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Abstract:
We discuss the concept of uniform frequency images, which

exhibit uniform local frequency properties. Such images make
optimal use of space when sampled close to their Nyquist limit.
A warping function may be applied to an arbitrary image to re-
distribute its local frequency content, reducing its highest fre-
quencies and increasing its lowest frequencies in order to ap-
proach this uniform frequency ideal. The warped image may
then be downsampled according to its new, reduced Nyquist
limit, thereby reducing its storage requirements. To reconstruct
the original image, the inverse warp is applied.

We present a general, top-down algorithm to automatically
generate a piecewise-linear warping function with this frequency
balancing property for a given input image. The image size
is reduced by applying the warp and then downsampling. We
store this warped, downsampled image plus a small number of
polygons with texture coordinates to describe the inverse warp.
The original image is later reconstructed by rendering the asso-
ciated polygons with the warped image applied as a texture map,
a process which is easily accelerated by current graphics hard-
ware. As compared to previous image compression techniques,
we generate a similar graceful space-quality tradeoff with the
advantage of being able to “uncompress” images during render-
ing. We report results for several images with sizes ranging from
15,000 to 300,000 pixels, achieving reduction rates of 70-90%
with improved quality over downsampling alone.

CR Categories and Subject Descriptors:I.4.2. [Image Pro-
cessing and Computer Vision]:Compression (Coding) — Ap-
proximate methods, I.3.3[Computer Graphics]: Picture/Image
Generation — Display algorithms.
Additional Key Words and Phrases: texture mapping, Fourier
analysis, sampling, parameterization, visualization.

1 Introduction
Images play an integral role in today’s 3D computer graphics
pipeline. They appear not only as the output of the rendering
process, but as input to the process as well. In the form of
texture maps, images allow high-frequency variation in surface

color over either a single polygon or a mesh of polygons – more
complex than is practical with geometry alone.

We can think of an image as a uniform sampling of an under-
lying continuous image function. The simple image represen-
tation has the advantage of being easily stored and accessed in
either general-purpose memory or special-purpose texture mem-
ory on the graphics hardware. Because it is uniform, however, it
has the potential disadvantage of using space inefficiently. Por-
tions comprising low spatial frequency content require as much
space as those with much higher spatial frequencies. If we apply
standard compression algorithms, such as JPEG, to such images
to reduce wasted space, we may lose the nice properties of the
simple 2D representation.

This wasted space may not matter to applications which rely
primarily on small, repeated textures to enhance the appearance
of a simple environment. However, the production of realistic
environments often requires the use of large textures which are
uniquely applied to individual surfaces. For example, realistic
urban simulations and terrain visualizations [8] may involve real
photographic imagery applied to the geometry of outdoor en-
vironments. Indoor environments may be mapped with illumi-
nation data resulting from pre-computed radiosity simulations
[2]. Arbitrary shading parameters may be stored as images and
mapped to surfaces for the computation of arbitrary BRDFs [7].
In fact, by storing arbitrary per-vertex data as images, we can
apply simplification algorithms to convert mesh complexity into
textures[5]. All of these applications require significant storage
and bandwidth resources to manage the associated image data.
To reduce this demand, we need an image representation which
is compatible with 2D texture-mapping hardware but permits
better use of storage without unacceptable data loss.

1.1 Main Contribution
We present a new conceptual approach to efficient image rep-
resentation: theuniform frequency image. By representing an
image uniformly in the frequency domain, UFIs enable graceful,
uniform resizing. Although the ideal UFI is not fully realizable,
we present an algorithm which targets it, automatically reducing
the maximum frequency content of local areas of an image to
allow downsampling of the image with minimal data loss.

Given an input image, we automatically generate an invertible
warping function which downshifts the image’s highest spatial
frequencies in exchange for upshifting some of its lowest spatial
frequencies, producing a concentration of mid-range frequen-
cies. After warping the input image to produce a UFI, we take
advantage of the reduction in high-frequency content by down-
sampling it. We store the inverse of the warping function with



the downsampled, warped image for later reconstruction.
We choose a piecewise-linear warping function because it is

both efficient to represent and fast and intuitive to invert. In fact,
we can think of our scheme as an “image compression” algo-
rithm for which the decompression algorithm is simply the ren-
dering of texture-mapped polygons. Our “compressed” image is
just the warped, downsampled image plus a small set of poly-
gons with texture coordinates.

Our approach has the following desirable properties:

1. Fast decompression using graphics hardware:The orig-
inal image is reconstructed by rendering texture-mapped
polygons, a feature available on most current graphics
hardware.

2. Transparency to application: UFIs are rendered as easily
as rendering a normal textured quadrilateral. The proce-
dure for unwarping the textures is simply the rendering of
certain specific geometry, which can be treated as a “black
box” operation.

3. Gracefully degradation under downsampling: As UFIs
are squeezed into smaller and smaller portions of texture
memory, their loss of content initially occurs in a slow,
graceful fashion. The tradeoff is that past a certain very
compressed point, the degradation begins to accelerate.

4. Preservation of high-frequency detail: As opposed to
most image compression techniques, UFIs value and main-
tain high-frequency detail. Portions of an image which
make it identifiable are retained longer under increased
downsampling, reducing the overall blurred or pixelated
effect.

Another interesting aspect of this research is that it explores
the symbiosis between irregular representations (e.g. a triangle
mesh) and regular representations (e.g. a 2D image). Whereas
typical texturing applications augment an irregular representa-
tion with a regular one to enhance its appearance or reduce
its complexity, our algorithm augments a regular representation
with an irregular one, preserving scarce texture memory and
bandwidth through the use of a small amount of geometry.

The rest of the paper is organized as follows: First we intro-
duce the concept of uniform frequency images. We then discuss
our high-level algorithm and its components. Next we describe
our implementation of these components. Finally, we present
results and discuss future work.

2 Previous Work
Many of the standard compression algorithms, such as JPEG
compression [17] are not directly applicable to the problem of
compressing textures. Such algorithms often require significant
processing to decompress, thus requiring additional hardware in
the graphics pipeline. Also, such compression schemes gener-
ally do not allow random access to the pixel data. However, the
Talisman architecture [16] proposes a blockwise JPEG variant
called TREC and includes hardware support for both compres-
sion (to be used on intermediate, retained images) and decom-
pression of these small image blocks.

JPEG compression has also been applied to the compression
of synthetic images [10] by combining the rendering of low qual-
ity triangles (to preserve sharp features) with JPEG-compressed
refinement images to achieve high-quality images on low end
graphics platforms.

Figure 1: Creating UFIs. Note the irregularity of the top func-
tion makes uniform sampling wasteful in the middle region. By
shifting the peaks labeled by arrows, we spread out the frequen-
cies and create a nice signal which is easily uniformly sampled.

Vector quantization, such as color cell compression [4], is a
compression scheme which allows fast, random access to image
data. It has been applied in software for both texture maps [3]
and light fields [11]. It has also been proposed for hardware
texture decompression [9].

The most straightforward ways to reduce texture complexity
on today’s graphics hardware are to reduce either the color depth
or the spatial resolution of the texture images. Spatial resolu-
tion must, in fact, be reduced as part of the minification process,
whereby several samples from the texture are mapped to a sin-
gle pixel in the rendered image. Such minification is typically
performed using a mip-map image hierarchy [18].

Traditionally, entire levels of the mip-map were either stored
in dedicated texture memory or communicated to the graphics
hardware as needed. More recently, it has become possible to
cache subsets of the mip-map hierarchy in texture memory [14]
or even to fetch texture samples as needed from general appli-
cation memory [1]. It is also possible to willfully trade tex-
ture quality for performance at the application level using the
OpenGL texture level of detail commands [19] to modify the
selection of mip-map levels.

Although we have not thoroughly explored all the ramifica-
tions, we believe our compression scheme, which downsamples
the original texture after reducing the spatial frequency of the
data, should cooperate well with such minification algorithms.

A similar approach was proposed by Sloan [13], however the
focus of this work was on optimizing textures for use on existing
meshes. The context was that of painting applications, in which
the user could even guide the process by specifying a custom
importance function along with the painted texture. Although he
did briefly discuss the creation of “atlas” meshes, his approach
used simple uniform spatial divisions and precluded the use of
mip-mapping. Terzopoulos and Vasilescu, in their 1991 paper
on adaptive meshes [15] discuss the use of adaptive meshes for
reconstructive work, but their approach is very general and does
not use the Fourier transform. In addition, by using meshes of
constant topology they do not adequately solve the problem of
shear distortion.

3 Uniform Frequency Images
We have discussed in section 1 how the standard 2D representa-
tion of an image represents a uniform sampling of an underlying
image function. Before imposing a uniform sampling on an im-
age, however, one could consider making the underlyingimage
functionuniform by elongating the high frequencies and com-
pressing the low frequencies (see figure 1). This makes uniform
sampling much more appropriate by lowering the Nyquist limit
of the function, at the expense of increasing image density in ar-



eas of low frequency concentration. In one dimension, at least,
it is not a stretch to assert that this could be done perfectly, given
a transform of sufficient complexity. We call the resulting image
a uniform frequency image.

Such an image has the characteristic that, for any two subre-
gionsR andS, their Fourier representations,̂R andŜ, respec-
tively, are equivalent to within some tolerance. We will consider
later how to produce such images, but for now let us examine
some of their characteristics. It is apparent that this characteris-
tic of uniformity has nothing to do with spatial similarity or any
statement about exact frequency characteristics. Indeed, both a
completely solid-colored image and an image with totally ran-
dom data qualify as uniform frequency images. Instead, this
property examines the localchange in frequency, or first deriva-
tive of the Fourier transform as it travels across the image. This
first derivative describes the local change indensity of frequency
information.

In the following sections, we describe the desirable properties
of uniform samplings and uniform frequency images, the effect
of resizing on such images, the properties of warping functions
used to create these images, and the relationship of our image
reductions to traditional compression schemes.

3.1 Uniform Sampling

A uniform sampling of an image has many advantages, most
notably that it can be stored natively in texture memory. Un-
fortunately, such sampling does not cope well with images that
have large frequency variations. To adequately sample the im-
age function uniformly, a sampling rate above the Nyquist limit
of the function is necessary. Because images are rarely uniform
in frequency density, such a sampling rate will almost certainly
be wasteful in many areas. What is really desired is an adap-
tive sampling, which is the basis of some image compression
techniques. One obvious example is run-length encoding which
in the extreme samples exactly one time in an area of zero fre-
quency. More complicated variations on this theme, involving
entropy coding, give rise to PNG or GIF compressed image for-
mats.

We will go in the opposite direction, however. Instead of forc-
ing our image sampling method to be adaptive, we will make
a uniform samplingbe the correct adaptive choice, by making
our image have a uniform Nyquist limit. Once done, our im-
ages respond as well to a uniform sampling as normal images
do to an adaptive one. We get all the benefits of an adaptive
image-sampling algorithm, while still leveraging our hardware
for doing uniform sampling.

3.2 Resizing

Now we turn to the problem of compressing uniformly sampled
images. Conventional texturing, which motivated our decision to
sample uniformly, now also motivates our method of compres-
sion. Although compressing an image is normally thought of
as an arbitrary transformation taking one set of data to another,
in this context we will consider compressing an image solely
as resizing the image to take up less space. Whichever of the
many possible resizing methods we use, such a downsampling
acts as alow-pass filter; it operates globally in the spatial domain
with a bias towards low-frequency data. When we cannot give
preference to one area of an image over another, high-frequency
decimation is then spread equally to high and low-content ar-
eas. Such decimation will naturally will have proportionally
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Figure 2: Frequency Truncation – downsizing an image by a
factor of 2 truncates data which is above the Nyquist limit of the
smaller image.

greater impact on high-frequency areas, creating uneven distor-
tion across the image – unless, that is, the image does nothave
proportionally higher-frequency areas, which is the case with a
uniform frequency image.

In addition, if the resizing operation involves (as is commonly
the case) some sort of Gaussian blend operation, high-frequency
data is even more strongly impacted. The effect is one offre-
quency truncation(see figure 2). The image resizing method we
consider is a standard Gaussian filter which decimates high fre-
quency data by blending nearby pixel values. This decimation
is linear in the degree to which the image is resized (i.e. greater
downsampling implies more high-frequency data is erased).

3.3 Warping Functions
An issue we have not discussed so far is the creation of these uni-
form frequency images. As we saw in figure 1, the key is pushing
and pulling on the image using our resizing operation to produce
areas of uniform frequency. Conceptually, such pushing and
pulling can be thought of as awarping functionW : R2 ! R2

which takes an image and produces a uniform frequency im-
age. This, along with a resizing operatorR : R2 ! R2,
will form the basis of our algorithm. Given an input image,
I, its corresponding UFI isW (I) and its downsampled UFI is
R(W (I)). Our reconstruction process recoversI by computing
W�1(R�1(R(W (I)))).

Let us consider some desirable properties of such operators:

� W is approximately invertible, i.e.
�
�I �W�1(W (I))

�
� <

W�, the warping error, which may be dependent on the
size ofI. W itself should work on domains of any size,
and is generally defined asW : [0; 1)2 ! [0; 1)2.

� R should also be approximately invertible with an errorR�

corresponding to the input and output size.R should also
have the property that it operates equally on all subimages
of I

� The two transforms should be composable as follows:
W�1(R�1(R(W (I)))) � W�1(W (I)) � I, and
W�1(R(W (I))) � R(I). These approximations have
definable errors related to resizing and warping.

� The warp W should facilitate resizing, defined as�
�I �W�1(R�1(R(W (I))))

�
�
M

<
�
�I �R�1(R(I))

�
�
M

for some metric M. This metric is achieved by makingW a
flattening warp, for whichW (I) is a more uniform image
thanI itself.

For practical reasons we also desire two additional properties:

� W should be easy to represent, so as not to add overly to
storage and communication overhead.

� W�1 should be easy to compute by the system performing
our reconstruction computation.
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Figure 3: Our algorithm as a flow diagram. The UFI creation
occurs off-line; the only thing communicated to the rendering
pipeline is one image (the UFI) and geometry.

3.4 Traditional Image Compression
Our reduction scheme operates in quite a different fashion from
traditional frequency-based compression techniques. Such tech-
niques attempt tocoalescedata in the frequency domain into
tightly packed frequency groupings. Thus the compressed re-
sults do not constitute an image in the spatial domain and require
significant processing to convert back to a spatial image. In ad-
dition, because of the low-pass filter property of texture resizing
discussed earlier, coalescing data is the wrong approach for two
reasons:

� Preserving low-frequency data is not a high priority. This
data will be well-preserved by the resizing operation.

� Since the filter is the same everywhere in the spatial do-
main, we want our data to be similar in nature across the
spatial domain, not to capture and distill the variability of
the data.

In contrast to these approaches, our approach uses informa-
tion from the frequency domain to construct an appropriate warp
in the spatial domain which retains continuity across the image,
and allows for efficient traditional 2d image representation. Thus
our compressed result may still be represented as an image in the
spatial domain and functions as such in the graphics pipeline.

4 Algorithm Overview
As depicted in figure 3, our uniform frequency image scheme
has two phases: UFI creation, and reconstruction of the original
image. We can think of the former as an off-line pre-process,
while the latter can be performed quite rapidly, possibly as part
of an interactive graphics application.

Our high-level algorithm for generating a warping function
takes a top-down, divide-and-conquer approach. Initially, the en-
tire image is our region of interest. We first partition the region
into two or more sub-regions. Next we measure the frequency
content of each sub-region using a fast Fourier transform. Based
on the relative frequency content of these sub-regions, we com-
pute a local warp (see figure 4) that equalizes their frequency
contents as much as possible. Finally, we recurse into each of
the sub-regions, repeating our procedure until we reach a ter-
mination condition. Typically we terminate when the frequency
content of a region is too low (or too uniform) or when a region
or its warped counterpart become too small.

This algorithm has the nice property that it naturally operates
at multiple scales. Our initial warp operation takes place at the
largest scale and has the greatest potential to dramatically affect
the frequency content of the entire image. Each successive warp
operates at a smaller and smaller scale, refining the frequency
content of increasingly local regions.

+
54%57% Remeasure

Shift

Measure40%67%

Partition

Figure 4: Frequency Balancing. Evaluation of frequency data
leads to an attempt to shift frequencies and even out content. If
the process were perfect, both sides would end up equal. The
maximum frequency content area (in this case the left with 57%)
is related to the image’s resizability. Of course the regions are
two-dimensional, but only dimension is considered at a time.

After generating the warping function, we apply it to the
source image to generate a UFI. This UFI is then typically re-
sized to reduce space consumption. The inverse warping func-
tion is represented as geometry and this geometry, along with
the UFI, is stored as our augmented texture. At runtime, image
reconstruction occurs by the rendering of textured polygons (see
figure 5).

From this general algorithm we can identify the components
needed to specify a complete implementation. We first need a
data structure to represent the warp. The recursive nature of the
algorithm makes a hierarchical representation natural. We re-
quire the structure to partition the space into regions which are
decomposable into simple geometry.

We also need some concrete way of measuring the frequency
content of an image region. Our measure should easily iden-
tify areas of high and low content. It should also be spatially
additive: the sum of content of two areas should be reasonably
related to the density of the areas together. In addition, it should
linearly depend on the size of the area. If we have these condi-
tions, then computing the destination shift is easy: Letfl be the
frequency content on the left side of the divide ,fr the right and
s in [0; 1) be the source point. Thend, the destination point, is

d =
2sfl

fl + fr
(1)

to make the two sides equal (assuming an inverse linear relation-
ship between the size and the frequency content).

In the next section, we will fill in the implementation details
of these primary components of our general algorithm.

5 Implementation
Before proceeding with the details of our implementation, let us
pose the problem in a concrete fashion. Our input data is simply
an RGB image of arbitrary dimension. The output of our UFI
creation process is another image along with a data structure.
The image we generate is not meaningful in and of itself, having
been warped, but together with the data structure it represents
the image in a (potentially) size-independent fashion (although
it is optimized for the particular size of image we began with).
This data is stored for later use and can be conceptually regarded
together with the image to form anaugmented texture.

If our application supports it, we then communicate this aug-
mented texture to a hardware board using, for example, standard
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Figure 5: Hardware unwarping through manipulation of tex-
ture coordinates. The k-d tree contains source coordinates,
which are used as geometry, and destination coordinates, which
are used as texture coordinates. This “unwarps” the pre-warped
UFI.

OpenGL texture-mapping calls. The result is the unwarped ver-
sion of the texture, generated on-the-fly by the hardware. This
unwarped version never actually resides in texture memory; only
the warped version, which is displayed on triangles as though it
were the original image, does (see figure 5).

We now present the details of our space-partitioning data
structure, frequency content computation, and maintenance of
pixel-level accuracy through the reconstruction process.

5.1 Space Partitioning Using aK-d Tree
The space-partitioning data structure represents our warping
function and provides a simple decomposition of the image into
a set of standard, easily renderable geometry. It must also sup-
port the use of the Discrete Fourier Transform, or DFT, to gen-
erate data about the importance of portions of the image, and it
must allow for easy, localized partitioning and warping of the
image. Based on these requirements, ak-d hierarchical decom-
position, or k-d tree emerged as the natural choice. Thek-d tree
works well for several reasons:

� Its rectilinear partitions easily support the DFT.

� Its binary partitioning of the image at every step simplifies
decisions about warping (as seen in figure 4)

� It is easily represented and translated into a small number
of quadrilaterals.

Each node of the tree stores pointers to its children along with
an xy-location of both the source (unwarped) division point and
the destination (warped) division point. Storage requirements
for these nodes are inconsequential (less than six percent of the
base image size for a standard recursion depth of 5-6). Source
and destination locations are measured in the[0; 1) space to keep
the tree independent of the size of the image. This allows us to
use the tree at any size, and also allows us to use the coordinates
of the tree directly as OpenGL texture coordinates. Aboundary
(a buffer zone typically in the .1-.15 range) is used to ensure that
the effect of warping at any given level is not too dramatic. This,
along with a stopping criterion based on destination quad size,
keeps the quads from degenerating. Another stopping criterion
terminates subdivision when the total information content dips
below a certain extremely small value (to avoid pointless work).

Note the adaptive behavior of the tree, which highlights edges
and other areas of high frequency. By terminating the subdivi-
sion when quads in the destination image reach a certain min-
imum size (typically 8-12 pixels), we end up only subdividing

those areas where enough space has been allocated at higher lev-
els to make subdivision a worthwhile exercise. These are exactly
the areas which have high information content, thus focusing ef-
fort where it generates the most benefit.

There are several limitations to this approach. First, irre-
versible decisions are made at the higher levels which affect the
amount of space available at lower levels. Several heuristics at-
tempt to minimize the chance of making poor decisions at the
top levels, but because the Fourier transform is inherently not
additive, this may result in making poor decisions.

Second, the source point in our current implementation is
heuristically chosen to be the midpoint of the current image re-
gion. However, other approaches have been tried, and some will
discussed later. The advantage of choosing the source in the
middle is that it is easier to make appropriate decisions and mea-
sure results given just one degree of freedom (the position of the
destination point).

Finally, thek-d tree does not guarantee zero-order continu-
ity of the transform. The partitioning created by ak-d tree has
T-junctions, which translate to visible “cracks” in the output im-
age. We have attempted to mitigate this by rendering every slice
overlapping its neighbors with alpha-blending around the edges,
however this does not totally eliminate the problem. This seems
to be a fundamental problem with any rectangle-based partition-
ing scheme of sufficient flexibility and will need to be addressed
by future work to increase the usefulness of the overall algo-
rithm.

After creating this tree, “warping” becomes simply rendering
every leaf of the tree. Resizing the image is handled automati-
cally by the texture-mapping hardware as well. The advantage
of this approach is that no new abilities are required on the part
of the hardware – there is only one pass and no texture data is
read out of the buffer, permitting fully-pipelined performance.

5.2 Computing Frequency Content
To describe the frequency content of a particular region of the
image as a single scalar, we choose a representative frequency to
describe the region. We begin by performing a DFT using a fast,
stable cross-platform implementation known as the FFTW [6].
This DFT contains data in two dimensions as the amplitudes of
the frequency components - some samples are shown in figure 2.
These amplitudes are imaginary, but we remap them to the real
domain by taking their absolute values (ja+ bij = p

a2 + b2),
a standard practice when computing power transforms.

Now we require an information content metric. Desired prop-
erties of this metric are

� Information Capture - the metric should weight higher
frequencies more heavily.

� Comparability - two measurements should be easily and,
preferably, linearly comparable.

� Truncation Sensitivity - the metric should report informa-
tion which somehow captures the response of an area under
the frequency-space truncation operations seen earlier.

Rather than using the commonly-used power integral
weighted by amplitudes and wavelengths (a valid measure of
content, but one not linked directly to the decimation point), we
compute apercentile distribution measurement, Æ. This Æ is de-
fined as the point (in a one-dimensional frequency scale) where
the sum of amplitudes of frequencies less thanÆ makes up a
certain percentage of the total frequency amplitude. This cor-
responds to our notion of information content as the maximum



frequency because if we set thisÆ = 1, we get the maximum
non-zero frequency, or point above which frequency decimation
causes no data loss.

Practically, by setting1� Æ to some small value we get a dec-
imation point which involves a data loss of onlyÆ, where “data
loss” is defined as the sum of available amplitude. In practice,
thisÆ is only representative of the data loss. It is not an absolute
measure, due to the inaccuracies of resizing in a discrete domain,
and the natural frequency-decimation behavior of most resizing
methods. Typical values ofÆ, which can be seen as the degree of
information capture, were 85-90%.

5.3 Pixel-Level Accuracy
A decision we made earlier about our warping function now
comes back to haunt us. The tree contains floating-point val-
ues in the range[0; 1), but our image is a collection of discrete
points. We obviously do not want to lay edges of our tree in-
side of pixels, but rather along pixel boundaries. Assigning pixel
boundary values to floating-point numbers on-the-fly, however,
poses some problems. Consider a simple image of size 16 by 16
and a division point which divides the image vertically atx = 1

3
.

Where do we put this division point? Wherever we chose to put
it, we must make a common decision at all scale levels. We can-
not simply take the “ceil” or “floor” of these values, because we
will create a situation where an image, of size 4 at a higher level,
becomes an image of size 1 when reduced by 2. This causes
many pixel-level accuracy problems, which produce unsightly
“cracks” in the output. We solve this problem by storing off-
line, along with the tree, pixel-accurate integer boundary values
for the last warping or resizing operation which involved that
tree. Every node contains pixel-accurate values for the size of
the region represented by that node and its children. In this way
we make sure that, whatever decisions are made about placing
pixel boundaries at stepi of the algorithm, those decisions are
available to fuel stepi + 1. Of course, we may not have this
level of control (depending on our rendering pipeline) over the
eventual unwarping operation, but our texture pipeline, which
can handle floating-point texture coordinates, will handle those
decisions for us, as long as we have made consistent decisions
up until that point. This increases the size of the tree somewhat,
but we do not need to communicate this extra size to the graphics
board.

6 Results
We tested our software on suite of 12 images with a range of
qualitative characteristics (see figure 6). These images ranged in
size from 262x52 to 640x480. We ran the images through the
mesh generation algorithm with a stopping criterion of 8 pixels
region width andÆ = :85.

Figure 7 shows the quadtrees for the “google” and “quake”
images in both the source (unwarped) and destination (warped)
domains. It is easy to see that high frequency regions such as
the text in the google image and specular highlights and other
edges of the quake image are expanded at the expense of solid
or relatively low frequency regions.

In figure 8 we see the impact of the warp on the frequency
content of the google and quake images. Each block in the pre-
and post-warp images represents a leaf node of thek-d tree, with
the intensity representing the frequency content (as defined by
our percentage metric). Notice the spreading effect of the warp
– black and white areas compress or expand to approach gray.

Figure 6: Image Suite Thumbnails. The images, ordered from
left to right and top to bottom are: 2s, baseball, bevel, fish,
google, heart, lovett, metcalf, north america, quake, render, and
sign.

The histograms beneath the quake images show how many pix-
els lie in blocks at various frequency ranges. The bell curve of
the warped image is characteristic of the shifting of frequencies
towards the midrange.

Table 1 presents some numerical results for each test image.
We compare the effect of resizing the original image by a fac-
tor of 0.5 to resizing using our warping algorithm. To measure
this effect, we count the number of pixels which lie in blocks
whose frequency content is too high for the given resize opera-
tion and take this as a percentage of the total pixels. This is a
rather approximate measure, because we know little about any
pixel except for the characteristics of its block. However, it does
give some indication of the benefit of our approach. The table
also demonstrates that the auxiliary tree structure requires rela-
tively little storage as a percentage of the original image size.

We examine the effectiveness measure over a range of scale
factors for the quake image in Figure 9. According to this ap-
proximate measure, our algorithm is clearly superior for scale
factors from 1.0 to 0.5. However, as shown in color plates 2d
and 2e, our image retains more of the sharp features even at a
scale of 0.25.

Color plates 1 through 5 justify our claims of producing
higher uniformity in the frequency domain. We show the result
of resizing each image without our uniform frequency algorithm
as compared to resizing with our algorithm. In each case, we
see some sharp features that our algorithm preserves, such as the
“About Google” text in google, the specular highlights in quake,
the carpet and chairs in render, the stripes and text in baseball,
and the Great Lakes in north america. Unfortunately, we also
see discontinuity artifacts due to our currentk-d tree algorithm.
These are especially noticeable in the upper right quadrant of



Figure 7: K-d Trees. The google and quake images are dis-
played with theirk-d trees, first unwarped, then after warping.

5e. (For a detailed examination of these images, you may wish
to view them in digital form, available on the proceedings CD-
ROM and our web site.)

As expected, images which are fairly uniform to begin with,
especially images which contain high frequency data, are resis-
tant to being downsampled. Typical examples include small tex-
ture map patterns for modeling brick or cloth. Images with large
first derivative of frequency content, such as images containing
text over a solid background region, resize well.

Overall, the results of our test runs suggest that our algorithm
outperforms standard texture mapping techniques by preserving
detail with decreased image store.

7 Future Work
There are several limitations to our current approach, some of
which we have already discussed. This paper presents a “proof
of concept” implementation, but clearly more work is needed.
We believe the following areas may be fruitful for improving
and extending this research:

� A more flexible source mesh. The current implementation
does not allow for an arbitrary choice of source point, but
adding this extra degree of freedom to the warp computa-
tion may produce better warps.

� Using triangle meshes instead of quads. By using trian-
gle meshes, we can maintain zero-order continuity across
the image and avoid cracks. However, it may be difficult
to perform frequency analysis on a triangular subset of an
image.

� Applying to complex, multi-resolution, textured meshes.
Our current work only applies directly to a simple image,
but it may be extended to compute a new parameterization
for a complex mesh whose current parameterization does
not have uniform frequency properties.

� Applying to 3D textures. 3D textures require even greater
resources than their 2D counterparts, so this research has
even greater potential benefit in that domain.

Figure 8: Frequency Distribution, before and after warping.
The google and quake histograms are shown with frequency con-
tent mapped to intensity. The quake distributions are also plotted
as a histogram. Note the spreading effect. Whites and blacks ap-
proach medium gray. Also, shifting the frequencies towards the
center produces a more uniform bell-curve.

� Applying to video. There are opportunities to exploit co-
herence between the video frames to achieve greater com-
pression. We can find coherence in the 2D warping func-
tions of successive frames or even consider an entire se-
quence of frames as a 3D image to exploit the coherence in
a natural way.

� More advanced content analysis. Although our work on
analyzing the content of subregions of the image was fruit-
ful, we are exploring other methods, based on wavelet
transforms and other content-based research.

� Proving error bounds. Although in theory our method
should generate provable error bounds, in practice it has
proven difficult to do so because of the difficulty of im-
posing a continuous warp on a discrete space, and inherent
pixel-level error in texture-mapping routines.

� Designing for perceptual metrics. Our work has so far
largely ignored the research in perceptual metrics. One
paper we have considered is that of Rushmeier et al.[12]
Preliminary analysis of our algorithm using these metrics
has been positive.

The uniform frequency image representation we have pre-
sented allows compression of image data while maintaining the
regularity that makes images convenient. The need for such
compression is increasing with our ability to acquire large data
sets and our desire to visualize them. We are optimistic that



Image Suite
Name Size Affected Pixels Tree Size

(x,y) (warped, unwarped) (% of image)

2s 252 62 19% 43% 2.2%
baseball 398 450 6% 14% 1.7%
bevel 300 174 28% 34% 1.6%
fish 450 300 58% 63% 0.9%
google 556 130 7% 11% 0.9%
heart 353 405 36% 52% 2.0%
lovett 332 287 9% 29% 1.3%
metcalf 431 390 7% 15% 2.4%
n. america 512 512 9% 8% 1.3%
quake 300 340 7% 14% 1.1%
render 400 300 33% 50% 0.9%
sign 640 480 9% 17% 1.3%

Table 1: Image test suite. The affected pixels column indicates
the percentage of pixels which are predicted to be affected by
more than 15% data loss (as measured in the frequency spec-
trum) if the image were to be shrunk by a factor of 2 in each
dimension.

improvements to the approach presented here will provide per-
formance benefits to a wide array of visualization applications.
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