
A Framework for the Real-Time Walkthrough of Massive Models 1

A Framework for the Real-Time Walkthrough of Massive Models
D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff, T. Hudson, W. Stuerzlinger,

E. Baker, R. Bastos, M. Whitton, F. Brooks, D. Manocha

UNC TR# 98-013
Computer Science Department

University of North Carolina at Chapel Hill

ABSTRACT
We present a framework for rendering very large 3D models at
nearly interactive rates. The framework scales with model size.
Our framework can integrate multiple rendering acceleration
techniques, including visibility culling, geometric levels of detail,
and image-based approaches. We describe the database
representation scheme for massive models used by the framework.
We provide an effective pipeline to manage the allocation of
system resources among different techniques. We demonstrate
the system on a model of a coal-fired power plant composed of
more than 15 million triangles.

CR Categories and Subject Headings: H.2 – Database
Management, I.3.3 – Picture/Image Generation (Display
Algorithms), I.3.4 – Graphics Utilities (Application packages),
I.3.6 – Methodology and Techniques (Graphics data structures),
I.3.7 – Three-Dimensional Graphics and Realism (Virtual reality),
J.2 – Physical Sciences and Engineering (Engineering), J.6 –
Computer-Aided Engineering (Computer-aided design)

Keywords: interactive walkthrough, framework, scalability,
massive models, visibility culling, occlusion culling, levels of
detail, image-based rendering, database prefetching.

1 INTRODUCTION
Computer-aided design (CAD) applications and scientific
visualizations often need user-steered interactive displays
(walkthroughs) of very complex environments. Structural and
mechanical designers often create models of ships, oil platforms,
spacecraft, and process plants whose complexity exceeds the
interactive visualization capabilities of current graphics systems.
Yet for such structures the design process, and especially the
multidisciplinary design review process, benefits greatly from
interactive walkthroughs.

Ideally, such a walkthrough needs to maintain a frame rate of at
least 20 frames per second to avoid jerkiness. Many such massive
CAD databases contain millions of primitives, and even high-end
systems such as the SGI Infinite Reality Engine cannot render
them interactively. Moreover, we observe model sizes to be
increasing faster than hardware rendering capabilities.

A few years ago, as part of a simulation-based design team, we
needed to do a real-time walkthrough of such a model, a single
ship compartment modeled as some 750,000 triangles. We
determined to attack this problem and for two years investigated
many different known and new algorithmic approaches for
accelerating rendering. Such techniques had already been
extensively studied in computer graphics, computational
geometry, and computer vision.

The principle for the ideal algorithmic approach is simple: Do not
even attempt to render any geometry that the user will not
ultimately see. Such techniques cull a primitive before sending it

to the rendering pipeline if, for example, it is outside the view
frustum, facing away from the viewpoint, too small or distant to
be noticed, occluded by objects, or satisfactorily shown as a detail
in a painted texture rather than as geometry. Whereas each
algorithmic technique by itself reduces the number of rendered
primitives, no one technique suffices for interactive walkthroughs
of most massive models (more than one million primitives).
Moreover, each technique achieves great speedups only for
particular subsets of the primitives (e.g. distant ones, coplanar
ones, models with high depth complexity). Any general system
for interactive walkthroughs needs to integrate many such
techniques.

Choosing a 15-million-triangle model of a coal-fired electric
power plant (Image 1) as our challenge model and driving
problem, we have built a scalable framework for integrating many
such techniques, and achieved frame rates of 5-15 frames per
second for that model on an SGI Onyx with Infinite Reality
graphics.

We have pursued the following goals:

• Interactivity. We aim at 20 frames per second.

• Modularity. We want to be able to incorporate and be able
to substitute a variety of acceleration techniques into the
framework.

• Automaticity. Each of the model re-representation and
rendering acceleration techniques should be performed
automatically without the intervention of human judgement
or action.

Image 1: CAD model consisting of 15 million primitives

A Framework for the Real-Time Walkthrough of Massive Models 2

• Scalability. The framework should require human set-up
that is at most sublinear in the number of elements. Run-
time overhead should grow sublinearly with the number of
elements. The framework should operate effectively on
models that cannot be contained in graphics engine
memories.

• Applicability. The system should be applicable to real-
world massive models.

1.1 System Strategy Overview
The fundamental idea in our system is to render objects “far” from
a viewpoint using fast image-based techniques and to render all
objects “near” the viewpoint as geometry using multiple
integrated rendering acceleration techniques, including several
types of culling and levels-of-detail. Our scheme limits the data
required to render from any viewpoint to textured polygon
impostors (for the far geometry), the near geometry, and
miscellaneous rendering parameters. To implement this scheme,
we partition model space into viewpoint cells and associate with
each cell a cull box. The cull box defines the separation into near
and far geometry. Associated with each cell is the data needed to
render from any viewpoint within the cell.

The framework performs extensive preprocessing to partition the
model space into viewpoint cells, to render textures that will be
used to substitute for distant geometry, to construct simplified
object models at multiple levels of detail, and to determine sets of
possible occluders. It organizes these auxiliary data structures so
that they can be prefetched into memory dynamically. It sets up
the run-time environment, establishing the memory-management
tactics to be used for the various acceleration techniques and the
policies for dynamically allocating CPUs and renderers among the
accelerators.

The first acceleration technique we use is a version of texture
impostoring as a substitute for geometry. In a preprocess we
partition the space of the model into equal-sized viewpoint cells,
each defined by its centerpoint. We currently define for each cell
a viewpoint emphasis function (VEF) which determines how
important it is to render that cell rapidly and/or precisely. (We
plan to invert this process in the next version, first defining a
continuous viewpoint emphasis function over the whole model
space and then using it to automatically partition the space into
diverse-sized cells containing equal emphasis.) Around each cell
we place a biggish cull box. We generate for each of the six
inside faces of the box a textured depth mesh (TDM) that images
all the geometry outside the box as viewed from the cell
centerpoint. At run time, we cull away all the geometric
primitives outside the current cull box; the textured depth meshes
are displayed instead. As the viewer moves from cell to cell,
simple prediction enables the relevant TDMs to be prefetched
speculatively. The use of a textured depth mesh radically reduces
the texture popping and other artifacts that otherwise occur as the
viewpoint moves within and between cells.

For our first implementation of the power plant model, we use
cubical viewpoint cells on 2 meter centers, with cubical cull boxes
(26 meters) on a side. The sizing of the cull boxes is a trade-off
between more geometry rendering (for big boxes) and more
texture fetching (for small boxes). The current viewpoint
emphasis function is 1 for the some 10,000 cells containing a
walkway, stair, or ladder; 0 elsewhere. Creating the function
required a fair amount of hand-specification, a process that must
be automated for scalability. Image-based acceleration is only
applied in the VEF=1 cells. So whereas one can view from any
point inside or outside the power plant, and get an accurate view,
one only gets this form of acceleration for viewpoints reachable

by a person really walking in the power plant. That limitation
makes the preprocessing feasible for this model and effectively
matches some design review scenarios— for instance,
maintenance.

For the geometry remaining inside the current cull box, we cull to
the view frustum, cull back-facing triangles, and select for each
object a level-of-detail-simplified surrogate model, depending
upon the object’s distance from the current viewpoint. In our
current system, we model objects at four levels of detail.

If the current cull box has been marked as containing very many
triangles (=100K in our case), we then perform occlusion culling,
so that geometry hidden behind other objects is culled before
rendering. For some viewpoints, this makes a big improvement;
for others, the occlusion test costs more than it saves in time. The
box threshold test is a heuristic for improving the chances of
winning. LOD culling and occlusion culling are applied to all the
geometry in the view frustum, even when the viewpoint is outside
a VEF=1 cell.

1.2 Contributions
We believe the principal contribution to be the scalable
framework itself, with its capability of incorporating many
rendering acceleration modules. It is designed for large spatial
environments with many objects. This framework includes:

• an effective system pipeline to manage the resources, (i.e., the
CPUs, the main memory, the texture memory, the graphics
engines, allocating them among the various acceleration
techniques

• an integrated database, with a coherent representation
technique, and memory management and prefetch of
geometry and textures larger than hardware memory
capacities, which is crucial for scalability

• multiple hierarchies (functional as well as spatial)

• the concept of a general viewpoint emphasis function, and a
simple but powerful implementation of one

• efficient and fast implementations of, and minor extensions
to, known rendering acceleration techniques.

New
Viewpoint

Model Geometry,
Textured

Depth Meshes

Textured
Depth Meshes

Prefetcher

Cell-based
Culling

View-Frustum
Culling

Render
Image

Occlusion
Culling

Level-of-
Detail

Selection

Database

Secondary
Storage

Figure 1: Run-time Pipeline. Each new viewpoint sent into the pipeline is
passed to both the prefetcher and to the rendering pipeline. The viewpoint
determines what geometry and meshes are retrieved from disk; it is also a
parameter used by the rendering acceleration techniques.

A Framework for the Real-Time Walkthrough of Massive Models 3

1.3 Paper Organization
Section 2 summarizes related systems. Section 3 gives a system
overview (run-time and preprocessing). Section 4 explains our
database management and representation. Section 5 describes our
rendering acceleration techniques in more detail. Section 6
presents details of the implementation. Section 7 gives some
performance results. In Section 8, we discuss the limitations of
both the current implementation and the framework. Section 9
lists the lessons learned from this work. Section 10 summarizes.

2 RELATED SYSTEMS WORK
There is an extensive literature on interactive display of large
models. In this section, we briefly survey display algorithms and
systems which have influenced our work by addressing the entire
problem of interactively displaying large models. Algorithms for
visibility culling, level-of-detail modeling, and image-based
techniques are reviewed in Section 5.

A large number of systems have been developed for interactive
walkthroughs. For the purposes of this paper, we can subdivide
them into four general categories:

• Architectural Walkthrough Systems

• Mechanical CAD Systems

• High-Performance Libraries

• Architectures and APIs

One early work ([Clark76]) proposed using hierarchical
representations of models and computing multiple levels-of-detail
(LODs) to reduce the number of polygons rendered in each frame.
This technique has been used by a number of visualization and
flight simulator systems.

Several walkthrough systems for architectural models have been
presented by [Airey90, Teller91, Funkho92]. These systems
partition the model into cells and portals, where the division of a
building into discrete rooms lends itself to a natural division of the
database into cells. The UC Berkeley Building Walkthrough
System [Funkho96] used a hierarchical representation of the
model, along with visibility algorithms [Teller91] and LODs of
objects. [Funkho92] had also proposed techniques for
management and representation of large datasets; by using an
adaptive display algorithm, the system was able to maintain
interactive frame rates [Funkho93]. [Maciel95] expanded this
framework to allow for a more general set of impostors (LODs,
billboards, etc.).

The BRUSH system [Schnei94], developed at IBM, provides an
interactive environment for the real-time visualization and
inspection of very large mechanical CAD (and architectural)
models. It uses multiple LODs of the objects in the scene
[Rossignac93] and provides a number of powerful tools to
navigate and manipulate the models.

IRIS Performer [Rohlf94] is a high-performance library that uses
a hierarchical representation to systematically organize the model
into smaller parts, each of which has an associated bounding
volume. This data structure can be used to optimize culling and
rendering of the model. Many other systems have been developed
on top of Performer for interactive display of large environments,
including an environment for real-time urban simulation
[Jepson95].

Several industrial vendors, including Silicon Graphics and
Hewlett-Packard, have proposed architectures and APIs (SGI
OpenGL Optimizer, HP DirectModel, etc.) for interactive display

of large CAD models [HP97, SGI97]. Currently, these systems
provide standalone tools for simplifying polygonal models or
performing visibility culling. They do not provide a framework
that allows the incorporation of new algorithms or integration of
different tools and subsequent application of the integrated system
to a large model. So far uses of these architectures and APIs have
been quite limited.

Our research seeks both to provide such a scalable, flexible
framework and to achieve new levels of performance through
combination of multiple rendering acceleration techniques.

3 FRAMEWORK OVERVIEW

3.1 Run-time System
Our run-time pipeline is outlined in Figure 1. Because the entire
model may not fit into memory, we employ a prefetching
mechanism to load the geometry necessary for the current frame
and (predicted) near-future frames from secondary storage. The
prefetcher also loads the textured depth meshes necessary to
replace the geometry outside the current cull box. As the model’s
scene graph is traversed, geometry outside the current cull box
and viewing frustum is culled away, appropriate levels of detail
are selected for the remaining geometry, and occlusion culling is
applied. The geometry that remains is then rendered, along with
this viewpoint cell’s textured depth meshes.

3.2 Preprocessing
To make this run-time system possible, we must perform some
amount of offline computation (Figure 2). We first use a user-
supplied Viewpoint Emphasis Function to partition the model
space into viewpoint cells. For each cell, we choose a cull box
size and generate the textured depth meshes which will replace
the geometry outside the cull box. We also generate geometric
levels of detail for selected portions of the model and compute
per-cell parameters that select the level of detail (to bound the
amount of geometry within each cull box). We also compute for
each cell the set of geometry that is likely to serve as useful
occluders at run-time.

Many design environments used to develop massive models have
offline procedures for gathering a current version of the model
and preparing it for visualization. Our pre-computation may be
performed in conjunction with these procedures. It is also not
uncommon for design reviews to focus on certain portions of the
model at a time, and it is possible to confine our pre-computations
to those limited portions.

LOD Generation

Viewpoint Cell
Generation

Textured Depth
Mesh Generation

Occluder
 Selection

LOD Parameter
Computation

Viewpoint
Emphasis
Function

Model

Figure 2: Preprocessing Pipeline. A model and a viewpoint emphasis
function are the inputs to the preprocesses of virtual cell generation and
LOD generation. These preprocesses produce textures, meshes,
occluders, and LOD parameters for the run-time system.

A Framework for the Real-Time Walkthrough of Massive Models 4

4 DATA REPRESENTATION AND
MANAGEMENT

Data representation and database management is the major issue
in integrating multiple techniques for the display of large models
and, thus, is a key element in our framework. A representation
should support multiple rendering acceleration techniques and be
scalable across computers with differing amounts of memory.
Creating such representations from a raw model should be as
automatic as possible. Our solution to the representation and
management problem uses a scene graph to represent the model in
a bounding volume hierarchy, a viewpoint cell structure to
manage the run-time walkthrough, and geometry and texture
prefetching to make the system adaptable to various memory
sizes.

4.1 Scene Graph
The model database is organized as a scene graph, similar to
Performer or Inventor [Rohlf94]. The scene graph is a bounding
volume hierarchy that supports hierarchical culling techniques. At
run-time, the scene graph is traversed recursively and user-defined
functions are called to process each node. Most rendering
acceleration techniques are implemented as these traversal
callback functions.

Organizing our database as a scene graph helps achieve our goal
of modularity. New techniques can be added or old techniques
modified by changing traversal callbacks. If new rendering
techniques require new data, they can be added to individual
nodes.

The scene graph is a bounding volume hierarchy in which each
node groups spatially proximate geometry. Many real-world
models have an object hierarchy which groups geometry
according to non-spatial criteria, e.g. functional organization. On
such models we perform a top-down spatial subdivision of
polygon centers to find a usable hierarchy. An octree-style
subdivision recursively subdivides the model, terminating when
either a minimum number of polygons per leaf or a maximum
depth is reached. We then compute a bounding volume hierarchy
for the polygons: first we compute the bounding boxes of each
leaf of the spatial subdivision, then we propagate these boxes to
the root of the scene graph.

4.2 Viewpoint Cells
An important component of a framework for a scalable
walkthrough system is a method for localizing the geometry
rendered. We use a method based on viewpoint cells and cull
boxes to provide this localization. The 3D space of the input
model is partitioned into a set of cells. Associated with each cell
is a cull box (see Figure 3 for a 2D example). The cull box is an
axis-aligned box containing the cell and is considerably larger
than the cell itself. When the viewpoint is in a particular cell, we
cull all the geometry that lies completely outside that cell’s cull
box. We can use a variety of image-based techniques to represent
the geometry that lies outside the cull box, as described in
Section 5.

The viewpoint cells used in our framework differ from the cells
and portals used in the UC Berkeley Walkthrough System
[Funkho95]. The locations and sizes of those cells and portals
depend upon the geometry of the model: cells correspond to
rooms, and portals correspond to doors or windows. For many
structural models, there are few or no interior partitions. This
drives our decision to make our framework's viewpoint cells
independent of the geometry in the model; rather, their sizes and

locations are determined by a Viewpoint Emphasis Function,
which is described in the following section.

4.2.1 Viewpoint Emphasis Function
When customizing the walkthrough system, the walkthrough
designer will provide not only the model database, but also the
Viewpoint Emphasis Function (VEF). Given a VEF, our
framework should be able to adaptively generate the set of
viewpoint cells to allocate system resources to the more important
areas of the model. The VEF is a scalar function defined over the
3D space of the input model. It specifies the relative importance
of various portions of the model space as potential viewpoints.
This function must be represented in such a way that it is possible
to compute the total importance (the integral of the scalar field)
within any cell-shaped subset of the model space.

4.2.2 Implementation
In our next implementation, we have chosen to initially specify a
VEF as a set of 3D points with associated emphasis values. We
place no limit on the size of the point set, enabling a walkthrough
designer to create a VEF with as much or as little precision as
desired. We use Clarkson's program hull to obtain a Delaunay
triangulation of the point set. This triangulation results in a set of
tetrahedra which linearly approximates the VEF. By triangulating
with hull, which uses exact arithmetic, and by slightly
perturbing our input points, we ensure that we can robustly obtain
a meaningful, usable approximation to the VEF.

It is straightforward to compute the emphasis contained in any
box-shaped region: we clip the set of tetrahedra to the walls of
the box, then total the emphasis of the tetrahedra contained in the
box.

A useful property of this VEF specification method is that the
walkthrough designer can start off with a very simple function
(perhaps one that creates a uniform cell partitioning) and add
points to the specification as he learns more about the particular
model or user behavior, or as the needs of the system change. For

cull box

current cell

other cells

•

•
viewpoint

Figure 3: A set of viewpoint cells. The current viewpoint cell is in the
center; its cull box is the large bold box surrounding it.

L Himportance viewpoint cells

Figure 4: (a) Example of a viewpoint emphasis function. (b) A viewpoint
cell distribution generated from the VEF (not drawn to scale).

A Framework for the Real-Time Walkthrough of Massive Models 5

instance, it is possible to place greater importance on places in the
model near certain classes of objects, in certain rooms, or along
certain paths.

4.2.3 Creating a Spatial Partition
Given the available resources (primarily secondary storage space),
the walkthrough designer chooses the number of viewpoint cells
to be generated. The framework will adaptively subdivide the
model to generate a set of cells each of which has roughly equal
“emphasis”. The less-emphasized regions of the model space will
be populated by a small number of large cells, whereas the more-
emphasized regions will be populated by a large number of small
cells. (Figure 4)

We construct a top-down kD tree whose leaves (axis-aligned
boxes) are the viewpoint cells. To split cells, we find the plane on
each axis that would result in two boxes of most nearly equal
emphasis, then choose the one of these three planes that yields
most nearly equal-volume boxes. This should maximize the
quality of the image-based techniques we use to replace the
geometry outside of the cull box.

4.3 Geometry Prefetching
To achieve our framework goal of scalability, we must address the
fact that massive models are too large to fit in main memory.
Fortunately, the geometry needed to render the user's view is
typically only a small subset of the entire model. Partitioning the
model using viewpoint cells allows us to cull away everything
outside the cull box associated with the user’s current cell.
Therefore, only that geometry and textured depth mesh (TDM)
data needed to render for the current cell must actually be in main
memory. Data for other cells is paged in for those cells likely to
be visited in the near future.

We employ a scheme of prefetching similar to that used in the
Berkeley Walkthrough System [Funkho95]. This system
exploited the structure of the architectural model by subdividing it
into cells connected by portals. The potentially visible set (PVS)
was computed by evaluating which regions of other cells were
visible through portals in the user’s current cell. This method can
lead to rapid increases in the size of the PVS when the user turns
corners and enters rooms. By creating artificial visibility
constraints (the cull boxes), we can better bound the size of the
PVS.

We compute the PVS for each viewpoint cell as a preprocess. We
assign to each viewpoint cell a list of those objects (called
Renderables) which are visible from within the cell. At run-time,
these lists are used to determine which renderables and TDMs
must be paged in from disk in order to render the current cell.
The user’s direction and speed of movement are used to predict
which cells are likely to be visited in the near future. Geometry
and TDMs are speculatively prefetched for these cells as well.
When a cell contains an object for which multiple levels of detail
have been computed, the coarsest version is loaded first. More
detailed versions are paged in on demand.

Geometry is cached separately from textured depth mesh data to
take advantage of cell-to-cell coherence. Since objects in the
model often extend across multiple viewpoint cells, the geometry
needed to render the user's current cell will typically be reused for
adjacent cells. Unfortunately, no such coherence exists for the
textured depth meshes due to their view-dependent nature.
Caches for both geometry and TDM data are managed using least-
recently-used (LRU) replacement. The pseudocode in Figure 5
summarizes the algorithm used by the prefetcher.

5 RENDERING ACCELERATION
TECHNIQUES

5.1 Replacing Distant Geometry
Our framework strategy of replacing distant geometry with
textured meshes is key to achieving our performance goal. As
explained in Section 4.2, all geometry outside the cull box is
culled during rendering. It is replaced by a representation that
hybridizes geometry and images and closely matches the
appearance of the distant geometry.

5.1.1 Previous Work
Environment maps have been used to simulate distant geometry
[Greene86]. In our application the viewer walks inside a densely
populated environment which prevents a direct application of this
technique. QuickTime VR [Chen95] uses a cylindrical
environment map to simulate the surrounding geometry, but can
handle only single viewpoints.

Impostor-based methods replace distant objects with partially
transparent textures mapped onto simple geometry. Whereas early
techniques [Maciel95] pre-generated all textures, newer methods
[Shade96, Schauf96] update the textures on demand. [Regan94]
re-renders objects depending on their velocity in the image plane.
Others warp the geometry [Aliaga96] to minimize effects due to
transitions between geometry and textures. [Schauf97] augments
the textures with depth information to avoid visibility errors.

A different class of methods creates textured meshes from color
and depth information. Rendering very dense meshes is
impractical in already render-bound systems, so simplified
versions are used. [Darsa97] uses a mesh-decimation method to
simplify the mesh. [Sillio97] sub-samples the depth information
and uses edge detection to generate less complex meshes.
[Pulli97] blends several textured meshes for the final rendering.

Image-based rendering methods derive new views directly from
the pre-computed images. Examples of recent work include
[McMill95, Levoy96, Gortle96, Mark97].

5.1.2 Textured Depth Meshes
A simple method for replacing distant geometry pre-generates
images of all geometry outside the cull box as viewed from the
cell center. During rendering, the images are then texture-mapped
onto the faces of the cell box. Since the textures are sampled only
at the cell centers, a disturbing popping artifact occurs when the
viewpoint switches from cell to cell. To alleviate the popping, we
experimented with three-dimensional image warping.

COMPUTE PREFETCH NEEDS:
Find user's current cell C
Find set of nearby cells N

IMMEDIATE NECESSITIES:
Look up geometry G required to render C
If not loaded, page G into memory from disk

SPECULATIVE PREFETCHING:
For all cells n∈N in order of increasing distance
from eye point:
Look up geometry G needed to render n
Append G onto geometry prefetch queue
Look up TDMs T visible from cell n
Append T onto TDM prefetch queue

While C remains constant:
Page in geometry G, TDMs T from prefetch queues

Figure 5: Algorithm used to prefetch model data from secondary storage

A Framework for the Real-Time Walkthrough of Massive Models 6

Unfortunately, image warping consumed too many resources and
introduced visibility artifacts.

To combine the speed of the textured cell boxes with the correct
perspective of three-dimensional image warping, we adopted an
approach similar to Darsa or Sillion based on TDMs. During
preprocessing, color and depth information (MxN pixels) are
stored for each textured cull box face. Each face is then converted
into a depth-mesh (similar to a height-field) of MxNx2 triangles.
The mesh is simplified to reduce resource requirements.
Rendering this simplified depth-mesh with projective textures
shows the correct perspective effects. (Image 2)

This approach has multiple benefits. The visual results are good,
as all major perspective effects are correct and minimal popping
occurs during a transition between cells. Projective texture
mapping yields a better image quality than standard texture
mapping since artifacts from texture interpolation due to regional
oversimplification are much less noticeable. No holes appear;
instead, the mesh stretches to cover regions where no information
is available (known as skins). As different objects can be visible
in the skin regions for different cells, small popping artifacts may
appear during cell transition.

5.1.3 Implementation
The system preprocesses the model by visiting each viewpoint
cell and rendering all geometry outside the associated cull box
from the center of the cell. Six images are generated, one for each
face of the box. The color and depth information from the
framebuffer is reduced to 256 colors, compressed, and stored on
disk. The depth information for each texture is converted to a
depth-mesh.

A general simplification algorithm with error bounds (e.g.
[Garlan97]) takes too long to process a large number of such
dense meshes. Therefore, we apply a pre-simplification algorithm
to the depth mesh. It identifies rectangular planar regions using a
greedy search method. For polygonal models, the resulting mesh
has approximately 10 percent of the original polygon count. The
more general simplification algorithm is then applied. No special
treatment of discontinuities (as in [Sillio97]) is needed, since the

simplification method uses error bounds. The simplified depth
mesh is stored as a triangle-stripped mesh in a binary format.

To render this image-based representation of distant geometry, the
color image and the depth mesh are read from disk and displayed
using projective texture mapping. No texture coordinates are
needed for projective texture mapping, which reduces storage and
processing overhead. The center of projection for each texture is
set to the original viewpoint for the texture (the center of the cell).
See Figure 6 for an overview of the online/offline components.

5.2 Geometric Levels of Detail
After culling away the portions of the scene outside the cull box
of the current virtual cell, we render the geometry that remains
inside. In order to reduce the number of rendered polygons, we
substitute simplified models for objects of high geometric
complexity. In this section, we describe the algorithms used for
computing the levels of detail.

A number of algorithms have been proposed for computing LODs
in the last few years. These include algorithms based on vertex
clustering [Rossig93], edge collapses [Hoppe93, Ronfar96,
Cohen97], vertex removal [Turk92, Schroe92], multi-resolution
analysis [Eck95], quadric error metrics [Garlan97], and
simplification envelopes [Cohen96]. We can either compute
static LODs based on these algorithms or use view-dependent
simplification algorithms, such as those based on progressive
meshes [Hoppe96, Hoppe97, Xia97] or on hierarchical dynamic
simplification [Luebke97]. The view-dependent algorithms have
several desirable properties. However, we have chosen static
LOD for our framework due to the following reasons:

• View-dependent algorithms add both memory and CPU
overhead to the system, and we are using these resources for
other rendering acceleration techniques and memory
management routines.

• View-dependent algorithms are relatively complex to
implement and integrate into our framework compared to
static simplification algorithms.

• Due to their dynamic nature, view-dependent algorithms run
in immediate mode, which is two to three times slower than
display lists on current Silicon Graphics systems.

5.2.1 Goals
Our criteria for an algorithm to compute static LODs are
generality (handling all kinds of models), fidelity, efficiency, and

Preprocessing
Run-time

Rendering Textured Depth-
Mesh

Pre-Simplification

Simplification

Captured Depth Image

Mesh

Captured Image

Texture

Figure 6: Offline and online components of textured-depth mesh
generation. The preprocess generates a texture and a mesh from a
captured image and a captured depth image; the textured depth meshes
generated are displayed at run-time.

Image 2: Textured depth meshes replace distant geometry. Polygons
outlined in white are part of a mesh.

A Framework for the Real-Time Walkthrough of Massive Models 7

the ability to obtain significant reduction in polygon count. Many
simplification algorithms assume that the input model is a
polygon mesh, which may not be the case in practice.
Furthermore, many objects may be composed of tens of thousands
of polygons and for interactive display we need to generate drastic
simplifications of such objects. This requires modifying the
topology to guarantee a sufficiently reduced polygon count. In
our system, we will often be very close to the objects if they are
rendered at all; we cannot rely on distance from the viewer to
hide simplification errors, so the simplifications must look as
good as possible.

5.2.2 Computation of Static LODs
One of the best simplification algorithms to date that produces
reasonable low-triangle count approximations quickly while not
trying to preserve topology has been proposed by [Garlan97]. It
works well for a number of objects. The Garland and Heckbert
algorithm has a tendency to make pieces of different objects
disappear. However, when dealing with pipes, which are
common in mechanical CAD models (Image 3), we want a
different behavior. For example, even though the individual coils
of pipes may be close together, the algorithm makes no attempt to
merge an array of separate coils, but simplifies each coil
independently. Rather than making the pipes completely
disappear, connecting the pipes while simplifying gives a better
impression of the original object. Garland and Heckbert's
algorithm requires the user to input an error threshold to compute
virtual edge pairs and determine the possible number of topology
simplifying collapse operations. This error threshold is
conceptually intuitive, but it may be hard to come up with a good
value to use for any particular model. Furthermore, if there are
hundreds of objects in a scene, it is an arduous task to figure out
the correct error tolerance for each object. We extend Garland
and Heckbert's algorithm to automatically compute virtual edges
using an adaptive spatial subdivision. This facilitates topology
simplification, which results in LODs being merged together, and
automatically and adaptively identifies an error threshold to use.
In practice, it produces reasonable results.

5.2.3 Implementation
In our current implementation, the simplification of an object is
pre-computed and stored in a series of levels of detail. The
algorithm partitions spatially large objects; each partition is
treated separately by the simplification algorithm, so small cracks
can appear between partitions that share geometry but are being
viewed at different levels of detail.

5.3 Visibility Culling
In addition to simplifying objects, our framework uses several
visibility culling algorithms to reduce the number of rendered
primitives. One is view-frustum culling, which uses the model
hierarchy and bounding volumes of nodes in the scene graph to
eliminate portions of the model outside the view frustum.
Another is hardware backface culling for solid objects. Although
the use of viewpoint cells has greatly reduced the depth
complexity of the model, in many cases large portions of the
model inside a viewpoint cell may still be unculled. In these
situations, our framework also uses occlusion culling.

5.3.1 Occlusion Culling
The goal of occlusion culling algorithms is to cull away portions
of the model which are inside the view frustum but are not visible
from the current viewpoint. This problem has been well studied
in computer graphics and computational geometry, and a number
of algorithms have been proposed. Our criteria for an effective
occlusion culling algorithm include generality (applicability to a

wide variety of models), efficiency, and significant culling. As a
result, we do not use algorithms based on cells and portals
[Airey90, Teller91, Luebke95], which assume that there exists a
natural partition of the model into regions with low visibility
between regions and which only work well for architectural
models. General algorithms for occlusion culling can be
classified into object-space approaches and methods that use a
combination of object space and image space. Efficient object-
space algorithms for general polygonal models currently use only
convex objects or simple combinations of convex objects as
occluders [Coorg97, Hudson97]. As a result, they are unable to
combine a “forest” of small non-convex or disjoint objects as
occluders to cull away large portions of the model. [Greene93]
proposed a hierarchical Z-buffer algorithm that uses an object
space and an image space Z-hierarchy. However, it requires
special-purpose hardware. There is a simple variation of the
hierarchical Z-buffer algorithm which reads back the framebuffer
and builds the Z-hierarchy in software. It can be implemented on
current graphics systems. The other effective occlusion algorithm
is based on a hierarchy of occlusion maps [Zhang97]. A
comparison between these two algorithms is presented in
[Zhang97]. Both of these are two-pass algorithms and can be
integrated within our framework. Our system currently uses
hierarchical occlusion maps (HOM). This allows it to perform
approximate culling, which is useful for achieving interactive
frame rates. (Image 4)

In order to achieve significant culling on high depth complexity
models and spend a very small fraction of the overall frame time
on occlusion culling, we perform automatic occluder
preprocessing and use multiprocessing at run-time.

5.3.2 Occluder Preprocessing
Occluder preprocessing is done from the center of each viewpoint
cell. We sample visibility by projecting geometry within the cull
box onto the six surfaces of the cull box. The visible objects are
put onto an occluder candidate list for this cell. Visible objects are
sorted, in descending order, by the their area of projection, which
is obtained by counting the number of pixels having the same
object identifier.

5.3.3 Run-Time Culling
At run-time, we select occluders from the candidate list for the
viewpoint cell until a maximum occluder polygon budget is
reached. Before they are rendered as occluders, view frustum

Image 3: Multiple geometric levels of detail are computed for complex
objects.

A Framework for the Real-Time Walkthrough of Massive Models 8

culling is performed; potential occluders are not used if they lie
outside the view frustum.

HOM culling is a two-pass algorithm: first occluder selection and
rendering, then occlusion culling. The first pass requires access to
the graphics hardware, and the second pass cannot start until the
first is finished. To maximize parallelism, we render the
occluders for frame n+1 before the visible geometry of frame n is
rendered, so that HOM culling for frame n+1 can proceed in
parallel with the rendering of frame n. The occlusion culling pass
is easily parallelizable, which we take advantage of in our
implementation.

6 IMPLEMENTATION
Our implementation of the framework is written in C++, using
OpenGL and GLUT libraries. We ran our tests on a SGI Onyx
with four 250 MHz R4400 processors, two gigabytes of main
memory, and an InfiniteReality Graphics System with two RM6
boards and 64 megabytes of texture memory available to the user.
In the sections below, we will give details on our multiprocessor
implementation.

6.1 Multiple Processors
Our implementation uses the rendering acceleration techniques
previously described. A pipelined multiprocessor architecture is
used so that setup for frame n+1 occurs simultaneously with the
rendering of frame n. At the same time, an asynchronous process
prefetches the textures. An additional processor helps with
occlusion culling.

The operations performed by the framework can be abstracted
into four phases (Figure 7). The phases are explained below.

Interframe Phase

The interframe is the first phase of a logical frame. It imposes a
barrier synchronization between the cull and render phases.
During this phase, the data structures for the next culling phase
are initialized. The current viewpoint and current cell are
determined. If the prefetcher has not loaded the textured depth
meshes for the current cell, we fetch them from disk.

In our implementation, the occluders for the current cell are
rendered into a 256x256 framebuffer and the hierarchical
occlusion map and depth estimation buffer are constructed during
the interframe phase as well. These operations to support HOM
require the graphics pipe's resources, so we force the interframe
phase to occur in the same process as the render phase. This
prevents unnecessary graphics context switches, which might
significantly reduce performance on single-stream graphics
architectures.

Cull Phase

During the cull phase we traverse the scene graph. As we traverse,
each node is first culled against the current viewpoint cell’s cull
box. If it is inside the cull box, we cull it against the view frustum.
Finally, if the node is a visible LOD node (specifically, a node
whose children are the LODs themselves), then we use a distance
metric to select the current LOD. If the node is still visible, then
we perform occlusion culling on it. If the prefetcher has not
loaded a renderable, it is loaded now.

Our implementation employs two processors for the cull phase,
one of which is dedicated to occlusion culling. Furthermore,
since occlusion culling only provides a benefit in high depth-
complexity areas in the model, we only enable occlusion culling
when more than 100,000 triangles remain after other culling
techniques have been applied and we limit the cost of rendering
occluders to approximately 5% of the frame time.

Render Phase

We quickly traverse the scene graph and render only that
geometry which was marked for rendering during the cull phase.

Prefetch Phase

The prefetch phase is implemented as a free-running process on
its own processor. Given the current viewpoint and current cell, it
fetches the necessary textured depth meshes and geometry using
the algorithm described in Section 4.3. If the viewpoint changes
too quickly for the prefetch process to keep up with TDM
fetching, the render phase does not block; instead, no TDMs are
displayed. (The render process will block if nearby geometry
cannot be fetched fast enough; this does not happen on any of our
sample paths.) As soon as the viewpoint becomes stationary or
slows down enough, the proper textured depth meshes will be
rendered.

6.2 Cells and Cell Boxes
In our implementation, we created viewpoint cells using model-
specific data. We divided the space over the 50 stories of the
power plant walkways such that a viewpoint on the walkways is
never farther than one meter from the center of any cell. The cell
centers were set at average human eye height above the walkways
to maximize quality. This created a total of 10,565 cells. We used
a constant cell box size for all cells. (Image 5, 6)

For the paths we recorded through the model, we generated four
out of the six 512x512 textured depth meshes per cell box – the

Image 4: A scene rendered from a particular viewpoint with the
corresponding set of hierarchical occlusion maps displayed on the right side
of the screen. The flooring, column, and a portion of the pipes have been
selected as occluders.

TDM render
(n)

Geometry render
(n)

CPU

Prefetch (asynchronous)

Occluder
render (n+1)

Cell cull
(n+1)

Level-of-detail
selection (n+1)

View-frustum
cull (n+1)

Occlusion
cull (n+1)

Occlusion
cull (n+1)

Frame interval

3

2

1

0

Figure 7: Multiprocessor Pipelined Implementation: Frame n+1 is being
culled, while frame n is being rendered. Meanwhile the asynchronous
prefetch process is speculatively loading data for future frames.

A Framework for the Real-Time Walkthrough of Massive Models 9

walls, but not the ceiling or floor. The texture images were stored
in compressed, 256-color PNG files.

6.3 Cell Parameters
To properly tune our implementation, we need to (automatically)
compute various per-cell parameters.

For each viewpoint cell, we maintain a local LOD scale value.
The distance to an object is multiplied by the local scale value
before being used to look up which level of detail we should be
displaying. During the preprocessing phase, LOD scales are
computed for each cell to try to reduce the geometric complexity
of renderables needed for that cell to below 200,000 triangles.

Our occlusion culling implementation needs to determine which
polygons make good occluders (Section 5.3.2). As a preprocess,
we perform occluder selection for each viewpoint cell.

7 PERFORMANCE RESULTS

7.1 Model Statistics
Our test model is a coal-fired power plant with an original
complexity of 13 million triangles. The model was given to us
with one-millimeter resolution. The main power plant building is
over 80 meters high and 40x50 meters in plan. It contains 90% of
the model’s triangles. Additional structures surrounding the
building (chimney, air ducts, etc.) contain the rest of the triangles.
The database, including LODs, occupies approximately 1.3 GB of
disk space (Image 7-10).

We create up to four LODs for each object over 100,000
primitives (which sum up to 7.7 million triangles). Each LOD
contains half the complexity of the previous level. For faster
rendering, we create triangle strips for each renderable. The swap
operation used in triangle strips increases the total number of
triangles to 15,240,565, but triangle strips still achieve a speedup
over independent triangles. The power plant's scene graph is
composed of over 198,580 nodes and 129,327 renderables.

7.2 Polygon Reduction
We rendered five views of the power plant and recorded the
number of polygons culled by each acceleration technique in the
pipeline. Table 1 gives results in polygon count and percentage
reduction for one view in the first three columns and the average
percentage reduction over the five views in the last column.
[Details are available at (web address suppressed).] While the
average culling percentage for LOD is over 60%, the value was
0% for one of the five views. Though not unexpected, this
observation gives further support to our strategy of integrating
multiple techniques to achieve our performance goals.

On average over the five images, only 0.9% of original model
polygons remain and must be rendered as polygons. The
integrated techniques consistently reduce the number of polygons
to be rendered from over 15 million to about 150, 000.

7.3 Run-time
We recorded three paths through complex regions of the power
plant. We played back the paths using different combinations of
rendering acceleration techniques. Graph 3 shows the frame rates
achieved on our SGI Onyx. Typically, we display between 5 and
15 frames per second. It is interesting to note that the savings
achieved with occlusion culling (HOM) do not always outweigh
its computational overhead. The objects along the sample path

are mostly long and thin and make poor occluders. Better results
are achieved when large structural members such as pillars are
visible.

We found that a relatively small cache is sufficient to hold the
texture and model data immediately necessary for a walkthrough
of the model. A user’s movement through the model was recorded
and then played back several times using different cache sizes.
Graph 1 shows the amount of data fetched from disk along our
sample path as a function of cache size. The total number of bytes

0
10000
20000
30000
40000
50000
60000
70000
80000

0 100 200 300 400 500 600 700
Frame Number

 T
ri

an
gl

es
 fe

tc
he

d

Graph 1: Numbers of triangles fetched from disk during a walkthrough.

0

50

100

150

54 90 126 162 198 234 270
Cache size (megabytes)

M
eg

ab
yt

es
 fe

tc
he

d

Model Geometry TDM Images TDM Depth Meshes

Graph 2: Performance of prefetching (total bytes fetched over path). A
path through the model was recorded and then played back using different
cache sizes.

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700
Frame number

Fr
am

es
 p

er
 s

ec
on

d

HOM, LOD, TDM, VFC LOD, TDM, VFC
TDM, VFC VFC only

Graph 3: Frame rates achieved by combining rendering acceleration
techniques. HOM = Hierarchical Occlusion Maps, LOD = Geometric
Levels of Detail, TDM = Textured Depth Meshes, VFC = View Frustum
Culling.

Method % Polygons
culled

Polygons
culled

Polygons
remaining

Average %
reduction

over 5
views

Model Size 15,207,383
Texture Mesh 96 14621479 585904 96
View Frustum 38 225398 360506 47
Level of Detail 45 161205 199301 47
Occlusion 3 6417 192884 10

Table 1: Performance of techniques to reduce the polygon count. First
three columns are data from a single view; the final column is averaged
over five views.

A Framework for the Real-Time Walkthrough of Massive Models 10

fetched from disk (including model geometry, depth meshes, and
textures) was used as a measure of performance. We achieved the
best results by allocating 60 megabytes for model geometry and
80 megabytes for textured depth meshes. Larger cache sizes
produced no substantial improvement in the amount of traffic
from disk, suggesting that capacity misses in both caches have
become asymptotically low. Run-time fetching of model
geometry has therefore saved us over 95% of the 1.3GB of RAM
needed to hold the entire database in memory at once.

Graph 2 shows the temporal distribution of the disk I/O caused by
prefetching while replaying the sample path. The bursts of
activity take place when the potentially visible set of objects
changes substantially – i.e. when the user’s viewpoint moves from
one viewpoint cell into an adjacent one. Fetching of textured
depth mesh data follows a similar pattern: TDMs are fetched in
bursts of 1 to 10 every 20 to 30 frames.

7.4 Preprocessing
We summarize the preprocessing times in Table 2. Each of the
rendering acceleration techniques requires preprocessing. The
largest amount of preprocessing time is spent generating and
simplifying the textured depth meshes.

8 LIMITATIONS AND ONGOING WORK
We have presented a scalable framework for interactive
walkthrough that is suitable for spatially large models. Our
viewpoint cell mechanism relies on the model occupying a large
spatial extent. We have not focused on high object-density objects
(e.g. a CAD model of a car engine). Such models raise a different
set of problems. The low spatial coherence of the model will
strain different parts of the framework (prefetching, geometry
simplification, etc).

Models with moving parts present another difficult set of issues.
Most of the rendering acceleration techniques we see today are for
static models. We wish to explore which algorithms can be
combined to efficiently render models with limited dynamic
elements.

As discussed, we are devising algorithms to automatically
partition the model space into viewpoint cells.

We also want to incorporate a wider variety of visibility and LOD
algorithms. Although we have tried alternate image-based
algorithms for cull box faces and alternate (static and dynamic)
LOD generation techniques to demonstrate modularity, this is a
concept that needs to be explored farther. We would like to have
an explicit set of criteria describing the classes of algorithms that
our framework will accept.

9 LESSONS LEARNED
In the process of creating and implementing the massive model
rendering framework, we came across various design problems.

With a massive model it is crucial to carefully construct a single
database representation that supports all the expected rendering
acceleration techniques. Some algorithms have simple data
structures, whereas others have much more complex ones (for
example, [Hoppe97] and [Luebke97]). We cannot afford to
replicate data.

Furthermore, traversing the database is a very expensive operation
(simply visiting all the scene-graph nodes of our test model takes
over one-third of a second!). Algorithms that must frequently
access the entire database do not scale well. When rendering

massive models, the constants present in different algorithms
become very significant.

A single algorithm might provide a performance increase over
naive rendering, but when two algorithms are combined they do
not necessarily achieve their combined speed up. For example, in
our implementation, cell box culling and occlusion culling
compete with each other. Both perform best when high depth
complexity is present, yet one must be performed first, reducing
the efficacy of the other.

A related issue is choosing the best order in which to apply
multiple rendering acceleration techniques. We have chosen an
order (Section 6.1) that works well for our framework and our
class of model. This would not necessarily be the case for a
different framework or different class of target models.

10 SUMMARY
We have presented a scalable framework for the rapid display of
massive models. We have demonstrated our framework with an
interactive walkthrough of a 15 million triangle model. We
achieve an order of magnitude improvement over single rendering
acceleration techniques.

We have described a database representation scheme for massive
models. Additionally, we have presented a method to localize
geometry, an essential component of a scalable walkthrough
system. Our viewpoint cells partition the model space into
manageable subsets we can fetch into main memory at run-time.

Furthermore, our framework includes an effective pipeline to
combine rendering acceleration techniques from the areas of
image-based representation, geometric simplification, and
visibility culling.

11 ACKNOWLEDGMENTS
We especially thank James Close and ABB Engineering as the
gracious donors of the power plant CAD model, an extremely
valuable asset for us. In addition, we offer our gratitude to
members of the UNC Graphics Lab, especially Kevin Arthur,
Mark Livingston and Todd Gaul. Furthermore, we are grateful to
our multiple funding agencies, including: ARO, DARPA, Intel,
NIH, NSF, ONR and Sloan Foundation.

REFERENCES
[Airey90] J. Airey, J. Rohlf, and F. Brooks. Towards image realism with interactive

update rates in complex virtual building environments. In Proc. of ACM
Symposium on Interactive 3D Graphics, 1990, pp. 41-50.

[Akeley93] K. Akeley. Reality Engine Graphics. In Proceedings of ACM Siggraph,
1993, pp. 109-116.

Preprocessing Technique Time for
sample paths

Extrapolated time
for entire model

Generation of cells from prototypical
VEF (entire model) 2 hours 45 min 2 hours 45 min
Generation of cell textures and depth
meshes 56 min 221.5 hours

Pre-simplification of depth meshes 40 min 20 hours

Garland-Heckbert simplification of
depth meshes 2 hours 10 min 250 hours

Generation of static levels of detail
(entire model) 9 hours 30 min 9 hours 30 min

Computation of LOD scales (entire
model) 1 hour 1 hour

Selection of per-cell occluders 5 minutes 23 hours 20 min

TOTAL PREPROCESSING TIME 17 hours 525 hours

Table 2: Breakdown of preprocessing times.

A Framework for the Real-Time Walkthrough of Massive Models 11

[Aliaga96] Daniel G. Aliaga. Visualization of Complex Models Using Dynamic
Texture-based Simplification. In IEEE Visualization '96, October 1996, pp. 101-
106.

[Aliaga97] D. Aliaga and A. Lastra. Architectural Walkthroughs using Portal
Textures. In IEEE Visualization ’97, October 1997, pp. 355-362.

[Brooks86] F. Brooks. Walkthrough: A dynamic graphics system for simulating
virtual buildings. In ACM Symposium on Interactive 3D Graphics, Chapel Hill,
NC, 1986.

[Chen95] Shenchang E. Chen. Quicktime VR - An Image-Based Approach to Virtual
Environment Navigation. In SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1995, pp. 29-38.

[Clark76] J. Clark. Hierarchical Geometric models for visible surface algorithms. In
Communications of the ACM, volume 19 number 10, 1976, pp. 547— 554.

[Cohen91] F. Cohen and M. Patel. Modeling and synthesis of images of 3D textures
surfaces. Graphical Modeling and Image Processing, vol. 53, pp. 501-510, 1991.

[Cohen96] J. Cohen et al.. Simplification Envelopes. In Proc of ACM Siggraph 96,
1997, pp. 119— 128.

[Cohen97] J. Cohen, D. Manocha, and M. Olano. Simplifying Polygonal Models
Using Successive Mappings. In Proc. of IEEE Visualization, Tampa, AZ, 1997.

[Coorg97] S. Coorg and S. Teller. Real-time occlusion culling for models with large
occluders. In Proc. Of ACM Symposium on Interactive 3D Graphics, 1997.

[Darsa97] Lucia Darsa, Bruno Costa, and Amitabh Varshney. Navigating Static
Environments Using Image-Space Simplification and Morphing. In ACM
Symposium on Interactive 3D Graphics, Providence, RI, 1997, pp. 25-34.

[Eck95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle. Multiresolution Analysis of Arbitrary Meshes. In Proc. of ACM
Siggraph, 1995, pp. 173-182.

[Eyles97] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra,
Nick England, and Lee Westover. PixelFlow: The Realization, In Proceedings
1997 SIGGRAPH/Eurographics Workshop on Graphics Hardware, ACM
SIGGRAPH, August 1997, pp. 57-68.

[Funkho92] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller.
Management of large amounts of data in interactive building walkthroughs. In
Computer Graphics (1992 Symposium on Interactive 3D Graphics), vol. 25, D.
Zeltzer, Ed., March 1992, pp. 11-20.

[Funkho93] T. A. Funkhouser. Database and Display Algorithms for Interactive
Visualization of Architecture Models. Ph.D. thesis. CS Division, UC Berkeley,
1993.

[Funkhou96] T. Funkhouser, S. Teller, C. Sequin, and D. Khorramabadi. The UC
Berkeley System for Interactive Visualization of Large Architectural Models. In
Presence, volume 5 number 1.

[Garlan97] M. Garland and P. Heckbert. Surface Simplification using Quadratic
Error Bounds. In Proceedings of ACM Siggraph, 1997, pp. 209— 216.

[Gortle96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The Lumigraph. In SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, H. Rushmeier, Ed.: ACM SIGGRAPH, August 1996, pp. 43-
54.

[Greene86] Ned Greene , Environment mapping and other applications of world
projections. In IEEE CG&A 6(11), Nov 1986, pp. 21-29.

[Greene93] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. In
Proc. of ACM Siggraph, 1993, pp. 231-238.

[HP97] HP DirectModel.
http://hpcc920.external.hp.com/wsg/products/grfx/dmodel/index.html, 1997.

[Hoppe93] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle. Mesh
optimization. In Proc. of ACM Siggraph, 1993, pp. 19-26.

[Hoppe96] Hugues Hoppe. Progressive Meshes. In SIGGRAPH 96 Conference
Proceedings: ACM SIGGRAPH, 1996, pp. 99-108.

[Hoppe97] H. Hoppe. View-Dependent Refinement of Progressive Meshes. In
Proceedings of ACM Siggraph, 1997, pp. 189— 198.

[Hudson97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang.
Accelerated Occlusion Culling using Shadow Frusta. In Proc. Of ACM
Symposium on Computational Geometry, 1997, pp. 1— 10.

[Jepson95] W. Jepson, R. Liggett, and S. Friedman. An Environment for Real-time
Urban Simulation. In Proceedings of 1995 Symposium on Interactive 3D
Graphics, 1995, pp. 165— 166.

[Levoy96] Marc Levoy and Pat Hanrahan. Light Field Rendering. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, H. Rushmeier, Ed.: ACM
SIGGRAPH, August 1996, pp. 31-42.

[Luebke95] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast
Evaluation of Potentially visible sets. In ACM Interactive 3D Graphics
Conference, Monterey, CA, 1995.

[Luebke97] D. Luebke and C. Erikson. View-Dependent Simplification Of Arbitrary
Polygonal Environments. Proc. of ACM Siggraph, 1997.

[Maciel95] Paulo W. C. Maciel and Peter Shirley. Visual Navigation of Large
Environments Using Textured Clusters. In 1995 Symposium on Interactive 3D
Graphics, P. H. a. J. Winget, Ed.: ACM SIGGRAPH, April 1995, pp. 95-102.

[McMill95] Leonard McMillan and Gary Bishop. Plenoptic Modeling: An Image-
Based Rendering System. In SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, R. Cook, Ed.: ACM SIGGRAPH, August 1995, pp. 39-46.

[McMill97] William Mark, Leonard McMillan, and Gary Bishop. Post-Rendering 3D
Warping. In ACM Symposium on Interactive 3D Graphics, Providence, RI, 1997,
pp. 25-34.

[Molnar92] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High speed rendering
using image composition. Proceedings of ACM Siggraph, vol. 26, pp. 231-248,
1992.

[Pierce97] J.S. Pierce et al. Image Plane Interaction Techniques in 3D Immersive
Environments. In ACM Symposium on Interactive 3D Graphics, Providence, RI,
1997, pp. 39-43.

[Pulli97] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro,
and Werner Stuetzle. View-based Rendering: Visualizing Real Objects from
Scanned Range and Color Data. In Rendering Techniques ’97. Springer Verlag,
1997, pp. 23-34.

[Regan94] Matthew Regan and Ronald Post. Priority Rendering with a Virtual
Reality Address Recalculation Pipeline. In Proceedings of SIGGRAPH '94, July
1994, pp.155-162.

[Rohlf94] J. Rohlf and J. Helman. Iris Performer: A high performance
multiprocessor toolkit for realtime 3D Graphics. In Proc. of ACM Siggraph,
1994, pp. 381-394.

[Ronfar96] R. Ronfard and J. Rossignac. Full-range approximation of triangulated
polyhedra. Computer Graphics Forum, vol. 15, pp. 67-76, 462, August 1996.

[Rossig93] J. Rossignac and P. Borrel. Multi-Resolution 3D Approximations for
Rendering. In Modeling in Computer Graphics: Springer-Verlag, 1993, pp. 455-
465.

[SGI97] SGI OpenGL Optimizer.
http://www.sgi.com/Technology/openGL/optimizer_wp.html, 1997.

[Schauf96] Gernot Schaufler and Wolfgang Stürzlinger. A Three-Dimensional Image
Cache for Virtual Reality. In Computer Graphics Forum 15(3) (Eurographics ’96
Proceedings), pp. 227-236.

[Schauf97] Gernot Schaufler. Nailboards: A Rendering Primitive for Image Caching
in Dynamic Scenes. In Rendering Techniques ’97. Springer Verlag, 1997, pp. 151-
162.

[Schnei94] B. Schneider, P. Borrel, J. Menon, J. Mittelman, and J. Rossignac.
Brush as a walkthrough system for architectural models. In Fifth Eurographics
Workshop on Rendering, July 1994, pp. 389— 399.

[Schroe92] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
Triangle Meshes. In Proc. of ACM Siggraph, 1992, pp. 65-70.

[Shade96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John
Snyder. Hierarchical Image Caching for Accelerated Walkthroughs of Complex
Environments. In SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, H. Rushmeier, Ed.: ACM SIGGRAPH, August 1996, pp. 75-82.

[Sillio97] Francois Sillion, George Drettakis, and Benoit Bodelet. Efficient Impostor
Manipulation for Real-Time Visualization of Urban Scenery. In Computer
Graphics Forum 16(3) (Eurographics ’97 Proceedings), pp. 207-218.

[Teller91] S. Teller and C. H. Sequin. Visibility Preprocessing for interactive
walkthroughs. In Proc. of ACM Siggraph, 1991, pp. 61-69.

[Turk92] G. Turk. Re-Tiling Polygonal Surfaces. In Proc. of ACM Siggraph, 1992,
pp. 55-64.

[Xia97] J.Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-
based rendering for polygonal models. In IEEE Transactions on Visualization
and Computer Graphics, volume 3 number 2, June 1997, pp. 171— 183.

[Zhang97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility Culling Using
Hierarchical Occlusion Maps. In Proc. of ACM Siggraph, 1997

A Framework for the Real-Time Walkthrough of Massive Models 12

Image 5: Distribution of viewpoint cells in one part of the
model. Our VEF has been chosen to lend importance to
viewpoints on walkways.

Image 6: Distribution of viewpoint cells in another part of
the model.

Image 10: A view of the outside of the power plant.

Image 7: A view from the 46th floor of the power plant model.

Image 9: A view of the lower power plant floors.

Image 8: A close-up of complex pipe arrays on the 46th floor.
The piping provides a challenge for LOD algorithms.

