Stacks and Queues

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Stack?

Stores a set of elements in a particular order
Accessed in Last-In-First-Out (LIFO) fashion
Real life examples:

* Pile of books

* PEZ dispenser

* Cup trays in cafeteria

CS examples: program execution stack,
parsing/evaluating expressions

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Stack Abstract Data Type

push(o): insert o on top of stack
pop(): remove object from top of stack

top(): look at object on top of stack (but
don’t remove)

size(): number of objects on the stack

isEmpty(): does (size == 0)?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Java Interface for Stack ADT

public interface Stack ({

public int size();

public boolean isEmpty () ;

public Object top() throws
StackEmptyException;

public void push (Object element) ;

public Object pop() throws
StackEmptyException;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Array-based Stack Implementation

Allocate array of some size

* Maximum # of elements in stack
Bottom stack element stored at index 0
first index tells which element is the top

increment first when element pushed,
decrement when pop’d

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Array-based Implementation

public class ArrayStack implements Stack {
private Object[] S;
private int topIndex = -1;
public void push(Object obj) throws StackFull {
if (size() == S.length)
throw new StackFull (“full”) ;
S[++topIndex] = obj; }
public Object pop() throws StackEmpty {
if (isEmpty())
throw new StackEmpty (“empty”) ;
Object elem = S[topIndex];
S[topIndex--] = null;
return elem; }

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis

Each operation is O(1) running time
* Independent of number of items in stack
* push, pop, top, size, isEmpty

Space can be O(n) or may be much more

* depends if n is known at initialization time

Linked List Stack Implementation

Benefits
* Avoids maximum stack size restriction

* Only allocates memory for stack elements
actually used

How
* Allocate a node for each stack element

* Nodes are chained together by reference to
next node in the chain

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Linked List Node

public class Node {
private Object element;
private Node next;
public Node (Object e, Node n) {
element = e; next = n; }

Linked List Stack Implementation

public class LinkedStack implements Stack {
private Node top = null;
private int size = 0;
public void push(Object elem) {
Node v = new Node() ;
v.setElement (elem) ;
v.setNext (top) ;
top = v;
size++; }
public Object pop() throws StackEmpty {
if (isEmpty()) throw new
StackEmpty (“empty”) ;
Object temp = top.getElement() ;
top = top.getNext();

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

size --;
return temp; }
} Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis

All stack functions still O(1)
* push, pop, top, size, isEmpty

What is a Queue

Stores a set of elements in a particular order

Accessed in First-In-First-Out (FIFO)
fashion

Real life examples:
* Waiting in line at cafeteria

* Waiting on hold for technical support
CS Example: Buffered I/O

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Queue ADT

enqueue(o): Insert object o at rear of queue

dequeue(): remove object from firont of
queue

size(): number of elements
isEmpty(): size == 0?

front(): look at object at front of queue

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Queue Interface in Java

public interface Queue {
public int size();
public boolean isEmpty()
public Object front() throws QueueEmpty;
public void enqueue (Object element) ;
public Object dequeue() throws QueueEmpty;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Array-based Queue Implementation

Array of fixed size

Index array element for front and rear of
queue

Indices “wrap around” when they cross end
of array

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Array Queue Implementation

public class ArrayQueue implements Queue {
private Object[] Q;
private int size=0;
private int front=0, rear = 0;
public void enqueue (Object o) {
if (size() == Q.length) throw
new QueueFull (“full”);
Q[rear] = o;
rear = (rear + 1) % Q.length;
size++;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

List Queue Implementation

Head and tail node references for front and
rear of queue

Insert at tail, remove from head
* Remove from tail too slow for singly linked list

—Updating tail reference with new tail takes
full traversal

* So use tail of list for rear of queue

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

List Queue Implementation

public class ListQueue
implements Queue ({
private Node head null;
private Node tail null;
private int size = 0;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

List Queue

public void enqueue (Object obj) {
Node node = new Node (obj, null);

if (size == 0)
head = node;
else

tail.setNext (node) ;
tail = node;
size++;
}
public Object dequeue() {
Object obj = head.getElement() ;
head = head.getNext() ;
size--;
if (size == 0)
tail = null
return obj;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis

All queue operations are O(1)

* size(), isSEmpty()

* enqueue(), dequeue(), front()

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Double-ended Queue

Sometimes called “deque” (dek)

Similar to stack and queue

* Allows insertion and removal at both ends of
the queue

* Stack or queue is easily implemented using a
deque

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque ADT

insertFirst(e) : insert element at front
insertLast(e) : insert element at rear
removeFirst() : remove first element
removelLast() : remove element at rear
first() : examine first element

last() : examine last element

size(e) : number of elements in deque
isEmpty() : size ==0?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Doubly Linked List

Singly linked list inefficient for removing
from tail

Has prev reference as well as next reference

Can use sentinel nodes to reduce the special
cases

* node has no element, just next or prev
reference

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque Implementation

public class MyDeque implements Deque

DLNode header, trailer;

int size;

public MyDeque() {
header = new DLNode() ;
trailer = new DLNode() ;
header.setNext (trailer) ;
trailer.setPrev (header) ;
size = 0;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque Implementation

public void insertFirst(Object o) {
DLNode |second| = |header]| getNext () ;
DLNode first =

new DLNode (o,header, second);
second|. setPrev (first) ;
header]. setNext (first) ;
size++;

}

Could be null if no sentinels
(trailer could also be null)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque (no sentinels)

public void insertFirst(Object o) {
DLNode second = header;
DLNode first = new DLNode (o, null,
header = first;

if (second == null)
trailer = first;
else
second.setPrev (first) ;
size++;

second) ;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque Analysis

All operations still O(1)

Doubly linked list
* nodes slightly larger

» more references to keep up to date

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

