] C. Andújar, C. Saona-Vázquez, I. Navazo, and P. Brunet,
“Integrating Occlusion Culling and Levels of Detail through
Hardly-Visible Sets,” Computer Graphics Forum, vol. 19, no. 3,
pp. C187-C194, Aug. 2000.

[4] W.V. Baxter, A. Sud, N. Govindaraju, and D. Manocha, “Giga-
walk: Interactive Walkthrough of Complex Environments,”
Technical Report TR02-013, Univ. of North Carolina at Chapel
Hill, 2002.

[5] J.L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517,
Sept., 1975.

[6] J. Chhugani, B. Purnomo, S. Krishnan, J. Cohen, and S. Kumar,
“vLOD: A Scalable System for Interactive Walkthroughs of Very
Large Virtual Environments,” Technical Report JHU-CS-GL03-3,
http://www.cs.jhu.edu/graphics/html/TR.html, Computer
Science Dept., Johns Hopkins Univ., 2003.

[7] Y. Chrysanthou, D. Cohen-Or, and E. Zadicario, “Viewspace
Partitioning of Densely Occluded Scenes,” Proc. 14th ACM Symp.
Computational Geometry (SCG ’98), pp. 41-414, June 1998.

[8] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J.D. Ullman, and C. Yang, “Finding Interesting Associations
without Support Pruning,” Proc. Int’l Conf. Data Eng., pp. 489-499,
2000.

[9] S. Coorg and S. Teller, “Real-time Occlusion Culling for Models
with Large Occluders,” Proc. Symp. Interactive 3D Graphics, pp. 83-
90, 1997.

[10] X. Décoret, G. Debunne, and F. Sillion, “Erosion Based Visibility
Preprocessing,” Proc. Eurographics Symp. Rendering, 2003.

[11] F. Durand, G. Drettakis, and C. Puech, “The 3D Visibility
Complex: A New Approach to the Problems of Accurate
Visibility,” Proc. Eurographics Rendering Workshop 1996, X. Pueyo
and P. Schröder, eds., pp. 24-256, Aug. 1996.

[12] F. Durand, G. Drettakis, and C. Puech, “The Visibility Skeleton: A
Powerful and Efficient Multi-Purpose Global Visibility Tool,”
Proc. ACM SIGGRAPH, Ann. Conf. Series (SIGGRAPH ’97),
T. Whitted, ed., pp. 89-100, Aug. 1997.

[13] F. Durand, G. Drettakis, J. Thollot, and C. Puech, “Conservative
Visibility Preprocessing Using Extended Projections,” Computer
Graphics Proc., Ann. Conf. Series (SIGGRAPH ’00), pp. 239-248, 2000.

[14] J. El-Sana, N. Sokolovsky, and C. Silva, “Integrating Occlusion
Culling with View-Dependent Rendering,” Proc. IEEE Visualiza-
tion, pp. 371-378, Aug. 2001.

[15] L. De Floriani, P. Magillo, and E. Puppo, “Building And
Traversing a Surface at Variable Resolution,” Proc. IEEE Visualiza-
tion ’97, Oct. 1997.

[16] T. Funkhouser, C. Séquin, and S. Teller, “Management of Large
Amounts of Data in Interactive Walkthrough,” Proc. Symp.
Interactive 3D Graphics, pp. 11-20, 1992.

[17] Z. Gigus, J. Canny, and R. Seidel, “Efficiently Computing and
Representing Aspect Graphs of Polyhedral Objects,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 542-551,
June 1991.

[18] C. Gotsman, O. Sudarsky, and J. Fayman, “Optimized Occlusion
Culling Using Five-Dimensional Subdivision,” Computers and
Graphics, vol. 23, no. 5, pp. 645-654, 1999.

[19] N. Govindaraju, A. Sud, S. Yoon, and D. Manocha, “Parallel
Occlusion Culling for Interactive Walkthroughs Using Multiple
GPUs,” Technical Report TR02-027, Univ. of North Carolina at
Chapel Hill, 2002.

[20] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-Buffer
Visibility,” Proc. ACM SIGGRAPH, pp. 231-238, 1993.

[21] H. Hoppe, “View Dependent Refinement of Progressive Meshes,”
Proc. ACM SIGGRAPH, pages 189-198, 1997.

[22] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang,
“Accelerated Occlusion Culling Using Shadow Frusta,” Proc.
Symp. Computational Geometry, 1997.

[23] D.S. Johnson, L.A. McGeoch, “The Traveling Salesman Problem: A
Case Study in Local Optimization,” Local Search in Combinatorial
Optimization, E.H.L. Aarts and J.K. Lenstra, eds., pp. 215-310.
London: John Wiley and Sons, 1997.

[24] D.S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and
S. Venkatasubramanian, “Compressing Large Boolean Matrices
Using Reordering Techniques,” Technical Report TD-5X77W6,
AT&T Technical Memorandum, March 2004.

[25] V. Koltun, Y. Chrysanthou, and D. Cohen-Or, “Hardware-
Accelerated From-Region Visibility Using a Dual Ray Space,”
Proc. 12th Eurographics Rendering Workshop, pp. 205-216, 2001.

[26] S. Kumar, D. Manocha, W. Garrett, and M. Lin, “Hierarchical
Back-Face Culling,” Computers and Graphics, vol. 23, no. 5, pp. 681-
692, 1999.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2005

[27] F. Law and T. Tan, “Preprocessing Occlusion for Real-Time
Selective Refinement,” Proc. Symp. Interactive 3D Graphics, pp. 47-
54, 1999.

[28] T. Leyvand, O. Sorkine, and D. Cohen-Or, “Ray Space Factoriza-
tion for From-Region Visibility,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 595-604, 2003.

[29] M.S. Lobo, “Robust and Convex Optimization with Application in
Finance,” PhD thesis, Dept. of Electrical Eng., Stanford Univ.,
2000.

[30] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and
R. Huebner, Level of Detail for 3D Graphics. San Francisco:
Morgan Kaufmann, 2002.

[31] P. Maciel and P. Shirley, “Visual Navigation of Large Environ-
ments Using Textured Clusters,” Proc. Symp. Interactive 3D
Graphics, pp. 95-102, 1995.

[32] D. Meneveaux, K. Bouatouch, and E. Maisel, “Memory Manage-
ment Schemes for Radiosity Computation in Complex Environ-
ments,” Computer Graphics Int’l, pp. 706-715, 1998.

[33] S. Nirenstein, E. Blake, and J. Gain, “Exact From Region Visibility
Culling,” Proc. 15th Eurographics Rendering Workshop, pp. 305-316,
2002.

[34] M.V. Panne and A.J. Stewart, “Efficient Compression Techniques
for Precomputed Visibility,” Proc. 12th Eurographics Rendering
Workshop, pp. 305-316, 1999.

[35] J.R. Rossignac and P. Borrel, “Multi-Resolution 3D Approxima-
tions for Rendering Complex Scenes,” Geometric Modeling in
Computer Graphics, B. Falcidieno and T. Kunii, eds., pp. 455-465.
Genova: Springer-Verlag, 1993.

[36] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion, “Conservative
Volumetric Visibility with Occluder Fusion,” Computer Graphics
Proc., Ann. Conf. Series (SIGGRAPH ’00), Kurt Akeley, ed., pp. 229-
238, 2000.

[37] T.W. Sederberg and R.J. Meyers, “Loop Detection in Surface Patch
Intersections,” Computer Aided Geometric Design, vol 5., pp. 161-
171, 1988.

[38] S. Teller, “Computing the Antipenumbra of an Area Light
Source,” Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH
’92), pp. 139-48, 1992.

[39] S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan, “Partition-
ing and Ordering Large Radiosity Computations,” Proc. Ann. Conf.
Series (SIGGRAPH ’94), pp. 443-450, 1994.

[40] S. Teller and C. Sequin, “Visibility Preprocessing for Interactive
Walkthroughs,” ACM Computer Graphics (SIGGRAPH ’97 Proc.),
vol. 25, no. 4, pp. 61-69, 1991.

[41] G. Varadhan and D. Manocha, “Out-Of-Core Rendering of
Massive Geometric Environments,” Proc. IEEE Visualization, 2002.

[42] Y. Wang, H. Bao, and Q. Peng, “Accelerated Walkthrough of
Virtual Environments Based on Visibility Preprocessing and
Simplification,” Computer Graphics Forum, vol. 17, no. 3, pp. C187-
C194, 1998.

[43] P. Wonka and D. Schmalstieg, “Occluder Shadows for Fast
Walkthroughs of Urban Environments,” Computer Graphics Forum
(Eurographics ’99), P. Brunet and R. Scopigno, eds., vol. 18, no. 3,
pp. 51-60, 1999.

[44] P. Wonka, M. Wimmer, and D. Schmalstieg, “Visibility Preproces-
sing with Occluder Fusion for Urban Walkthroughs,” Proc. 11th
Eurographics Rendering Workshop, June 2000.

[45] P. Wonka, M. Wimmer, and F. X. Sillion, “Instant Visibility,” Proc.
EG Computer Graphics Forum 2001, A. Chalmers and T.-M. Rhyne,
eds., vol. 20, no. 3, pp. 411-421, 2001.

[46] J. Xia and A. Varshney, “A Dynamic View-Dependent Simplifica-
tion for Polygonal Models,” Proc. IEEE Visualization, pp. 327-334,
1996.

[47] H. Zhang, D. Manocha, T. Hudson, and K. Hoff, “Visibility
Culling Using Hierarchical Occlusion Maps,” Proc. ACM SIG-
GRAPH, pp. 77-88, 1997.

Jatin Chhugani received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Delhi, in 1999.
He is a doctoral candidate in computer science
at Johns Hopkins University, Baltimore, Mary-
land. His primary research interests are in real-
time visualization, computational geometry, and
image processing.

Budirijanto Purnomo received the BS and MS
degrees in computer science from the Michigan
Technological University, Houghton, Michigan,
in 1999 and 2001. He is a doctoral candidate in
computer science at the Johns Hopkins Uni-
versity, Baltimore, Maryland. His research inter-
ests are in computer graphics, visualization, and
compiler optimization.

Shankar Krishnan received the BTech degree
in computer science from the Indian Institute of
Technology, Madras, and the MS and PhD
degrees from the University of North Carolina,
Chapel Hill. He is a member of the technical staff
at AT&T Labs Research in the Information
Visualization Department. His primary research
interests include 3D computer graphics, compu-
tational geometry, and hardware-assisted geo-
metric algorithms. He is a member of the ACM.

Jonathan Cohen received the PhD degree in
computer science from the University of North
Carolina at Chapel Hill in 1998 and the BA
degree in computer science and music from
Duke University in 1991. He is currently an
assistant professor of computer science at
Johns Hopkins University. He is most well-
known for his research in polygonal mesh
simplification. His general research interests
are in the areas of interactive 3D visualization,

geometric representation for 3D models, and parallel visualization
systems.

Suresh Venkatasubramanian received the
PhD degree from Stanford University in 1999
and has been at AT&T Labs-Research ever
since. His research is primarily in computational
geometry and algorithms and his recent work
focuses on the use of graphics rendering
devices to perform general purpose computa-
tions.

David S. Johnson received the PhD degree in
mathematics from the Massachusetts Institute of
Technology. He is head of the Algorithms and
Optimization Department at AT&T Labs-Re-
search. His research interests include the theory
of NP-completeness, approximation algorithms
for combinatorial problems, and the experimen-
tal analysis of algorithms. He is a fellow of the
ACM and a member of SIAM, INFORMS, and
the Mathematical Programming Society.

Subodh Kumar received the BTech degree in
computer science from the Indian Institute of
Technology, New Delhi, in 1991 and the MS and
PhD degrees from the University of North
Carolina, Chapel Hill, in 1993 and 1996. He is
on the faculty of Johns Hopkins University. His
primary research interests include Visualization,
3D computer graphics, and geometry proces-
sing. He is a member of the ACM and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHHUGANI ET AL.: VLOD: HIGH-FIDELITY WALKTHROUGH OF LARGE VIRTUAL ENVIRONMENTS 13

