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What is a Stack?

Stores a set of elements in a particular order
Accessed in Last-In-First-Out (LIFO) fashion
Real life examples:

* Pile of books

* PEZ dispenser

* Cup trays in cafeteria

CS examples: program execution stack,
parsing/evaluating expressions
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Stack Abstract Data Type

push(o): insert o on top of stack
pop(): remove object from top of stack

top(): look at object on top of stack (but
don’t remove)

size( ): number of objects on the stack

isEmpty( ): does (size == 0)?
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Java Interface for Stack ADT

public interface Stack ({

public int size();

public boolean isEmpty () ;

public Object top() throws
StackEmptyException;

public void push (Object element) ;

public Object pop() throws
StackEmptyException;
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Array-based Stack Implementation

Allocate array of some size

* Maximum # of elements in stack
Bottom stack element stored at index 0
first index tells which element is the top

increment first when element pushed,
decrement when pop’d
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Array-based Implementation

public class ArrayStack implements Stack {
private Object[] S;
private int topIndex = -1;
public void push(Object obj) throws StackFull {
if (size() == S.length)
throw new StackFull (“full”) ;
S[++topIndex] = obj; }
public Object pop() throws StackEmpty {
if (isEmpty())
throw new StackEmpty (“empty”) ;
Object elem = S[topIndex];
S[topIndex--] = null;
return elem; }
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Analysis

Each operation is O(1) running time
* Independent of number of items in stack
* push, pop, top, size, isEmpty

Space can be O(n) or may be much more

* depends if n is known at initialization time

Linked List Stack Implementation

Benefits
* Avoids maximum stack size restriction

* Only allocates memory for stack elements
actually used

How
* Allocate a node for each stack element

* Nodes are chained together by reference to
next node in the chain
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Linked List Node

public class Node {
private Object element;
private Node next;
public Node (Object e, Node n) {
element = e; next = n; }

Linked List Stack Implementation

public class LinkedStack implements Stack {
private Node top = null;
private int size = 0;
public void push(Object elem) {
Node v = new Node() ;
v.setElement (elem) ;
v.setNext (top) ;
top = v;
size++; }
public Object pop() throws StackEmpty {
if (isEmpty()) throw new
StackEmpty (“empty”) ;
Object temp = top.getElement() ;
top = top.getNext();
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size --;
return temp; }
} Johns Hopkins Department of Computer Science
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Analysis

All stack functions still O(1)
* push, pop, top, size, isEmpty

What is a Queue

Stores a set of elements in a particular order

Accessed in First-In-First-Out (FIFO)
fashion

Real life examples:
* Waiting in line at cafeteria

* Waiting on hold for technical support
CS Example: Buffered I/O
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Queue ADT

enqueue(o): Insert object o at rear of queue

dequeue( ): remove object from firont of
queue

size( ): number of elements
isEmpty( ): size == 0?

front( ): look at object at front of queue
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Queue Interface in Java

public interface Queue {
public int size();
public boolean isEmpty()
public Object front() throws QueueEmpty;
public void enqueue (Object element) ;
public Object dequeue() throws QueueEmpty;
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Array-based Queue Implementation

Array of fixed size

Index array element for front and rear of
queue

Indices “wrap around” when they cross end
of array
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Array Queue Implementation

public class ArrayQueue implements Queue {
private Object[] Q;
private int size=0;
private int front=0, rear = 0;
public void enqueue (Object o) {
if (size( ) == Q.length) throw
new QueueFull (“full”);
Q[rear] = o;
rear = (rear + 1) % Q.length;
size++;
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List Queue Implementation

Head and tail node references for front and
rear of queue

Insert at tail, remove from head
* Remove from tail too slow for singly linked list

—Updating tail reference with new tail takes
full traversal

* So use tail of list for rear of queue
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List Queue Implementation

public class ListQueue
implements Queue ({
private Node head null;
private Node tail null;
private int size = 0;
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List Queue

public void enqueue (Object obj) {
Node node = new Node (obj, null);

if (size == 0)
head = node;
else

tail.setNext (node) ;
tail = node;
size++;
}
public Object dequeue() {
Object obj = head.getElement() ;
head = head.getNext() ;
size--;
if (size == 0)
tail = null
return obj;
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Analysis

All queue operations are O(1)

* size( ), isSEmpty()

* enqueue( ), dequeue( ), front( )
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Double-ended Queue

Sometimes called “deque” (dek)

Similar to stack and queue

* Allows insertion and removal at both ends of
the queue

* Stack or queue is easily implemented using a
deque
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Deque ADT

insertFirst(e) : insert element at front
insertLast(e) : insert element at rear
removeFirst( ) : remove first element
removelLast() : remove element at rear
first( ) : examine first element

last( ) : examine last element

size(e) : number of elements in deque
isEmpty() : size ==0?
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Doubly Linked List

Singly linked list inefficient for removing
from tail

Has prev reference as well as next reference

Can use sentinel nodes to reduce the special
cases

* node has no element, just next or prev
reference

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Deque Implementation

public class MyDeque implements Deque

DLNode header, trailer;

int size;

public MyDeque() {
header = new DLNode() ;
trailer = new DLNode() ;
header.setNext (trailer) ;
trailer.setPrev (header) ;
size = 0;
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Deque Implementation

public void insertFirst(Object o) {
DLNode |second| = |header]| getNext () ;
DLNode first =

new DLNode (o,header, second);
second|. setPrev (first) ;
header]. setNext (first) ;
size++;

}

Could be null if no sentinels
(trailer could also be null)
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Deque (no sentinels)

public void insertFirst(Object o) {
DLNode second = header;
DLNode first = new DLNode (o, null,
header = first;

if (second == null)
trailer = first;
else
second.setPrev (first) ;
size++;

second) ;
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Deque Analysis

All operations still O(1)

Doubly linked list
* nodes slightly larger

» more references to keep up to date
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