(Single Source) Shortest Paths

Given: weighted graph, \(G \), and source vertex, \(v \)

Compute: shortest path to every other vertex in \(G \)

- Path length is sum of edge weights along path
- Shortest path has smallest length among all possible paths

Dijkstra’s Algorithm

Grow a collection of vertices for which shortest path is known

- paths contain only vertices in the set
- add as new vertex the one with the smallest distance to the source
- shortest path to an outside vertex must contain a current shortest path as a prefix

Use a greedy algorithm

Edge Relaxation

Maintain value \(D[u] \) for each vertex

- Each starts at infinity, and decreases as we find out about a shorter path from \(v \) to \(u \) \((D[v] = 0) \)

Maintain priority queue, \(Q \), of vertices to be relaxed

- use \(D[u] \) as key for each vertex
- remove min vertex from \(Q \), and relax its neighbors

Relaxation for each neighbor of \(u \):

if \(D[u] + w(u, z) < D[z] \) then

\[D[z] = D[u] + w(u, z) \]

Dijkstra Pseudocode

ShortestPath(\(G, v \))

init \(D \) array entries to infinity
\(D[v] = 0 \)
add all vertices to priority queue \(Q \)
while \(Q \) not empty do

for each neighbor, \(z \), of \(u \) in \(Q \) do

if \(D[u] + w(u, z) < D[z] \) then

\[D[z] = D[u] + w(u, z) \]

Change key of \(z \) in \(Q \) to \(D[z] \)
return \(D \) as shortest path lengths

Dijkstra Analysis

- \(O(n \log n) \) time to build priority queue
- \(O(n \log n) \) time removing vertices from queue
- \(O(m \log n) \) time relaxing edges
 - Changing key can be done in \(O(\log n) \) time

Total time: \(O(n + m) \log n + m \log n \)
- which can be \(O(n^2 \log n) \) for dense graph

Minimum Spanning Trees

Given: connected, undirected, weighted graph

Compute: spanning tree with minimum sum of edge weights

- Spanning tree contains all \(n \) vertices and subset of edges \((n-1)\)
- minimize \(w(T) = \sum_{(v,u)} w \) to \(w(T) \sum_{(v,u)} \)
 - if edge weights are not unique, there may be multiple MSTs for a graph
Applications of MST

Think of edge weight as a cost of some sort
- MST minimizes total cost associated with connecting the vertices by edges

Some applications:
- Telephone, electrical, plumbing
- Computer networks

Minimum Bridge Principle

Consider all vertices partitioned into two sets, \(V_1 \) and \(V_2 \)
- Spanning tree must have at least one edge to "bridge the gap" between the partitions

Consider all bridge edges (with one vertex in \(V_1 \) and one in \(V_2 \))
- The minimum weight bridge, \(e \), is part of some minimum spanning tree
 - For an MST without \(e \), insert \(e \), and remove another bridge from the cycle
 - This creates an MST with the same or smaller weight (if smaller, the original was not an MST)

Greedy Algorithms for MST

Kruskal’s Algorithm
- Start with many small clusters
- Add minimum bridges, merging clusters as we go

Prim-Jarnik Algorithm
- Start with a root (arbitrary)
 - partition into “root cluster” and “other cluster”
- Find minimum bridge, and transfer node from other cluster to root cluster
 - proceeds much like Dijkstra’s shortest paths algorithm

Kruskal’s Algorithm

\[
\text{Kruskal}(G) \\
\text{for each vertex in } G \text{ do} \\
\quad \text{define cluster } C(v) = \{v\} \\
\quad \text{insert edges into priority queue, } Q \\
\quad \text{Initialize empty tree graph, } T \\
\quad \text{while } T.\text{numEdges}() < n - 1 \text{ do} \\
\quad \quad (u, v) = Q.\text{removeMin}() \\
\quad \quad \text{if } C(u) \neq C(v) \text{ then} \\
\quad \quad \quad \text{add edge } (u, v) \text{ to } T \\
\quad \quad \quad \text{Merge } C(u) \text{ and } C(v) \\
\quad \text{return } T
\]

Priming-Jarnik Algorithm

\[
\text{PrimJarnik}(G) \\
\text{pick vertex } v \text{ as root} \\
\text{Initialize tree graph, } T, \text{ to contain } v \\
\text{Initialize priority queue, } Q, \text{ to contain incident edges of } v \\
\text{while } T.\text{numEdges}() < n - 1 \text{ do} \\
\quad e = Q.\text{removeMin}() \\
\quad \text{if only one vertex of } e \text{ is in } T \text{ do} \\
\quad \quad v = \text{vertex of } e \text{ not in } T \\
\quad \quad T.\text{insert}(v), T.\text{insert}(e) \\
\quad Q.\text{insert}(\text{all incident edges of } v) \\
\quad \text{return } T
\]
Prim-Jarnik Analysis

Inserting and removing into edge queue takes \(O(m \log m) = O(m \log n) \)