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Abstract
Collision detection is essential for many applications in-
volving simulation, behavior and animation. However, it
has been regarded as a computationallydemanding task and
is often treated as an advanced feature. Most commonly
used commercial CAD/CAM packages and high perfor-
mance graphics libraries, such as SGI Performer, provide
limited support for collision detection. As users continue
to stretch the capabilities of VRML, collision detection will
soon become an indispensable capability for many appli-
cations. In this paper, we present a system for accelerated
and robust collision detection and describe its interface to
VRML browsers. We demonstrate that it is possible to
perform accurate collision detection at interactive rates in
VRML environments composed of large numbers of com-
plex moving objects.
CR Categories and Subject Descriptors: D.3.2 [Pro-
gramming Languages]: Language/Classifications — Vir-
tual Reality Modeling Language 2.0; I.3.1 [Computer
Graphics]: Graphics Systems — Distributed/Network
Graphics; I.5.3 [Computer Graphics]: Computational Ge-
ometry and Object Modeling
Additional Key Words and Phrases: Virtual Reality Mod-
eling Language (VRML), collision detection

1 Introduction

The VRML 2.0 specification calls for collision detection
to be performed between a volume surrounding an avatar’s
viewpoint and the scene geometry. However, this is only a
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small subset of the collision detection functionality useful
to VRML applications. In addition to aiding navigation,
collision detection is pivotal to simulating physics in vir-
tual environments or avatar behaviors in cyberspace [8, 13].
Applications currently under investigation, such as collab-
orative design of CAD/CAM models in distributed virtual
environments, require a realistic simulation that couples
collision detection and dynamic response.

The problem of collision detection has been explored in
the literature of computer graphics, robotics, computational
geometry, computer animation, and physically-based mod-
eling. Numerous approaches based on bounding boxes,
spatial partioning, geometric reasoning, numerical meth-
ods, and analytical methods have been proposed [3, 6, 7].
However, none of these algorithms or systems satisfies the
demanding requirements of general-purpose collision de-
tection in VRML browsers.

Main Contribution: In this paper, we present a system (V-
COLLIDE) for interactive collision detection among arbi-
trary polygonal models undergoing rigid motion in VRML
environments. We unify several techniques from previous
work in large-scale collision detection and hierarchical data
structures [4, 5], and propose a clean integration of the re-
sulting libraries with VRML 2.0 [2]. Our system offers a
practical toolkit for performing interactive and robust col-
lision detection in VRML environments.

Organization: In Section 2 of this paper, we describe the
desired characteristics of a collision detection system for
VRML applications. Section 3 presents the overall system
architecture, drawing from previous methods for collision
detection. We address the interface necessary between the
scene graph and the collision detection system. Section 4
discusses our prototype implementation. We specify a sim-
ple yet complete interface between a browser’s internals
and the collision detection library. We report our prelim-
inary results and analyze the performance of the system.
The paper concludes in section 5 with directions for possi-
ble future work, taking into consideration the evolution we
expect to see in the use of VRML.



2 Desiderata

Given the performance criteria (speed, functionality and
library interface) imposed by VRML environments, a col-

lision detection system must be:

●

●

●

3

Dynamic – A dynamic scene graph is the core of

VRML 2.0. Not only will the user’s viewpoint move
through the scene, but objects will move, and may
appear or disappear at any time. The data structures for
collision deteztion need to take this dynamic behavior
into account. Efficient maintenance of spatial data
structures in dynamic environments is still an open
research topic.

Interactive – VRML is an interactive environment de-
manding a high frame rate. At a minimum the browser
must perform collision detection between the avatar
and its surrounding environment, but it would also
be advantageous to detect collisions between arbitrary
objects in the scene. Most approaches in the litera-
ture lack the robustness or the real-time performance
required by VRML applications.

General – A scene will contain objects of arbitrary
topology. We should avoid assumptions about ob-
ject motion (bounds on velocity or acceleration, pre-
define trajectories), the geometry of objects (convex-
ity, solids, manifolds, other topological constraints),
or the richness and correctness of data structures
(winged-edge representations or “clean” geometry
free of degeneracies). The system itself should be
useful for applications not yet conceived, extendible
to distributed multiuser simulation, and portable.

System Architecture

In this section we describe the architecture of V-COLLIDE
and propose a method for the VRML scene graph to control
the collision detection library.

3.1 Hierarchical Approach

Our proposal takes a multi-level approach to the prob-
lem of collision detection, similar to that used in the I-
COLLIDE library [4]. A quick conservative approxima-
tion finds potentially-colliding pairs of objects among the
entire database (using the n-body sweep-ad-prune algo-
rithm from I-COLLIDE), after which a pairwise test taken
from RAPID [5] determines whether two objects marked
as overlapping actually collided. Figure 1 shows the archi-
tecture of our collision detection library, V-COLLIDE.

The first level of V-COLLIDE computes minimal a-nk-
aligned bounding boxes (AABBs) for every object in the
scene. The endpoints of these boxes are sorted into three
lists, one for each coordinate axis. As objects move, these

Figure ~: The system architecture of V-COLLIDE

lists must be re-sorted on every frame. We use insertion sort
to take advantage of the expected frame-to-frame coherence
in object positions. The complexity of performing this
sorting is thus proportional only to the number of moving
objects and the density of the neighborhoods through which
they move. Only pairs of objects whose bounding boxes
overlap in all three dimensions are passed to the pairwise
test module of the system.

The next level detects pairwise collisions. Our imple-
mentation computes a tree of oriented bounding boxes
(OBBS) for every object, with a box containing the entire
object as the root and boxes only containing one or a very
few primitives as the leaves. To check for collision between
a pair of objects, we can descend their OBB hierarchies to
find any leaf boxes which overlap, and then perform exact
intersection tests between the triangles in the overlapping
leaves. For efficient overlap tests of the boxes, we use the
separating axis theorem [5].

We use the OBB construction method from RAPID. A
top-down recursive approach partitions the primitives in a
box into two sub-boxes, based on the location of their cen-
ters. This partitioning is heuristic, is a lightweight approach
suitable for online computation, and gives reasonable re-
sults for collision detection.

Maintaining spatial hierarchies or p~itions over com-
plex, dynamic data is still an open research topic. Rather
than attempting to extend the OBB tree algorithms to han-
dle dynamic daa we concentrate on making OBB tree
construction sufficient y fast that when the contents of a
medium-sized tree change we can afford to destroy and
rebuild the tree.

3.2 VRML 2.0 Interface

Collision detection normally deals with geometric contacts
between two distinct objects. The geometric primies that

          



make up a single object are fixed in reference to one another,
and should not be tested for collision with one another.
However, the scene graph of a VRML file does not give us
any such differentiating information. It is impossible to tell
how a Group node’s children are related: by belonging to
the same object, by inheriting the same transform for pur-
poses of efficiency, or by some semantic criterion irrelevant
to rendering. We propose to use the type extensibility of
VRML 2.0 (the PROTO and EXTERNPROTO constructs)
to allow a scene graph to specify to the browser where these
divisions between the objects are.

We define the node type CollisionObject; it is similar to
the Collision node in the VRML 2.0 spec, but informs the
browser that the child geometry is a single object. The Col-
lisionObject has an extra eventOut, named collideObjects,
that signals which objects it hit at collideTime. The Colli-
sionObject also has extra eventIns, addIgnoredObjects and
removeIgnoredObjects, and an associated exposedField, ig-
noredObjects. These permit fine control over which pairs
of objects are tested for collisions: a node whose collide
field is TRUE defaults to testing against all other objects for
collisions, but will ignore those listed in its ignoredObjects
field.

The URN specification in our EXTERNPROTO (Fig-
ure 2) is a network-wideunique string followingthe naming
conventions of the URN namespace[12]. It indicates unam-
biguously to a browser with a conforming collision detec-
tion implementation that this is our CollisionObject node,
version 1. For browsers that do not recognize the URN, the
alternate implementation of CollisionObject (Figure 3) is as
a Collision node, with the extra fields and events ignored.

The drawback to embedding this information in the
VRML file, is that using the ignoredObjects field requires
some awkward circumlocutions, shown in Figure 4. VRML
has no facility for forward references, and since we may
have n objects which need to reference one another, it be-
comes necessary to nest their declarations up to n levels
deep. The alternative is to use the initialize() method of a
Java script or equivalent functionality to set up the ignore-
dObjects fields when the file is loaded.

4 Implementation

We have developed the V-COLLIDE library and designed
an interface from the library to VRML browsers. A simple
viewing program – not a full-fledged VRML 2.0 browser –
has been used to test the functionality and performance of
our implementation.

4.1 External Interface

Our library interfaces to the browser with a simple API, tai-
lored to expected VRML requirements. This API is given
in Table 1. Each object is added to the collision detection
database by calling col create object(), col add triangle()

EXTERNPROTO CollisionObject
[ eventIn MFNode addChildren
eventIn MFNode removeChildren
eventIn MFNode addIgnoredObjects
eventIn MFNode removeIgnoredObjects
exposedField MFNode children
exposedField MFNode ignoredObjects
exposedField SFBool collide
field SFVec3f bboxCenter
field SFVec3f bboxSize
field SFNode proxy
eventOut SFTime collideTime
eventOut MFNode collideObjects ]

{ "URN:edu.unc.cs:geom:CollisionObject:1"
"http://www.cs.unc.edu/˜geom/
V_COLLIDE/CollisionObject.wrl" }

Figure 2: EXTERNPROTO for CollisionObject

for each triangle contained in a tessellation, and then
col finish object(). These objects may be CollisionObjects
specified in the scene graph, subobjects created as on-the-fly
optimizations by the browser to spatially partition the scene
geometry, or the radius around the avatar specified by the
currently bound NavigationInfo to detect avatar collisions
with the scene.

Calling col finish object() builds (or rebuilds) the OBB
tree. Rebuilding is necessary if the geometry is modified
by calling col add triangle(). The interface currently does
not have access to the triangles of an object at a level low
enough to morph or distort portions of the object; if this
is necessary, the browser must call col clear object() and
rebuild it from scratch.

Once the objects are represented in the collision
detection library’s data structures, the browser calls
col update transform() to update the position and rotation
of any object, then col test() to perform collision detec-
tion. If collision detection is only being used for navi-
gation, as required by the specification, the browser only
needs to check the return value of col report collision() to
determine if the movement in that frame occurs without
running into other geometry. If collision detection is be-
ing used for more complex applications, the browser will
have to generate collideTime and collideObjects events. To
do this, the browser needs to get the set of reports gener-
ated by col report collision() to figure out which pairs of
CollisionObjects actually collided.

Automated handling of LOD or Switch nodes seems to
require pushing scene graph semantics down into the col-
lision detection routines, at the cost of code complexity.
The future work section sketches possible extensions to the
interface for this purpose. A method under the current in-
terface lets the browser “manually” control these nodes:



col open initialize collision detection library
col create object add a collidable object
col add triangle add a triangle to an object
col finish object build the OBB hierarchy for an object
col clear object destroy an object’s geometry
col delete object delete a collidable object
col activate turn on collision detection for an object
col deactivate turn off all collision detection for an object
col activate pair turn on collision detection between two objects
col deactivate pair turn off collision detection between two objects
col update transform transform (rigidly) an object
col test perform collision detection
col report collision report collisions

Table 1: Collision Detection Library Interface

make a separate col add object() call for each child, and
use col deactivate() and col activate() to notify the colli-
sion detection library when the Switch’s whichChoice field
changes or the LOD moves into a new range. This means
the browser is responsible for synchronizing the pairwise
activation of all the children of the node. For LOD nodes,
an alternate approach exists: add only the most complex
of the children to the collision detection scheme. This will
only be a computational overhead when a collision or near-
miss occurs, and will be necessary in physical simulations,
where distant objects use a simple geometry for rendering
but must use fully detailed geometry for their interactions
with other objects.

Every time the VRML scene graph causes the browser
to generate a collide changed event, the browser will need
to call col activate() or col deactivate() for the appropriate
objects. Finer control of collision checking may be neces-
sary for more advanced uses. Our collisionObject allows
entities in the scene graph to precisely control which ob-
jects are checked for collision using col activate pair() and
col deactivate pair().

The browser also needs to take action when a new Nav-
igationInfo node is bound or an avatarSize changed event
is generated by the currently bound NavigationInfo. The
object in the collision detection database that represents the
user’s viewpoint may need to be scaled according to the
avatarSize field’s first value. This can be done by deleting
the object’s geometry and rebuilding it at the proper size.

4.2 Internals

V-COLLIDE unifies the framework of the I-COLLIDE and
RAPID systems. Then-body “Sweep and Prune” algorithm
for filtering collisions among large numbers of objects sits
at the top level of the collision detection routines, with
an oriented bounding box (OBB) hierarchy providing pair-
wise exact contact determination for objects underneath.

I-COLLIDE’s pairwise collision test depends on the Lin-
Canny algorithm for exact collision detection, which is cor-
rect only for convex objects or union(s) of convex pieces.
Decomposing arbitrary models into convex pieces is dif-
ficult; users of packages like I-COLLIDE have had to do
this as a preprocess in the past [9], but this decomposition is
impractical to perform in real-time. RAPID assumes inputs
are triangulated polygonal models. Rather than extending
RAPID’s OBB hierarchy to handle VRML’s cones, spheres,
and cylinders, we require the library caller to tessellate the
solids within the (user-specified) tolerance desired for colli-
sion detection. It would be possible to extend V-COLLIDE
to handle curved surfaces exactly. However, this could sig-
nificantly increase system complexity, as we would need
accurate and robust pairwise tests among all primitive types
– an O(n2) problem. Our goal has been to keep the system
architecture simple and elegant.

4.3 System Performance

There are three concerns when adding an extension to
VRML: rendering speed, memory requirements, and im-
plementation complexity. When no near-collisions occur,
the cost is merely traversals of three lists linear in the Col-
lisionObject complexity of the scene.

Since we did not have source-code access to any VRML
2.0 browsers, it was impossible to perform a test integra-
tion of our library. We have tested the performance of V-
COLLIDE with a stand-alone, multi-bodysimulation. Sev-
eral polygonal bunny rabbits bounce around inside a cubical
volume, with simplistic rules to determine how they react
to collisions with each other and the walls of the simulation
volume. Graph 1 shows how the average frame time for the
simulation is affected by increasing the number of bunny
models in the simulation, keeping all other parameters fixed
(including a measure of the “density” of the simulation). At
50 bunnies, one frame worth of collision detection requires



PROTO CollisionObject
[ eventIn MFNode addChildren
eventIn MFNode removeChildren
eventIn MFNode addIgnoredObjects
eventIn MFNode removeIgnoredObjects
exposedField MFNode children []
exposedField MFNode ignoredObjects []
exposedField SFBool collide TRUE
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 -1 -1
field SFNode proxy NULL
eventOut SFTime collideTime
eventOut MFNode collideObjects ] {

Collision {
addChildren IS addChildren
removeChildren IS removeChildren
children IS children
collide IS collide
bboxCenter IS bboxCenter
bboxSize IS bboxSize
proxy IS proxy
collideTime IS collideTime

}

Group {
children IS collideObjects

}

Group {
addChildren IS addIgnoredObjects
removeChildren IS removeIgnoredObjects
children IS ignoredObjects

}
}

Figure 3: PROTO for CollisionObject, stored at
http://www.cs.unc.edu/˜geom/V COLLIDE/CollisionObject.wrl

DEF FOO CollisionObject {
...
ignoredObjects [
DEF BAR CollisionObject {
...
ignored Objects [ USE FOO ]

}
]

}
USE BAR

Figure 4: Declaring a pair of CollisionObjects which ignore
one another

Figure 5: System performance: linear in number of collisions

33 miliseconds (Figure 5). For this graph, we ran our tim-
ing tests on an HP 735/125. Each bunny is comprised of
575 triangular faces, meaning our 50-bunny test contains
28,750 polygons – more than one would expect in a typical
VRML scene. The bunnies move at velocities fast enough
to make the test meaningful.

Our prototype of V-COLLIDE uses considerable
amounts of memory. There are two components to the
memory cost: the n-body algorithm, and the pairwise al-
gorithm. For n-body collision detection, we have an array
of n2 entries that contains between 4 and 30 bytes per entry
(depending on whether collision detection for the pair of
objects represented by that array entry is active or inactive),
and 118 bytes per object. The pairwise algorithm currently
costs nearly 400 bytes per triangle in the model.

Both of these costs can be reduced. A space-optimized
version of the n-body code has the same 118 bytes per ob-
ject, a sparse array requiring between 8n and 4n2 bytes,
and only a further 21 bytes per active, overlapping (ap-
proximately colliding) pair of objects. The OBB code can
be made to cost roughly 100 bytes per triangle. These
economies should cause little performance degredation for
the n-body algorithm, and a worst-case 25% slowdown
during the pairwise tests.

The V-COLLIDE prototype grafts together two pieces of
library code; both pieces are well documented and well-
tested by public release to the several user communities.
The interface has been simplified to match the needs of a
VRML browser, so integration should require no knowledge
of the underlying code. Some complexity will necessar-
ily be added to a browser interfacing with CollisionObject
nodes, but this should be localized.



4.4 Optimization

The database will sometimes contain CollisionObjects
that are extremely large. Large bounding boxes containing
much empty space unnecessarily degrade the performance
of the n-body algorithm, since they increase the number
of pairwise tests that will be performed. To avoid this, a
browser can attempt to automatically decompose a Col-
lisionObject - or geometry that has not been tagged as
belonging to a particular CollisionObject - into multiple
subobjects for collision purposes. We can prevent these
subobjects from being meaninglessly tested against one an-
other using col deactivate pair(). To decompose geometry
into CollisionObjects, it is sufficient to note that two Shape
nodes which are not separated by a Transform’s parent are
rigid with respect to one another, and so cannot collide with
one another. Thus, as long as each Transform node belongs
to a different CollisionObject than its siblings, correct col-
lision detection can easily be maintained.

5 Future Work

A modification of the pairwise collision test permits us to
obtain a conservative distance measure between two objects
– at some cost to the speed of the test. This would enable
us to provide a good approximated distance metric that
might be more useful in some situations than the simple
approximations commonly used today, such as the distance
between objects’ bounding box centers. (See Table 2)

The underlying OBB tree implementation assumes tri-
angulated polygonal models; to handle VRML’s spheres,
cones, and cylinders exactly requires extensions to the code
and API. Reasonable algorithms from the literature perform
accurate and efficient collision between these primitives.
However, adding these extensions would complicate the
exact primitive intersection test module. Alternately, we
could allow the user to specify the error bound and do a tri-
angulation inside our library, taking advantage of the known
structure of the collision detection algorithm to reduce the
necessary number of tests.

The time required to build a reasonable OBB hierarchy
is not negligible. We currently pause briefly on loading a
model in order to build its hierarchy; this pause is substan-
tial when model sizes approach the hundreds of thousands
of polygons. (On a 250 MHz R4400 CPU, we need 1.5 sec-
onds to build a tree of 45000 polygons.) Our work would
benefit greatly from faster methods for building these trees
well. It would also be useful to make the data structures
of OBB trees more adaptable, allowing us to more easily
handle changing geometry.

LOD and Switch nodes need to have their child-selection
behavior reported to the collisiondetection library. It would
be possible to move some of this intelligence down into the
library, in which case the browser would need a path to
tell the collision detection routines which of the node’s

children is currently active, so that it knows which node to
test against. Unfortunately we would be evolving toward
maintaining a copy of the entire scene graph within the
collision detection library.

For each collision, V COLLIDE reports only the ob-
jects involved. It would be possible to specify which faces
of which geometry nodes were involved in the collision,
but this would increase the memory footprint of our data
structures and would require a more densely scripted envi-
ronment.

With distributed simulation or multiuser use of VRML,
distributed protocols come into play [1, 10, 11]. In any
situation without a globally consistent state at all browsers,
collision detection, like any other object-object interaction
mechanism, will have to be given a great deal of thought.
Most schemes proposed for seamlessly distributing VRML
involve a spatial partition. The collision detection system
can be extended to monitor only the local environment, thus
increasing the scalability of simulations.
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