Search Trees

What are search trees?

Allow efficient searching of ordered data
Implement Ordered Dictionary ADT
Provide flexible mechanism for storing and retrieving data

Binary Search Tree

Each node stores a key-element pair
key(leftsubtree) <= key(node) <= key(rightsubtree)
Trees in Goodrich/Tamassia store elements only at internal nodes
• I generally store elements at all nodes

Tree Search

TreeSearch(k, node) {
if ((k < key(node)) && (leftChild(node) != null))
 return TreeSearch(k, leftChild(node));
else if (k > key(node)) && (rightChild(node) != null))
 return TreeSearch(k, rightChild(node));
else
 return node; }

Analysis of TreeSearch

At each node, perform O(1) work
Maximum nodes visited is h, the height of tree
Total running time is thus O(h)

Inserting into Binary Tree

Call TreeSearch on root to find appropriate parent node
• Call again using a child if key already exists
Parent node will be external
Insert element as new child of parent
Also takes O(h)
Removing from Binary Tree

Call TreeSearch to locate node for removal
- If node is external, just remove node
- If node has one child, replace node with child
- If node has two children
 - Find smallest element greater than node (will have 0 or 1 children)
 - Replace element with that node

Again, $O(h)$

AVL Trees

Binary search trees which maintain $O(\log n)$ height

Maintain *height balance property*
- Heights of children differ by at most 1
- Local property to maintain, but guarantees global property of overall height

Analyzing AVL height

$n(h)$: minimum nodes for AVL tree of height h

Base conditions
- $n(0) = 1$; $n(1) = 2$

Recurrance relation
- $n(h) = 1 + n(h-1) + n(h-2) > 2^n(h-2)$
- $n(h) > 2^n(h-2) > 4^n(h-4) > 8^n(h-6)$, etc.
- $n(h) > 2^{n(h-2)}$

Set i to achieve base condition
- $h-2i = 1 \rightarrow i = (h-1)/2$
- $n(h) > 2^{(h-1)/2}n(1) = 2^{(h-1)/2} + 2^{(h-1)/2-1}$

Bounding h
- $\log(n(h)) > (h-1)/2 + 1$
- $h < 2(\log(n(h) - 1)) + 1 = 2\log(n(h) - 1) - 1 = O(\log n)$

Inserting with balanced height

Insert node into binary search tree as usual
- Increases height of some nodes along path to root
- Walk up towards root
 - If unbalanced height is found, restructure unbalanced region with rotation operation

Balanced Tree

![Balanced Tree Diagram]

Insert (case 1)

![Insert (case 1) Diagram]
"Rotate Left" . . . "Rotate Left" . . .

"Rotate Left" - Balanced!

Insert (case 2)

"Rotate Right" . . . "Rotate Right" . . .
"Rotate Right" - Balanced!

Insert (case 3)

"Double Rotation Right-Left" - Right . . .

"Double Rotation Right-Left" - Right . . .

"Double Rotation Right-Left" - Right . . .done!

"Double Rotation Right-Left" - Left . . .
"Double Rotation Right-Left" - Left . . .

Restructure Procedure
Consider the first unbalanced node encountered (walking upward) and its two descendants along that path
Sort them in increasing order and label as a, b, and c
Place b as the parent of a and c where the unbalanced node was
Hook up the (up to) 4 subtrees as the appropriate children of a and c

"Double Rotation Right-Left" - Balanced!

Analyzing Insert
Upward traversal with height recomputation takes \(O(h) = O(\log n) \)
Restructure takes \(O(1) \)
The restructure always reduces the height of the unbalanced node
• So only one restructure is necessary
Total time: \(O(\log n) + O(1) = O(\log n) \)

Remove Algorithm
Perform removal as with binary search tree
• May decrease height of some nodes on path to the root
Walk upwards to the root
• If unbalanced height is found, restructure unbalanced region with rotation operation
Remove is also \(O(\log n) \)
• But multiple restructure operations may be necessary along the way

Multi-way Search Trees
Each node may store multiple key-element pairs
Node with \(d \) children (\(d \)-node) stores \(d-1 \) key-element pairs
Children have keys that fall either before smallest parent key, after largest parent key, or between two parent keys
(for this section, let’s use convention of external nodes storing no element, as in book)
Example Multi-way Search Tree

```
50
/   |
|   |  |
20  30
|   |
10  15
|   |
22 27

External node between each pair of keys and before/after
(n-1) + 1 + 1 = n+1 external nodes
```

Multi-way Tree Searching

- Basically same as for binary tree
 1. Start at root
 2. Find appropriate child path to go down
 3. Traverse to child
 4. Repeat 1-3 until found or reach external

Multi-way Search Analysis

- Number of nodes traversed is up to \(h \)
- Work at each node is function of \(d \)
 - \(O(\log d) \) if structure storing keys provides efficient search, otherwise \(O(d) \)
- Total worst case time
 - \(O(h \log d_{\text{max}}) \) or \(O(h d_{\text{max}}) \)
 - If \(d_{\text{max}} \) is bounded by small constant, just \(O(h) \)

(2,4) Trees

- Efficient multi-way search trees
 - \(O(\log n) \) height
- Maintain two properties:
 1. Size property: nodes have at most 4 children
 2. Depth property: All external nodes have same depth (i.e. all at the same level)

(2,4) Tree Height Analysis

- Lower bound on \(h \)
 - \(n(h) \leq 4^h : \text{max children per node is 4} \)
 - \# external nodes = \(n+1 \)
 - \(n+1 \leq 4^h \Rightarrow h \geq \log(n+1) / 2 \)
- Upper bound on \(h \)
 - At least 2 nodes at depth 1, 4 at depth 2, etc.
 - At least \(2^d \) nodes at depth \(d \)
 - At least \(2^h \) external nodes
 - \(2^h \leq n+1 \Rightarrow h \leq \log(n+1) \)
 - \(h = \Theta(\log n) \Rightarrow \text{search is} \ O(\log n) \)

Inserting into (2,4) Tree

- 1. Search for position in deepest internal node
- 2. Insert into position
- 3. If \# elements > 3, do a \textit{split} operation
 - Split node into 2 nodes
 - Push 1 element up to parent
 - Create new root if no parent
 - If parent overflows, split parent
Simple Insertion (no overflow)

- Insert 15

Insertion with Overflow

- Insert 11
- Split

Insert with Cascading Split

- Insert 11
- Split
- Split

Removing from (2,4) Tree

1. Search for element
2. Remove element
3. If element’s child is internal
 - *Swap* next larger element into hole (so we’ve removed element above an external)
4. If node has no elements
 - If an adjacent sibling has > 1 element
 - Perform *transfer* (kind of rotation)
 - Else
 - Perform *fusion* (can cascade upward)

Simple Removal

- Remove 14

Removal with Swap

- Remove 10
- Swap
Removal with Transfer

- Remove 9
- Transfer (~rotate)

6 8 10
5 7 9 12 14 15

Removal with Fusion

- Remove 7
- Fusion

6 8 10
5 9 12 14 15

Performance

Insertion
- Find is $O(\log n)$
- Each split is $O(1)$; only $O(\log n)$ splits necessary

Remove
- Each transfer/fusion is $O(1)$; only $O(\log n)$ necessary

External Memory Searching

Memory Hierarchy

- Registers
- Cache
- RAM
- External Memory

Types of External Memory

- Hard disk
- Floppy disk
- Compact disc
- Tape
- Distributed/networked memory

Primary Motivation

External memory access much slower than internal memory access
- orders of magnitude slower
- need to minimize I/O Complexity
- can afford slightly more work on data in memory in exchange for lower I/O complexity
Application Areas

- Searching
- Sorting
- Data Processing
- Data Mining
- Data Exploration

Disk Blocks

Data is read one block at a time
- pack as much into a block as possible
- minimize number of block reads necessary

I/O Efficient Dictionaries

Balanced tree structures
- Typically $O(\log_2 n)$ transfers for query or update
- Want to reduce height by constant factor as much as possible
- Can be reduced to $O(\log_2 n) = O(\log_n B)$
 — B is number of nodes per block

(a,b) Trees

Generalization of (2,4) trees
Size property: internal node has at least a children and at most b children
- $2 \leq a \leq (b+1)/2$

Depth property: all external nodes have same depth
Height of (a,b) tree is $\Omega(\log n/\log b)$ and $O(\log n/\log a)$

B-Trees

Choose a and b to be $\Theta(B)$
Height is now $O(\log_B n)$
I/O complexity for search is $O(\log_B n)$