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Abstract

Multi-resolution hierarchies of polygons and more recently of
points are familiar and useful tools for achieving interactive
rendering rates. We present an algorithm for tightly integrating
the two into a single hierarchical data structure. The trade-off
between rendering portions of a model with points or with
polygons is made automatically.

Our approach to this problem is to apply a bottom-up simplifi-
cation process involving not only polygon simplification opera-
tions, but point replacement and point simplification operations as
well. Given one or more surface meshes, our algorithm produces a
hybrid hierarchy comprising both polygon and point primitives.
This hierarchy may be optimized according to the relative
performance characteristics of these primitive types on the
intended rendering platform. We also provide a range of aggres-
siveness for performing point replacement operations. The most
conservative approach produces a hierarchy that is better than a
purely polygonal hierarchy in some places, and roughly equal in
others. A less conservative approach can trade reduced complex-
ity at the far viewing ranges for some increased complexity at the
near viewing ranges.

We demonstrate our approach on a number of input models,
achieving primitive counts that are 1.3 to 4.7 times smaller than
those of triangle-only simplification.

Keywords: rendering, simplification, multi-resolution, tri-
angles, points, hybrid.

1 INTRODUCTION

Interactive visualizations, which maintain a steady feedback loop
with the application user, rely on the ability of the computer and,
in particular, the graphics engine to produce images at a high
frame rate. Applications with this requirement include the
exploration of data through scientific visualization, enhancement
of medical procedures through computer-integrated surgery,
terrain visualization, production of mechanical systems through
CAD visualization and rapid prototyping, and of course the
pursuit of entertainment through the high-end video games which
have driven the consumer graphics market in recent years.

Most such applications today employ some form of multi-
resolution rendering to achieve the necessary balance between the
conflicting goals of smooth, interactive performance and useful,
high-quality imagery. Multi-resolution rendering uses a hierarchy
of rendering primitives, allowing the application to distribute its
rendering budget across a complex geometric model to produce
such an optimized result.

The rendering primitives used generally depend on the appli-
cation domain and the method of model design or acquisition. For
example, models built from complex polygonal meshes lend
themselves to the construction of polygonal hierarchies (some
forms are often referred to as levels of detail), built through a
process of polygonal simplification. On the other hand, models
acquired as a set of points in some form, such as from a camera,
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laser range-finder, or other device for sampling the physical
world, lend themselves naturally to the construction of a point
hierarchy through the use of octree-based or other proximity-
based point merging schemes. Although these points are in a pure
geometric sense infinitesimal, they are usually defined with a
radius of extent. Thus, they can be thought of as spheres in world
space and, as a matter of rendering efficiency, are typically
rasterized as circles or squares in screen space.

In some sense, these representations are interchangeable; both
are capable of representing and rendering the same data given a
sufficiently high representational resolution. Some applications
do, in fact, choose to switch from one domain to another. Point
samples may be meshed to produce polygonal models, and
polygonal models may be point-sampled and these samples stored
to facilitate future rendering. The process of rasterization is itself
a conversion from polygons to a set of point samples, so we can
clearly establish useful correspondences between triangles and
their associated samples, sometimes using them interchangeably.

Both of these representations have merit, but neither is superior
for all geometric models under all viewing conditions. Adaptive,
view-dependent refinement schemes already employ these multi-
resolution representations to adjust the number of primitives used
across the model environment to suit the needs of the applica-
tion’s current viewing parameters. So it is natural to consider
adapting not only the number of primitives but also the fype of
primitives rendered for a particular set of viewing parameters to
produce a well-optimized balance of performance and quality.
Such a hybrid approach to rendering may produce a system with
improved scalability and a wider range of applicability.

1.1 Main Contribution

In this paper, we present a simplification paradigm to tightly
integrate polygon-based and point-based rendering. Our approach
begins with a polygonal model as input, which we proceed to
simplify using a standard, greedy simplification procedure (our
system employs edge collapse operations). The same optimization
criteria that guide the polygon simplification process also trigger
the substitution of one or more points for individual triangles as
the situation warrants. These points are also merged to produce a
complete, hybrid hierarchy. This hierarchy, built entirely as a
preprocess, may then be used to perform interactive rendering
using adaptive, view-dependent refinement.
Our algorithm provides the following capabilities:

o Automatic selection: The algorithm automatically determines
where and when a subset of a model is better rendered as trian-
gles or as points.

e Seamless transition: The adaptive refinement procedure
transitions between triangles and points at a fine granularity.

e Topology modification: Multiple manifold surfaces may be
merged (and thus more drastically reduced) during the point
simplification phase.

¢ Error management: Polygon simplification and point merging
are selected as appropriate to reduce geometric error growth
within the hierarchy, and guaranteed geometric error bounds
from the original surface are provided throughout.



The broader goal of this research is to explore the relative
strengths and weaknesses of polygon and point representations, as
well as the situations where each is most useful. We also consider
how the relative capability of graphics hardware in rendering
points versus polygons affects the hierarchies we build. In the
long term, we aim to bridge the gap between polygon-based and
image-based rendering. Images are essentially specially organized
collections of points, and so this research is a stepping stone along
the way, providing some useful tools and insights.

1.2 Paper Organization

We proceed by describing in Section 2 some related work in the
areas of polygonal simplification and point-based rendering,
followed by an overview of our integrated approach in Section 3.
After that we review our central data structure, the multi-
resolution graph, and the off-line and on-line portions of our
algorithm in Sections 4, 5, and 6. We conclude with a look at our
results, and a discussion of the issues they raise.

2 RELATED WORK

This research draws on previous work in the areas of polygonal
simplification and point-based rendering. We now review the
most relevant topics in each of these fields.

2.1 Polygonal Simplification

A number of existing polygonal simplification algorithms use
priority queue driven, bottom-up decimation strategies [Guéziec
1995, Hoppe 1996, Cohen et al. 1997, Garland and Heckbert
1997]. Of these algorithms, several provide guaranteed bounds on
the resulting error between all points on the original surface and
all points on the simplified surface (the tightest possible measure
being the Hausdorft distance) [Guéziec 1995, Klein et al. 1996,
Cohen et al. 1997, Lee et al. 1998]. Our error measure happens to
be based on the projection algorithm of [Cohen et al. 1997], but
any of this class of guaranteed error measures would do equally
well for the purpose of this research.

Several algorithms and hierarchical data structures allow for
fine-grained, view-dependent refinement of polygonal models in
an interactive setting [Rossignac and Borrel 1993, DeFloriani et
al. 1997, Hoppe 1997, Luebke and Erikson 1997, Xia et al. 1997].
Of these, we have found the multi-triangulation data structure of
[DeFloriani et al. 1997] to be the most compatible with our
current research goals.

The benefits of this research and the properties of our hierar-
chical models bear some resemblance to those of simplification
algorithms that provide for topological modification [Rossignac
and Borrel 1993, El-Sana and Varshney 1997, Schroeder 1997,
Garland and Heckbert 1998] and merging of low-resolution
objects [Erikson and Manocha 1999]. However, none of the
existing algorithms provides both fine-grained progressive control
and guaranteed surface-to-surface error bounds (other than the
most conservative approach of tracking the maximum separation
between collapsed vertices).

An interesting piece of research that seems quite similar to ours
is the progressive simplicial complex [Popovic and Hoppe 1997].
This data structure, like our multi-resolution graph, also allows
for primitives of different types, namely simplices of arbitrary
dimension. This general approach allows the simplices to collapse
to progressively lower dimension. Our work, in contrast, does not
require that triangle vertices be merged to become points, but
rather allows this conversion to take place at an arbitrary sam-
pling rate. This allows the hierarchy to be tuned according to a
system’s relative polygon and point rendering performance
characteristics.

2.2 Point-based Rendering

Using points as rendering primitives has a long history in com-
puter graphics [Levoy and Whitted 1985]. Early computer
graphics systems used points to render clouds, explosions, and
other fuzzy objects [Reeves 1983]. More recently, together with
the advent of faster general-purpose CPUs, point rendering has
been used to model and render trees, polygonal meshes, and
volumetric models [Hoppe et al. 1992, Max and Ohsaki 1995].

The fundamental difficulty of using points is to create a con-
tinuous (on-screen) reconstruction of the underlying model.
Algorithms leverage the simple rendering calculations of points
[Grossman and Dally 1998] to cover surfaces with a sufficient
number to samples. Image-Based Rendering (IBR) exploits the
screen-coherence of projected points to further accelerate point
rendering. By ordering points on a grid and performing incre-
mental computations [McMillan and Bishop 1995], IBR methods
can re-project a large number of points (or pixels) each frame.

In our case, we have full knowledge of the underlying model
and can choose, a priori, the points to render a model at a desired
error tolerance. Thus, we do not need to reconstruct the model.
Furthermore, by establishing an error metric over the surface of
the model, we have a criterion to sample the model and generate
points for an interactive point rendering system [Pfister et al.
2000, Rusinkiewicz and Levoy 2000]. The challenge for our work
is to compute, for every neighborhood of a model, when we
achieve a win with polygonal rendering and when point rendering
is more advantageous.
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Figure 1: Components of a hybrid multi-resolution
rendering system.

3 OVERVIEW

There are many approaches one could take to produce a tight
integration of polygons and points in a multi-resolution frame-
work. For example, one could construct two complete hierarchies,
one for polygons and one for points, with some type of links
describing the mappings between the two. Then all this informa-
tion would be available at the time of rendering for the best
combination of polygons and points to be selected in a view-
dependent fashion.

We have opted, at the expense of some flexibility, to pursue a
more practical approach of using view-independent information to
construct a single hierarchy comprising both polygons and points.
Thus all of the important decisions regarding the tradeoffs
between the two primitive types have been made before the
rendering even begins. This predetermination of the tradeoffs
could have negative consequences on how well the decisions are
made for any given viewing parameters, but it allows us to build a



simple run-time system based on a foundation of well-known
algorithms and data structures.

Figure 1 depicts the components of our system. Our hybrid
simplification process may be seen at a high level as a simplifica-
tion algorithm supporting three different simplification opera-
tions: polygon simplification (e.g. edge collapse), point replace-
ment, and point simplification. These operations are performed
repeatedly in an appropriate order to ultimately produce a hierar-
chy. Each operation replaces some subset of the model primitives
with a new set of primitives, reducing their complexity and
perhaps changing their type. In particular, the point replacement
operation converts a triangle into one or more points, which may
then be further reduced through point merging operations. The set
of operations performed, along with the affected primitives and
associated error bounds are all stored in a multi-resolution graph
data structure.

The interactive rendering system uses the viewing parameters
for a given rendering frame to select an appropriate set of primi-
tives from the multi-resolution graph. This set of primitives
completely covers the original model (i.e. the entire model is
represented by this set) and provides an appropriate resolution.
Our current system allows the user to choose a screen-space error
tolerance, and the primitives are chosen to be just complex
enough to avoid exceeding this tolerance. Because the set of
primitives selected is that which lies along a particular cut
through the graph, and this cut may be modified incrementally
from frame to frame, this selection process is referred to as
“adapting the cut”. Once the primitives are selected, they are
rendered to produce the final image. We next present the essential
details of this multi-resolution graph before proceeding to the
description of the simplification algorithm.

4 MULTI-RESOLUTION GRAPH

Our multi-resolution graph (MRQG) data structure is an extension
to the elegant multi-triangulation (MT) data structure described in
detail in [DeFloriani et al. 1997, DeFloriani et al. 1998] (Because
the extension is to permit the inclusion of new primitive types, the
original name is no longer appropriate). The MRG is a simplifi-
cation hierarchy in the form of a directed acyclic graph. The
graph is represented by a set of nodes, N, connected by a set of
arcs, 4. There is a unique source node at the root of the graph, and
a unique drain node at the bottom. A small example is shown in
Figure 2.

Each node of the MRG represents a change to an underlying
geometric model — a refinement if we are traversing downward, or
a simplification if we are traversing upward. Thus, as we build
this graph (from drain to source, in bottom-up simplification),
each of our simplification operations is stored along with its
associated error bound as a node.

The primitives of the model are stored with the arcs. The
primitives removed from the model by an operation are associated
with the child arcs of the operation’s node, and those inserted by
the operation are associated with its parent arcs (one or more
primitives may be stored with an arc). From the arc’s perspective,
the node beneath it (its end node) produces its primitives, and the
node above it (its start node) consumes them (assuming we are
traversing upward).

The arcs represent the dependencies of one mesh operation on
another. So, for example, if we wish to perform the refinement
indicated by a node, we must first perform the refinement indi-
cated by all of the node’s parents. Performing the node’s opera-
tion amounts to replacing the primitives of a node’s parent arcs
with those of its child arcs, or vice versa. The model coverage of
these two sets of primitives are generally the same to avoid local
cracks (i.e. missing surface coverage) or multiple coverage (which

Figure 2: A small multi-resolution graph (11 original
triangles). The letters indicate the various node types:
D (drain), S (source), TS (triangle simplification), PR
(point replacement), and PS (point simplification).
The cut contains 2 triangles and 4 points.

may be inefficient, but not necessarily incorrect) across the
model.

To extract a connected, consistent representation of the surface,
we generate a cut of the graph. A cut is a set of arcs that partitions
the nodes of the MRG, leaving the source node above the cut, and
the drain node below it. In addition, if the cut contains arc a, then
it must not contain any ancestor or descendent of a. The triangles
of such a cut represent our input surface at some resolution. In
general, we find such a cut by performing a graph traversal
starting from the source, testing the error of each visited node
against a particular error threshold to decide whether to continue.
We can also begin the traversal with an existing cut and move
portions of the nodes upward or downward across the cut to
modify the local resolution of the surface.

We choose to use this MRG as our simplification graph repre-
sentation because it has a couple of desirable properties which it
inherits directly from the MT.

First, the graph fully specifies all the primitives to be used for
all surface resolutions as well as the dependencies between all
changes in resolution. Because all the primitives that may be used
as part of the rendered model are known in advance, we can
provide rigorous bounds on their quality. Not all simplification
hierarchies have this property. For example, the well-known
simplification hierarchies of [Hoppe 1997] and [Luebke and
Erikson 1997] do not have these properties. Looser dependencies
may give these hierarchies greater flexibility, because the order-
ing of vertex merges is not quite so fixed. But the particular
triangles that can be extracted from these hierarchies are not
known in advance, and vary depending on the order of vertex
merges.

Second, the MRG allows for explicit representation of its
primitives and a single, general replacement operator. This is
incredibly convenient for research purposes when the goal is to
explore different primitive types. This very general operation
specifies to replace the primitives in set 4 with the primitives in
set B, without any specific knowledge of the primitive types
involved. Operators that allow a more implicit representation of



this primitive conversion may produce a more compact data
structure, but they are not so convenient for exploration.

5 HYBRID SIMPLIFICATION

As mentioned in Section 3, our simplification process comprises
three simplification operations: polygon simplification, point
replacement, and point simplification. Although the simplification
optimization process could be implemented directly using a single
priority queue or queue for each type of operation, we actually
separate the simplification process into three distinct components,
performing them one after the other in their entirety.

The polygon simplification process explicitly maintains a pri-
ority queue of edge collapses that can be used to replace a set of
triangles with a smaller set of triangles. A point replacement
queue is maintained implicitly in the following way. After
computing the optimization value of an edge collapse operation,
we evaluate the optimization value of the point replacement
operations associated with each of its triangles. If any of these
point replacements takes precedence over the edge collapse, we
remove the edge collapse from the queue. When the polygon
simplification process is finished, point replacement operations
are performed on all the remaining triangles. This produces the
same result as would an explicit point replacement queue.

Once all the point replacements have been performed, the point
simplification process begins. We apply an octree-guided point
merging process to simplify the points produced by the replace-
ment operations. The result may differ from a priority-driven
point simplification process, but it is efficient and works well in
practice.

As the entire simplification process proceeds, we build an
MRG from the bottom up (as shown in Figure 2). Each operation
we perform adds a node to the graph, and the geometric error
bound for the operation is stored with that node. The operation
also enables us to create and connect the node’s child arcs. The
creation of parent arcs is delayed, however, until we know which
nodes will consume the primitives created by this operation. If
multiple nodes consume these new primitives, then the node gets
multiple parents. Notice that each point replacement node has a
single child arc containing one triangle, and produces one or more
points. Each point simplification node, on the other hand, has at
least two child points and produces only a single point. Thus the
point simplification nodes can have only one parent arc, and the
top portion of our graph is actually a tree.

Now we shall discuss the optimization function used to deter-
mine the order of triangle simplification and point replacement
operations. We follow this with a more detailed description of
each of the three simplification operations.

5.1 Queue Optimization Function

For a given simplification operation, we compute its optimization
value as its cost divided by its benefit. The cost is the increase in
error, Ag, and the benefit is the decrease in number of primitives,
-Ap, that would occur as a result of performing the operation in
question. In fact, we can plot the number of primitives versus the
error for the entire simplification process (as in Figure 7), and this
optimization function is just the slope of that curve. Thus we
attempt to produce a curve in which the error grows as slowly as
possible by choosing the operation with the smallest optimization
value.

For simplification algorithms that perform only one type of
operation, the benefit factor is often unnecessary because it is a
constant for all the operations in the process (although for models
with borders, operations taking place on the borders generally
provide less benefit than those on the interior do).

By ordering both triangle simplification and point replacement
operations according to this optimization function, we generally
produce error curves that stay entirely below that of a triangle-
only simplification process. This outcome relies on the fact that
the slope of the point simplification portion of the curve is
generally the lowest of all.

However, this conservative ordering delays the introduction of
points into the hierarchy, leaving less time to benefit from the
small slope of the point simplification. Thus in the interest of
producing the best overall curve rather than one which is every-
where beneath the triangle-only simplification curve, we may
wish to allow a more aggressive schedule for initiating point
replacement operations. To achieve this, we introduce a user-
specifiable transition factor, t, which scales the optimization
values of all the triangle simplification operations. Setting 7 to 1
achieves the same result as the cost/benefit optimization we have
already described, whereas setting it to a value greater than 1 will
introduce points sooner.

The parameter 7 is used to trade an increased primitive count in
the lower error ranges for a decreased primitive count in the
higher error ranges (seen as a hump in the curve in Figure 8). This
is desirable for models of large environments where efficiency for
distant portions of the model may be almost as important or more
important than efficiency for near portions of the model (because
respecting a constant screen-space error tolerance across the
model allows greater world-space error for distant portions of the
model).

5.2 Triangle Simplification

Our triangle simplification operation is an edge collapse, which
merges the two existing vertices of an edge into a single, new
vertex. Our implementation is based on the algorithm described in
[Cohen et al. 1997], which measures the error of an edge collapse
using planar projections. This error is a bound on the Hausdorff
distance (a max of min distances) between the original triangles
and the simplified triangles. This particular algorithm operates
only on manifold surfaces and preserves topology, but this is not a
requirement for our hybrid simplification. The only properties we
require of a triangle simplification operation is that it provide a
guaranteed error bound. (Unfortunately, most operations that
allow topology modification or non-manifold inputs do not
provide guaranteed error bounds). Thus, a number of other
existing algorithms are applicable and may compare favorably
[Guéziec 1995, Klein et al. 1996, Lee et al. 1998].

As described earlier, for each edge collapse operation, we also
compute the optimization cost of the point replacement of each of
its triangles. If any of these point replacements has priority over
the edge collapse, the edge collapse is removed from considera-
tion.

5.3 Point Replacement

The point replacement operation provides a means of transitioning
from triangles to points in our multi-resolution hierarchy. An
important question to consider is how many points we should use
to replace a triangle. In a correct MRG, the error always increases
as we move upward in the hierarchy. As a matter of principle, we
wish to guarantee that the rendering complexity always decreases
at the same time. Thus one can always move down the hierarchy
to increase quality or up the hierarchy to increase performance.
With this in mind, we should never replace a triangle with so
many points that the performance is decreased.

To help our system meet this performance constraint, we intro-
duce a system-specific performance ratio, k, which is the ratio of
point-rendering performance to triangle-rendering performance on
a particular system. Specifying this ratio correctly should make it



possible to generate a hierarchy that is well tuned for the system
in question. Now it is clear that we never wish to replace a
triangle with more than |, | points, because this would actually

decrease performance. Notice that if k¥ <1, then a point replace-
ment can never directly increase performance. Using this defini-
tion of x, we can now refer to a number of primitives in this
system, as:

points

primitives = triangles +
K
In practice, we want to perform the point replacement such that it
minimizes the optimization value for the operation. Using k we
find that the benefit for a point replacement operation is:

replacement points
benefit = 1 - "LACEMEN pomnts

This benefit is just the resulting change in primitive count as we
replace a single triangle primitive with a number of points
equivalent to a fraction of a triangle primitive. The cost of the
point replacement is the associated increase in error due to
replacing a triangle with points. We can show that if we com-
pletely cover the triangle, this cost is just the point radius.

The main tool we have to work with to solve this discrete opti-
mization problem is a procedure for generating a set of replace-
ment samples, given a specified sampling distance. We next
describe this sampling procedure and then a method for optimiz-
ing the choice of sampling distance for a triangle.

5.3.1 Sampling Procedure

The sampling procedure takes as input a sampling distance and
generates a set of point samples that entirely covers a triangle. For
a given sampling distance, we wish to generate as few points as
possible to optimize performance. These are the main considera-
tions for the sampling algorithm to work well.

As mentioned above, each sampling point can be treated as a
sphere, specified by a center (the sample location) and a radius
(the sample’s range of coverage). It is intuitively clear that a set
of spheres (or circles in the plane of the triangle) must overlap
somewhat to completely cover the triangle. Squares, on the other
hand, tile the plane quite nicely without overlap. Thus we can tile
the plane with circular discs that circumscribe these square tiles.

e Sampling
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Figure 3: Squares vs. circles to cover a region.

Figure 3 depicts the case in which squares (or circles) just cover
the region (i.e. any further separation would lead to a hole). In
this sense, it’s quite reasonable to use squares to address the
sampling problem.

To make the algorithm easy to implement as well as to mini-
mize the number of points, we proceed to sample the triangle one
row at a time, as shown in Figure 4. We begin by choosing a
coordinate frame such that the largest edge is considered to be
horizontal at the bottom of the triangle.

We start the sampling from the left side of edge AB, and make
the first sampling point cover as much of the triangle as possible
but without introducing any gap or hole at the bottom and left
side. The following points will be sampled in the same row,
which is parallel to edge AB, until all the triangle space in that
row is covered. This procedure is repeated until the whole triangle
is covered. Notice that each row may shift left-to-right with

respect to the previous rows, so our sampling does not exactly
follow a 2D grid.

.

! !

Figure 4: The first row of a triangle is sampled.

In addition to computing the sample’s center, we may also wish to
sample other attributes, such as color. To make it possible to
interpolate rather than extrapolate, we ensure that all the sample
centers are located inside or on the edge of the triangle. In Figure
4, if the sampling square has a center outside of the triangle
(above edge AC), we will push down the square to make the
center just located on the edge AC. The similar case will occur
when the sampling point is close to edge BC. To the right side
sampling point, we will first move it as left as possible (just cover
vertex B), then we will adjust it up or down to make it inside the
triangle. It is important to get these special boundary conditions
right, because when we sample a triangle with a small number of
points, all the points may exhibit some boundary condition.
Finally, we need to compute the error bound for a point. In
terms of the two-sided Hausdorff distance measure, we know that
every point on the triangle is zero distance from a sample sphere,
and every point on a sample sphere is within the sphere’s radius
from a point on the triangle. Thus the incremental error due to
sampling is the sphere radius, r. If the sampled triangle already
has some error bound &,, then the total error bound of the point is:

E,=r+¢,

Given the neighboring sample distance, d, the radius of the
circumscribing circle is just:

=Y

5.3.2 Computing Optimum Sample Distance

Now that we can generate a set of samples or, using the same
procedure, count the number of samples generated for a given
triangle and sampling distance, it is possible to effectively
optimize the sample distance using a fairly simplistic approach.

First, we would like the ability to find the smallest sampling
distance, d, which produces no more than a given number of
samples, s. We can initialize d to a value that makes the total area
of's square samples equal to the triangle area:

[4
Area, =sd*> —d = 2%
s

This is the theoretical minimum sampling distance to generate no
more than s samples. Then we double d until it produces more
than s samples and finally binary search within the resulting
interval to find the best sample distance to within some relative
tolerance.

Given this discrete function for d as a function of s, we can
now optimize for the d that produces the smallest cost/benefit
value. The cost value is just the radius, which we have seen in
Section 5.3.1 is just a constant multiple of d. The benefit value
varies with the number of replacement points, s. Because s as a
function of d is a step function, this optimum d will occur just at
the top of one of these steps. Thus the most straightforward way
to compute the optimum sampling distance is to find d for each
integer step with s<k (which we have just described above), and
choose the one resulting in the smallest cost/benefit. This works
in practice for small values of k. For larger values, we may wish
to estimate a derivative of this step function to provide a faster
optimization.



5.4 Point Simplification

After the priority queue has emptied and all remaining point
replacements have been applied, we begin the point simplification
process by inserting all the original sampling points into the cells
of an octree according to the position of the sample center. We
then use the octree cells to indicate which sets of points to merge.
Each merge can combine up to eight children, and produces
exactly one parent point. The center and radius of the new point
are chosen such that the parent sphere contains all the child
spheres, as shown in Figure 5 (we do not currently use the optimal
algorithm, but a simple heuristic). The color of the parent point is
a weighted average of those of its children with weights assigned
according to surface area.

— parent

— child

Figure 5: 3 children points are merged into 1 parent
point.

Each node of the octree corresponds to one node of the MRG with
a single parent arc. As in the case of the original point samples,
the radius is only a part of the error bound for the merged point
and its generating node; it must be combined with any existing
triangle error to compute the total error bound. The total error
bound for a point is just its radius plus the maximum triangle error
bound component associated with its children (this component is
just the child point’s error minus its radius). The creation of the
root node completes the MRG data structure and the hybrid
simplification process.

6 INTERACTIVE DISPLAY

Our interactive display system allows the user to navigate through
a 3D environment described by a multi-resolution graph. The
model is statically pre-lit with diffuse illumination so that no
normals are required for the point primitives (this is still common
practice in the image-based rendering community, although
current research is gradually reducing this limitation).

The user can select either a screen-space error tolerance, in
terms of pixels of deviation, or an object-space error tolerance in
terms of a percentage of the length of the environment’s bounding
box diagonal. Choosing a screen-space tolerance invokes view-
dependent refinement every frame as the user navigates the
environment. Alternatively, selecting an object-space tolerance
causes a one-time refinement to the specified tolerance. This is
useful for looking at the various model resolutions up close, and
allows navigation without any changes in the model primitives.

As described in Section 4, the set of primitives to be rendered
is determined by finding a cut through the graph; the primitives
associated with the arcs on the cut are rendered. The cut is
adapted by evaluating an error criterion to determine if a node is
above or below the current error threshold. For an object-space
error tolerance, the stored error is divided by the length of the
MRG’s bounding box diagonal for comparison with the threshold.
For a screen-space threshold, the arc’s screen-space depth is
computed using a conservative bounding sphere approximation (a
bounding sphere is stored with each arc). From this depth, a
scaling factor is computed to convert the error length from object-
space coordinates to a screen-space pixel distance, which is now
comparable with the specified pixel threshold. The same scaling

factor is used to convert a point primitive’s radius to a screen
space radius for rendering as a circle.

Our current implementation renders OpenGL points on a SGI
InfiniteReality II platform. Other more efficient point rendering
systems have been developed [Grossman and Dally 1998, Pfister
et. al 2000, Rusinkiewicz and Levoy 2000], some of which
include texture filtering. Any of these can readily be used in the
context of our hybrid simplification framework. We hope to take
more of a 3D image warping approach in the future, incorporating
some form of LDI tree [Chang et al. 1999] or a derivative of it, in
order to achieve greater point performance (and thus a larger ).

7 RESULTS

We have implemented both the hierarchical simplification and
interactive display algorithms described in Sections 5 and 6, and
tested them on several models. These models are listed in Figure
6. Most of the preprocessing time is spent in the evaluation and
prioritization of potential edge collapses. This time is increased
somewhat by the optimization of sampling distances for potential
point replacement operations, but not excessively for small values
of the input parameter k. The time required for actually generat-
ing the samples and performing the octree-based point simplifica-
tion is typically quite small compared to the rest of the algorithm.

Model Input MRG MRG Simp
Tris Tris Points Time
Armadillo 1,999,404 | 8,962.427 | 154,651 111:29
Bunny 69,451 308,738 10,825 1:56
Bronco 74,308 257,694 70,841 2:29
Horse 96,966 432,878 10,429 2:45

Figure 6: Test Models (data reported for x=3, t=1;
simplification time in minutes:seconds).

It is informative to observe the behavior of the curves produced
by plotting the number of primitives versus the object-space error
for various choices of the k and t parameters. Figure 7 shows
such a plot for the Bronco model, with a fixed value of k=3 and a
several different values of the transition factor, t. Notice that
setting t=1 achieves a curve that is everywhere less than or equal
to the curve of triangle simplification alone (this is not actually
guaranteed by this non-optimal greedy process). However, if we
relax this constraint by increasing t, we reduce the error values
for the lower primitive counts at the expense of increasing it for
some of the higher primitive range.

Looking at Figure 8 shows us that the bunny model does not
benefit as much from point replacement as much as the Bronco.
This is not surprising, because the bunny is a single, highly
tessellated manifold surface, while the Bronco comprises 339
individual manifolds, which are not so highly tessellated to begin
with. These manifolds are not merged in the triangle domain by
our polygon simplification algorithm, so for this reason as well,
they benefit from the transition to points.

Figure 9 examines changing the system performance ratio, ,
for a fixed value of t (t=1.0). This plot demonstrates, not sur-
prisingly, that if we develop systems with increased levels of
point-rendering performance, our hierarchies will directly benefit
by switching to points sooner in the simplification process.

In Figures 10 and 11, we report the simplification results for a
fixed screen-space error of 3 pixels. We fly-through an environ-
ment consisting of 73 Bronco models and record the number of
primitives for hybrid simplification with k=3, t=1, for hybrid
simplification with k=3, t=5, and for triangle-simplification only.
We are able to reduce the primitive count by an average factor of
1.6 (minimum 1.3, maximum 4.7). As expected, the simplification
for =5 is slightly better when most of the environment is in the
distance (e.g. beginning of the path) and slightly worse when the



viewer is mostly surrounded by the environment (e.g. middle of
the path).
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Figure 7: Varying t for the bronco with x=3.
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Figure 8: Varying t for the bunny model with x=3.
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Figure 9: Varying x for the bunny model, with 1=1.

These graphs show us the nature of error growth in the hierar-
chies, but they cannot portray the localization of point replace-
ments or the geometric configurations where point replacement is
called for. We get a much better intuition for these characteristics
from rendered images of the test models.

Performance Comparison
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Figure 10: Total primitive counts for a fly-through
of the Bronco environment. Hybrid T1/TS5 refers to a
hybrid simplification using k=3, 1=1 and k=3, =5,
respectively. Triangles refer to a pure triangle sim-
plification.
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Figure 11: We show the decomposition of the hybrid
primitives during the example fly-through of the
Bronco model.

Figure 12 shows the bunny being gradually covered by points as
it recedes into the distance. The first points appear around the
sharp tips of the ears and the curves of the toes, then clusters of
points appear in the ridges of the neck and hindquarters, and
finally the rest of the triangles are consumed by this phenomenon.
The last places to remain triangles are the back and rear of the
bunny, which are the flattest. It is pretty clear that the points
benefit the most in the regions of high curvature, where simplifi-
cation is most limited. This occurs primarily when the dihedral
angles between faces become small and the mesh is the coarsest.
Figure 15 shows the simplification by increasing an object-space
error tolerance; thus the rendered points nearer to the eye position
are larger, with larger screen-space error.

Figures 13, 14, and 17 show similar transitions for the Bronco,
horse, and armadillo models. The Bronco in particular suffers
from self-penetration artifacts due to many surfaces with different
colors and tight tolerances. We have shown it for a system with
k=10 rather than k=3 because such a system can reduce these
artifacts somewhat by using finer point samples. Triangle simpli-
fication alone also suffers from such artifacts on a model like this,
but they may be less pronounced than those of the fatter point
primitives are.

Figure 16 shows captured frames from the Bronco environment
fly-through and also a comparison to a frame with a screen-space
error of one pixel rendered using triangle-only simplification.



8 DISCUSSION AND FUTURE WORK

To our knowledge, the hybrid simplification framework presented
is the first system that tightly integrates polygon and point
rendering into a single multi-resolution hierarchy. This hierarchy
is optimized according to the relative performance characteristics
of the primitive types on a particular architecture. For a given
error bound, it achieves a greater reduction in the overall primi-
tive count as compared to a single-representation hierarchy. As
part of this research, we have explored two parameters that
influence the characteristics of the hierarchy we build, and we
have investigated how the replacement of triangles with points
manifests itself in the context of several models.

As future work, we plan to use our hierarchy with a data struc-
ture such as an LDI tree. The exact arrangement of the images we
warp may differ from other 3D image warping applications
because our points are being dynamically added to and removed
from inclusion in the warp. One challenge will be to keep our
images dense enough with points for warping that we still benefit
from the additional efficiency it provides over the transformation
of individual points.

Another interesting avenue for exploration is the construction
of such a hybrid system in conjunction with a topology-modifying
simplification operator. Allowing topological modifications in the
polygon domain may “level the playing field” due to their ability
to continue simplifying longer. It will be interesting to see how
the comparison plays out when both operators can merge objects.

And finally, the system we have presented here only takes into
account the geometric deviation of the simplification. It does not
account for color error, texture error, nor does it provide for
illumination of points. Although measuring the error of attributes
is somewhat well understood in their own domains, it is much less
clear how to combine them into a useful screen-space metric.
Thus attribute errors may be used to guide the off-line optimiza-
tion, but their use in the interactive display system is a more
open-ended problem.
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Figure 15: Bunny model with object space deviation
of 1%, 2%, 3%, and 4% of its bounding box diago-
nal (=3, t=5).

Figure 12: Bunny model with screen-space error of 5
pixels (k=3, 1=5). (wireframe indicates triangles)

Hybrid simplification — 3 pixels of deviation (x=3, t=1)

Figure 16: One frame from the Bronco environment
fly-through.

Figure 13: Bronco model with 5 pixels of deviation
and zoomed in at 20 pixels of deviation (x=10, 1=1).

Figure 17: Hybrid simplification of armadillo with 3

Figure 14: View of the horse model with 20 pixels of pixels of deviation (=3, 7=5).

deviation (x=10, 1=1).



