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Abstract

Collision detection is essential for many applications in-
volving simulation, behavior and animation. However, it
has been regarded as acomputationally demanding task and
is often treated as an advanced feature. Most commonly
used commercia CAD/CAM packages and high perfor-
mance graphics libraries, such as SGI Performer, provide
limited support for collision detection. As users continue
to stretch the capabilitiesof VRML, collisiondetectionwill
soon become an indispensable capability for many appli-
cations. In this paper, we present a system for accelerated
and robust collision detection and describe its interface to
VRML browsers. We demonstrate that it is possible to
perform accurate collision detection at interactive rates in
VRML environments composed of large numbers of com-
plex moving objects.

CR Categories and Subject Descriptors. D.3.2 [Pro-
gramming L anguages]: Language/Classifications— Vir-
tua Redlity Modeling Language 2.0; 1.3.1 [Computer
Graphics]: Graphics Systems — Distributed/Network
Graphics; 1.5.3[Computer Graphics]: Computationa Ge-
ometry and Object Modeling

Additional Key Wordsand Phrases: Virtua Reality Mod-
eling Language (VRML), collision detection

1 [Introduction
The VRML 2.0 specification calls for collision detection

to be performed between a volume surrounding an avatar's
viewpoint and the scene geometry. However, thisisonly a
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small subset of the collision detection functionality useful
to VRML applications. In addition to aiding navigation,
collision detection is pivotal to simulating physics in vir-
tual environmentsor avatar behaviorsin cyberspace [8, 13].
Applications currently under investigation, such as collab-
orative design of CAD/CAM models in distributed virtual
environments, require a realistic simulation that couples
collision detection and dynamic response.

The problem of collision detection has been explored in
theliteratureof computer graphics, robotics, computational
geometry, computer animation, and physically-based mod-
eling. Numerous approaches based on bounding boxes,
gpatia partioning, geometric reasoning, numerical meth-
ods, and andytical methods have been proposed [3, 6, 7].
However, none of these algorithms or systems satisfies the
demanding requirements of general-purpose collision de-
tectionin VRML browsers.

Main Contribution: Inthispaper, we present asystem (V-
COLLIDE) for interactive collision detection among arbi-
trary polygona models undergoing rigid motionin VRML
environments. We unify several techniques from previous
work inlarge-scale collisiondetection and hierarchical data
structures [4, 5], and propose a clean integration of the re-
sulting librarieswith VRML 2.0 [2]. Our system offers a
practical toolkit for performing interactive and robust col-
lision detectionin VRML environments.

Organization: In Section 2 of this paper, we describe the
desired characteristics of a collision detection system for
VRML applications. Section 3 presents the overall system
architecture, drawing from previous methods for collision
detection. We address the interface necessary between the
scene graph and the collision detection system. Section 4
discusses our prototypeimplementation. We specify asim-
ple yet complete interface between a browser’s internas
and the collision detection library. We report our prelim-
inary results and analyze the performance of the system.
The paper concludesin section 5 with directionsfor possi-
ble futurework, taking into consideration the evolution we
expect to seein the use of VRML.



2 Desiderata

Given the performance criteria (speed, functionality and
library interface) imposed by VRML environments, a col-
lision detection system must be:

¢ Dynamic — A dynamic scene graph is the core of
VRML 2.0. Not only will the user’s viewpoint move
through the scene, but objects will move, and may
appear or disappear at any time. The data structures for
collision detection need to take this dynamic behavior
into account. Efficient maintenance of spatial data
structures in dynamic environments is still an open
research topic.

¢ Interactive— VRML is an interactive environment de-
manding a high frame rate. Ata minimum the browser
must perform collision detection between the avatar
and its surrounding environment, but it would also
be advantageous to detect collisions between arbitrary
objects in the scene. Most approaches in the litera-
ture lack the robustness or the real-time performance
required by VRML applications.

o General — A scene will contain objects of arbitrary
topology. We should avoid assumptions about ob-
ject motion (bounds on velocity or acceleration, pre-
defined trajectories), the geometry of objects (convex-
ity, solids, manifolds, other topological constraints),
or the richness and correctness of data structures
(winged-edge representations or “clean” geometry
free of degeneracies). The system itself should be
useful for applications not yet conceived, extendible
to distributed multiuser simulation, and portable.

3 System Architecture

In this section we describe the architecture of V-COLLIDE
and propose a method for the VRML scene graph to control
the collision detection library.

3.1 Hierarchical Approach

Qur proposal takes a multi-level approach to the prob-
lem of collision detection, similar to that used in the I-
COLLIDE library {4]. A quick conservative approxima-
tion finds potentially-colliding pairs of objects among the
entire database (using the n-body sweep-and-prune algo-
rithm from I-COLLIDE), after which a pairwise test taken
from RAPID [5] determines whether two objects marked
as overlapping actually collided. Figure 1 shows the archi-
tecture of our collision detection library, V-COLLIDE.
The first level of V-COLLIDE computes minimal axis-
aligned bounding boxes (AABBs) for every object in the
scene. The endpoints of these boxes are sorted into three
lists, one for each coordinate axis. As objects move, these
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Figure 1: The system architecture of V-COLLIDE

lists must be re-sorted on every frame. We use insertion sort
to take advantage of the expected frame-to-frame coherence
in object positions. The complexity of performing this
sorting is thus proportional only to the number of moving
objects and the density of the neighborhoods through which
they move. Only pairs of objects whose bounding boxes
overlap in all three dimensions are passed to the pairwise
test module of the system.

The next level detects pairwise collisions. Our imple-
mentation computes a tree of oriented bounding boxes
(OBBs) for every object, with a box containing the entire
object as the root and boxes only containing one or a very
few primitives as the leaves. To check for collision between
a pair of objects, we can descend their OBB hierarchies to
find any leaf boxes which overlap, and then perform exact
intersection tests between the triangles in the overlapping
leaves. For efficient overlap tests of the boxes, we use the
separating axis theorem [5].

We use the OBB construction method from RAPID. A
top-down recursive approach partitions the primitives in a
box into two sub-boxes, based on the location of their cen-
ters. This partitioningis heuristic, is a lightweightapproach
suitable for online computation, and gives reasonable re-
sults for collision detection.

Maintaining spatial hierarchies or partitions over com-
plex, dynamic data is still an open research topic. Rather
than attempting to extend the OBB tree algorithms to han-
dle dynamic data, we concentrate on making OBB tree
construction sufficiently fast that when the contents of a
medium-sized tree change we can afford to destroy and
rebuild the tree.

3.2 VRML 2.0 Interface

Collision detection normally deals with geometric contacts
between two distinct objects. The geometric primitives that



make up asingleobject arefixed in reference to oneanother,
and should not be tested for collision with one another.
However, the scene graph of a VRML file does not give us
any such differentiatinginformation. Itisimpossibletotell
how a Group node's children are related: by belonging to
the same object, by inheriting the same transform for pur-
poses of efficiency, or by some semantic criterionirrel evant
to rendering. We propose to use the type extensihility of
VRML 2.0 (the PROTO and EXTERNPROTO constructs)
to alow ascene graph to specify to the browser where these
divisions between the objects are.

We define the node type CollisionObject; it is similar to
the Collision node in the VRML 2.0 spec, but informs the
browser that the child geometry isasingle object. The Col-
lisionObject has an extra eventOut, named collideObjects,
that signas which objects it hit at collideTime. The Colli-
sionObject a so has extra eventIns, addlgnoredObjects and
removel gnoredObj ects, and an associated exposedField, ig-
noredObjects. These permit fine control over which pairs
of objects are tested for collisions: a node whose collide
fieldisTRUE defaultsto testing against all other objectsfor
collisions, but will ignorethoselisted initsignoredObjects
field.

The URN specification in our EXTERNPROTO (Fig-
ure 2) isanetwork-wideuniquestring followingthe naming
conventions of the URN namespace[12]. It indicates unam-
biguously to a browser with a conforming collision detec-
tion implementation that thisis our CollisionObject node,
version 1. For browsersthat do not recognize the URN, the
alternateimplementation of CollisionObject (Figure3) isas
a Collision node, with the extrafields and events ignored.

The drawback to embedding this information in the
VRML file, isthat using the ignoredObjects field requires
someawkward circumlocutions, showninFigure4. VRML
has no facility for forward references, and since we may
have n objects which need to reference one another, it be-
comes necessary to nest their declarations up to n levels
deep. The dternative isto use the initialize() method of a
Java script or equivalent functionality to set up the ignore-
dObjects fields when thefile isloaded.

4 Implementation

We have developed the V-COLLIDE library and designed
an interface fromthelibrary to VRML browsers. A simple
viewing program —not a full-fledged VRML 2.0 browser —
has been used to test the functionality and performance of
our implementation.

4.1 External Interface

Our library interfacesto the browser withasimple AP, tai-
lored to expected VRML requirements. This API isgiven
in Table 1. Each object is added to the collision detection
database by calling col _create_object(), col_add-triangle()

EXTERNPROTO Col |'i si onObj ect
[ eventln MFNode addChil dren

eventl n M-Node renoveChil dren
event | n M-Node addl gnor edhj ect s
event | n M-Node renovel gnoredCbj ects
exposedFi el d MFNode chil dren
exposedFi el d MFNode i gnoredj ects
exposedFi el d SFBool collide
field SFVec3f bboxCenter
field SFVec3f bboxSize
field SFNode proxy
event Qut SFTine col lideTinme
event Qut MFNode col | i deCbj ects ]

{ "URN: edu. unc. cs: geom Col I i si onChj ect:

“http://ww.cs. unc. edu/ " geont
V_COLLI DE/ Col | i si onObj ect.wr| " }

Figure 2: EXTERNPROTO for CollisionObject

for each triangle contained in a tessdllation, and then
col _finish_object(). These objects may be CollisionObjects
specifiedinthescenegraph, subobjectscreated ason-the-fly
optimizationsby the browser to spatially partitionthe scene
geometry, or the radius around the avatar specified by the
currently bound Navigationlnfo to detect avatar collisions
with the scene.

Cadlling col _finish_object() builds (or rebuilds) the OBB
tree. Rebuilding is necessary if the geometry is modified
by calling col _add_triangle(). The interface currently does
not have access to the triangles of an object at alevel low
enough to morph or distort portions of the object; if this
is necessary, the browser must call col _clear_object() and
rebuild it from scratch.

Once the objects are represented in the collision
detection library’s data structures, the browser cals
col _update transform() to update the position and rotation
of any object, then col_test() to perform collision detec-
tion. If collision detection is only being used for navi-
gation, as required by the specification, the browser only
needs to check the return value of col _report_collision() to
determine if the movement in that frame occurs without
running into other geometry. If collision detection is be-
ing used for more complex applications, the browser will
have to generate collideTime and collideObjectsevents. To
do this, the browser needs to get the set of reports gener-
ated by col_report_collision() to figure out which pairs of
CollisionObjectsactually collided.

Automated handling of LOD or Switch nodes seems to
require pushing scene graph semantics down into the col-
lision detection routines, at the cost of code complexity.
The futurework section sketches possible extensionsto the
interface for this purpose. A method under the current in-
terface lets the browser “manually” control these nodes:
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col_open

initialize collision detection library

col _create_object
col_add_triangle
col _finish_obj ect
col _clear _object

col_delete object

add a collidabl e object

add atriangleto an object

build the OBB hierarchy for an object
destroy an object’s geometry

delete a collidabl e object

col _activate
col_deactivate
col_activate_pair
col_deactivate_pair

turn on collision detection for an object

turn off al collision detection for an object
turn on collision detection between two objects
turn off collision detection between two objects

col_update_transform
col _test
col_report_collision

transform (rigidly) an object
perform collision detection
report collisions

Table 1: Collision Detection Library Interface

make a separate col_add_object() call for each child, and
use col _deactivate() and col _activate() to notify the colli-
sion detection library when the Switch’swhichChoicefield
changes or the LOD moves into a new range. This means
the browser is responsible for synchronizing the pairwise
activation of all the children of the node. For LOD nodes,
an dternate approach exists: add only the most complex
of the children to the collision detection scheme. Thiswill
only be acomputationa overhead when acollision or near-
miss occurs, and will be necessary in physical smulations,
where distant objects use a ssmple geometry for rendering
but must use fully detailed geometry for their interactions
with other objects.

Every time the VRML scene graph causes the browser
to generate a collide_changed event, the browser will need
to call col_activate() or col _deactivate() for the appropriate
objects. Finer control of collision checking may be neces-
sary for more advanced uses. Our collisionObject allows
entities in the scene graph to precisaly control which ob-
jects are checked for collision using col _activate_pair() and
col _desctivate_pair().

The browser also needs to take action when anew Nav-
igationinfo node is bound or an avatar S ze_changed event
is generated by the currently bound Navigationinfo. The
object in the collision detection database that representsthe
user’s viewpoint may need to be scaled according to the
avatarSze field'sfirst value. This can be done by deleting
the object’sgeometry and rebuildingit at the proper size.

4.2 Internals

V-COLLIDE unifiestheframework of thel-COLLIDE and
RAPID systems. Then-body “ Sweep and Prune” agorithm
for filtering collisions among large numbers of objects sits
a the top level of the collision detection routines, with
an oriented bounding box (OBB) hierarchy providing pair-
wise exact contact determination for objects underneath.

I-COLLIDE's pairwise collision test depends on the Lin-
Canny agorithmfor exact collision detection, whichis cor-
rect only for convex objects or union(s) of convex pieces.
Decomposing arbitrary models into convex pieces is dif-
ficult; users of packages like I-COLLIDE have had to do
thisasapreprocessinthe past [9], but thisdecompositionis
impractical to performinreal-time. RAPID assumes inputs
are triangulated polygona models. Rather than extending
RAPID’sOBB hierarchy tohandleVRML's cones, spheres,
and cylinders, we require the library caller to tessellate the
solidswithinthe (user-specified) tolerance desired for colli-
sion detection. It would be possibleto extend V-COLLIDE
to handle curved surfaces exactly. However, thiscould sig-
nificantly increase system complexity, as we would need
accurate and robust pairwisetestsamong all primitivetypes
—an O(n?) problem. Our goa has been to keep the system
architecture simple and el egant.

4.3 System Performance

There are three concerns when adding an extension to
VRML: rendering speed, memory requirements, and im-
plementation complexity. When no near-collisions occur,
the cost is merely traversals of threelistslinear in the Col-
lisionObject complexity of the scene.

Since we did not have source-code access to any VRML
2.0 browsers, it was impossible to perform a test integra-
tion of our library. We have tested the performance of V-
COLLIDE with astand-a one, multi-body simulation. Sev-
era polygonal bunny rabbitsbounce aroundinsideacubical
volume, with simplistic rules to determine how they react
to collisionswith each other and thewallsof thesimulation
volume. Graph 1 showshow the average frame timefor the
simulation is affected by increasing the number of bunny
modelsinthesimulation, keeping all other parametersfixed
(includingameasure of the“density” of thesimulation). At
50 bunnies, one frame worth of collision detection requires



PROTO Col |'i si onObj ect
[ eventln MFNode addChil dren

eventl n M-Node renoveChil dren
event | n M-Node addl gnoredObj ects
event | n M-Node renovel gnoredObj ects
exposedFi el d MFNode children []
exposedFi el d M-Node i gnoredhjects []
exposedFi el d SFBool collide TRUE
field SFVec3f bboxCenter 0 0 O
field SFVec3f bboxSize -1 -1 -1
field SFNode proxy NULL
event Qut SFTinme col lideTi ne
event Qut MFNode col |ideObjects ] {

Col I'i sion {
addChildren IS addChi | dren
renmoveChildren |'S renoveChil dren
children IS children
collide IS collide
bboxCenter |S bboxCenter
bboxSi ze | S bboxSi ze
proxy |S proxy
collideTine IS collideTinme

}

Group {
children IS collidethjects

}

Group {
addChi l dren IS addl gnoredObj ects

renoveChildren | S renpvel gnoredhj ect s

children IS i gnoredhjects

}
}

Figure 3: PROTO for CollisionObject, stored at
http: /Amwww.cs.unc.edu/~"geomVV_COLLIDE/CollisionObject.wrl

DEF FOO Col I'i si onCbj ect {

i gnoredbj ects |
DEF BAR Col I i si onhj ect {

i gnored Objects [ USE FQOO ]
}
]
}
USE BAR

Figure 4: Declaring a pair of CollisionObjects which ignore
one another

Figure 5: System performance: linear in number of collisions

33 miliseconds (Figure 5). For this graph, we ran our tim-
ing tests on an HP 735/125. Each bunny is comprised of
575 triangular faces, meaning our 50-bunny test contains
28,750 polygons— more than one would expect in atypica
VRML scene. The bunnies move at velocities fast enough
to make the test meaningful.

Our prototype of V-COLLIDE uses considerable
amounts of memory. There are two components to the
memory cost: the n-body agorithm, and the pairwise al-
gorithm. For n-body collision detection, we have an array
of n? entriesthat contains between 4 and 30 bytes per entry
(depending on whether collision detection for the pair of
objectsrepresented by that array entry isactive or inactive),
and 118 bytes per object. The pairwise agorithm currently
costs nearly 400 bytes per trianglein the model.

Both of these costs can be reduced. A space-optimized
version of the n-body code has the same 118 bytes per ob-
ject, a sparse array requiring between 8n and 4n? bytes,
and only a further 21 bytes per active, overlapping (ap-
proximately colliding) pair of objects. The OBB code can
be made to cost roughly 100 bytes per triangle. These
economies should cause little performance degredation for
the n-body agorithm, and a worst-case 25% slowdown
during the pairwise tests.

The V-COLLIDE prototype graftstogether two pieces of
library code; both pieces are well documented and well-
tested by public release to the several user communities.
The interface has been simplified to match the needs of a
VRML browser, sointegration should requireno knowledge
of the underlying code. Some complexity will necessar-
ily be added to a browser interfacing with CollisionObject
nodes, but this should be localized.



4.4 Optimization

The database will sometimes contain CollisionObjects
that are extremely large. Large bounding boxes containing
much empty space unnecessarily degrade the performance
of the n-body algorithm, since they increase the number
of pairwise tests that will be performed. To avoid this, a
browser can attempt to automatically decompose a Col-
lisonObject - or geometry that has not been tagged as
belonging to a particular CollisionObject - into multiple
subobjects for collision purposes. We can prevent these
subobjectsfrom being meaninglessly tested against one an-
other using col_deactivate_pair(). To decompose geometry
into CollisionObjects, it is sufficient to note that two Shape
nodes which are not separated by a Transform’s parent are
rigid with respect to oneanother, and so cannot collidewith
one another. Thus, aslong as each Transform node belongs
to adifferent CollisionObject than its siblings, correct col-
lision detection can easily be maintained.

5 FutureWork

A modification of the pairwise collision test permits us to
obtai n aconservative di stance measure between two obj ects
— at some cost to the speed of the test. Thiswould enable
us to provide a good approximated distance metric that
might be more useful in some situations than the simple
approximations commonly used today, such as the distance
between objects’ bounding box centers. (See Table 2)

The underlying OBB tree implementation assumes tri-
angulated polygona models; to handle VRML's spheres,
cones, and cylindersexactly requires extensionsto the code
and API. Reasonablea gorithmsfromtheliteratureperform
accurate and efficient collision between these primitives.
However, adding these extensions would complicate the
exact primitive intersection test module. Alternately, we
could allow the user to specify the error bound and do atri-
angulationinsideour library, taking advantage of theknown
structure of the collision detection algorithm to reduce the
necessary number of tests.

The time required to build a reasonable OBB hierarchy
is not negligible. We currently pause briefly on loading a
model in order to build itshierarchy; this pause is substan-
tial when model sizes approach the hundreds of thousands
of polygons. (On a250 MHz R4400 CPU, we need 1.5 sec-
onds to build a tree of 45000 polygons.) Our work would
benefit greatly from faster methods for building these trees
well. It would also be useful to make the data structures
of OBB trees more adaptable, alowing us to more easily
handl e changing geometry.

LOD and Switch nodes need to have their child-selection
behavior reported to thecollisiondetection library. It would
be possibleto move some of thisintelligence down into the
library, in which case the browser would need a path to
tell the collision detection routines which of the node's

children is currently active, so that it knows which nodeto
test against. Unfortunately we would be evolving toward
maintaining a copy of the entire scene graph within the
collision detection library.

For each collision, V_COLLIDE reports only the ob-
jectsinvolved. It would be possible to specify which faces
of which geometry nodes were involved in the collision,
but this would increase the memory footprint of our data
structures and would require a more densely scripted envi-
ronment.

With distributed simulation or multiuser use of VRML,
distributed protocols come into play [1, 10, 11]. In any
situation without a globally consistent state at all browsers,
collision detection, like any other object-object interaction
mechanism, will have to be given a great dedl of thought.
Most schemes proposed for seamlessly distributing VRML
involve a spatia partition. The collision detection system
can be extended to monitor only thelocal environment, thus
increasing the scal ability of smulations.
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