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Abstract

Every peer-to-peer system is based on some overlay network connecting its peers. Many of the over-
lay network concepts proposed in the scientific community are based on the concept of virtual space.
These designs are usually highly scalable, but they do not guarantee robustness against adversarial at-
tacks, especially when considering open peer-to-peer systems. In these systems, determined adversaries
may start both insider and outsider attacks in order to harm the overlay network as much as this is pos-
sible. We will focus on insider attacks in which the adversarial peers in the network perform join-leave
attacks, and we will consider outsider attacks in which an adversary can perform a denial-of-service
attack against any of the honest peers in the network. Strategies have been proposed that can defend an
overlay network against even massive join-leave attacks, and strategies are also known that can defend an
overlay network against limited denial-of-service attacks. However, none of these can protect an overlay
network against combinations of these attacks. We illustrate in this paper why it is not easy to design
strategies against these attacks and propose join and leave protocols for overlay networks based on the
concept of virtual space that can make them provably robust against these attacks without creating too
much overhead.

1 Introduction

Due to the rise of peer-to-peer systems, dynamic overlay networks have recently received a lot of attention.
An overlay network is a logical network formed by its participants across a wired or wireless domain. In
open peer-to-peer systems, participants may frequently enter and leave the overlay network. Hence, two
operations have to be provided so that the overlay network can be adjusted to these changes:

• Join(v): peer v joins the system

• Leave(v): peer v leaves the system

A central goal has been to find join and leave operations that run as efficiently as possible and that maintain
a highly scalable overlay network. However, besides scalability, robustness is also important since in open
environments like the Internet adversaries may try to start both insider and outsider attacks on a distributed
system.

In this paper, we study the problem of how to protect an overlay network against a certain combination
of insider and outsider attacks. The insider attacks we will be focusing on are legal join-leave attacks on
the system by adversarial peers. More specifically, we consider the scenario in which there are n honest
peers and εn adversarial peers in the system for some constant ε < 1. The adversary has full control over
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its adversarial peers and knows the entire overlay network at any point in time. It can use this information
to decide in an arbitrary adaptive manner which of its adversarial peers should leave the system and join
it again from scratch. In this way, it can design a sequence of rejoin activities by the adversarial peers in
order to harm the overlay network as much as this is possible. (For example, by degrading its scalability or
isolating honest peers.)

Besides insider attacks, we also allow certain outsider attacks. We consider outsider attacks in which
the adversary can shut down any peer at any point in time by starting a brute-force denial-of-service attack
on it that bypasses the overlay network. We assume that an honest peer that is exposed to such an attack will
leave the system (in a potentially non-graceful manner) and will rejoin the network from scratch as soon as
the denial-of-service attack on it is over.

Our goal is to design oblivious join and leave operations that can protect an overlay network against any
combination of insider and outsider attacks within our model (with very high probability). That is, the join
and leave operations do not have to be able to distinguish between the honest and adversarial peers and,
even more, do not have to maintain any kind of state in order to protect the overlay network against these
attacks. We will demonstrate that, on a high level, suitable operations indeed exist, and our hope is that they
are sufficiently light-weight so that they are useful in practice.

In the following, let n be the number of honest peers in the system and εn for some ε < 1 be the
maximum number of adversarial peers in the system at any time. For simplicity, we are focusing on peers
being placed at points in the [0, 1)-interval, but our results can also be used for other spaces. We are
considering the following game between an adversary and the system.

1.1 Join-leave game

The join-leave game proceeds in rounds. In each round, the adversary has complete knowledge of the entire
system and can ask whatever peer it likes to leave and join the system again from scratch (which we will
also call a rejoin request in the following). Rejoin requests of adversarial peers cover insider attacks and
rejoin requests of honest peers cover outsider attacks (the adversary performs a DoS-attack on the honest
peer so that it is excluded from the network, but it rejoins as soon as the attack has ended).

Our goal is to find oblivious join and leave strategies, i.e., strategies that have no memory of the history
of the system and that cannot distinguish between the honest and adversarial peers, that assign positions in
[0, 1) to the peers so that for any adversarial strategy above the following two conditions can be preserved
for every interval I ⊆ [0, 1) of size at least (c log n)/n for a constant c > 0 and any polynomial number of
rounds in n, with high probability:

• Balancing condition: I contains Θ(|I| · n) peers.

• Majority condition: the honest peers in I are in the majority.

It is not difficult to show that if these conditions are kept, structured overlay network concepts together
with quorum-based decision rules can be used to wash out adversarial behavior (e.g., [3]). Certainly, the
brute-force strategy of giving every peer a new random place whenever a peer rejoins will achieve the stated
goal, with high probability, but this would be a very expensive strategy. The challenge is to find join and
leave operations that need as little randomness and as few rearrangements as possible to satisfy the two
conditions. It turns out that this is not easy. We first review some prior work (Section 1.2). Then we
give a list of approaches that do not work (Section 1.3), and finally we present an approach that does work
(Section 1.4). This approach will be analyzed in Section 2.
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1.2 Prior work on robust overlay networks

Solutions against the insider and outsider attacks covered in this paper have already been found if just one
kind of attack is allowed. We will give a quick review of the literature below. However, none of these
strategies work if the adversary can use any combination of these attacks. Hence, a new strategy is needed.

Outsider attacks

Oblivious outsider attacks on peer-to-peer systems in which peers are placed at random positions in some
virtual space can be modeled as random faults or churn. Random faults and churn has been heavily in-
vestigated in the peer-to-peer community (e.g., [1, 8, 10, 11, 16]), and it is known that certain structured
peer-to-peer systems like Chord can tolerate any constant fault probability. Much more difficult to handle
are adaptive outsider attacks, and the best current result is a structured overlay network that can recover
from any sequence of adaptive outsider attacks in which at most log n many peers can be removed from
the system at any point in time [8]. The basic idea behind this approach is that the peers perform local load
balancing in order to fill any holes the adversary may have created in the network. This approach works well
if all peers in the network are assumed to be honest, but it does not work any more if some of the peers are
adversarial. All the adversary would have to do in this case is to focus on a particular corner of the network
and force all honest peers in it to leave until sufficiently many adversarial peers have accumulated in it.
Once the adversarial peers have gained the majority in this corner, it is not hard to imagine that they can
start serious application-layer attacks since it will not be possible any more to wash out adversarial behavior
in a proactive manner.

Insider attacks

There are also some results on join-leave attacks by adversarial peers. People in the peer-to-peer community
have been aware of the danger of these attacks since quite a while [6, 7] and various solutions have been
proposed that may help thwart these attacks in practice [4, 5, 14, 9, 13, 15] but until recently no mechanism
was known that can provably cope with these attacks without sacrificing the openness of the system.

The first mechanism that was shown to preserve randomness for a polynomial number of adversarial
rejoin requests uses random peer IDs and enforces a limited lifetime on every peer in the system, i.e., every
peer has to reinject itself after a certain amount of time steps [2]. However, this leaves the system in a hyper-
active mode that may unnecessarily consume resources that could be better used for other purposes. Ideally,
one would like to use competitive strategies. That is, the resources consumed by the mixing mechanism
should scale with the join-leave activity of the system. Such a strategy was first presented for a pebble-
shuffling game on a ring [12]. However, the join rule proposed there cannot be directly applied to overlay
networks based on the concept of virtual space since it has no control over the distribution of the peers in
the virtual space, i.e., the balancing condition can be violated.

The first rule that was able to satisfy the balancing and majority conditions for a polynomial number of
rejoin requests of adversarial peers is the cuckoo rule [3]. We first introduce some notation, and then we
describe this rule.

In the following, a region is an interval of size 1/2r in [0, 1) for some positive integer r that starts at
an integer multiple of 1/2r. Hence, there are exactly 2r regions of size 1/2r. A k-region is a region of
size (closest from above to) k/n, and for any point x ∈ [0, 1), the k-region Rk(x) is the unique k-region
containing x. Whenever a peer leaves, it just leaves, but when it joins, the following rule is used:

Cuckoo rule: If a new peer v wants to join the system, pick a random x ∈ [0, 1). Place v into x and move
all peers in Rk(x) to points in [0, 1) chosen uniformly and independently at random (without replacing any
further peers).
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It was shown [3] that this rule works for arbitrary join-leave attacks of adversarial peers as long as
ε < 1− 1/k, and this bound it tight. However, if also honest peers can be forced to leave, it does not work
any more. To see why, focus on a region R of size (c log n)/n in [0, 1). Ask any peer still in R to leave until
there are no peers left in R. Even if these peers will immediately rejoin afterwards, the probability that an
application of the cuckoo rule will move at least one peer back to R is just O(|R|). Hence, on expectation,
within O(log n) departures R will lose all of its peers, which violates the balancing condition.

1.3 Join and leave operations that do not work

Before we present our solution to the problem, we show that several variants of the cuckoo rule do not work.

Cuckoo rule with random peer transposition. The previous attack shows that just using the cuckoo rule
alone is not sufficient. So what about filling the position given up by the departing peer by a random peer
in the system? This does not work either due to the following attack. Again, focus on a region R of size
(c log n)/n in [0, 1). Ask any honest peer in R to leave until there are no more honest peers in R. Since
each position of a departing honest peer is filled with an adversarial peer with constant probability, it just
takes a constant number of departures, on average, to turn a position occupied by an honest peer into a
position occupied by an adversarial peer. Hence, on expectation, within O(log n) departures R will only
have adversarial peers, which violates the majority condition.

Cuckoo rule with random transposition of k-region. Suppose that whenever a peer departs some k-
region, this k-region is flipped with some other k-region chosen uniformly at random in [0, 1). Also for this
rule the majority condition can easily be violated with an attack similar to the one for the previous rule.

Cuckoo rule with random transposition of neighboring k-region. Suppose that whenever a peer p
leaves the system, a random k-region R will be picked in the (k · c log n)-region R̂ containing p and R will
be flipped with another k-region chosen uniformly at random in [0, 1). Interestingly, the majority condition
cannot be violated any more in this case but the balancing condition can be violated. The attack for this is
quite subtle. Focus on a particular (k · c log n)-region R. Always pick a (k · c log n)-region R′ different
from R that contains at least one k-region R′′ with Θ(log n) peers. Such a k-region is guaranteed to exist
somewhere, w.h.p., for a random distribution of the peers in [0, 1). Remove a peer in R′. The probability
that R′′ will be moved into R in this case is (c log n)k/n. Hence, within Θ(n) many rejoin requests it is
quite likely that Θ(log n) k-regions with Θ(log n) peers each will be moved into R resulting in Θ(log2 n)
peers in R, which violates the balancing condition.

1.4 Join and leave operations that do work

The join operation works in the same way as the cuckoo rule. However, whenever a peer wants to leave the
network, we use the following leave operation:

Cuckoo&flip rule: If a peer v leaves the system, then a k-region R is chosen uniformly at random among
the k-regions of Rkc log n(x) for some (sufficiently large) constant c, where x is the position of v. All peers
in R have to rejoin the system from scratch using the cuckoo rule, and R is flipped with a k-region R′ chosen
uniformly at random in [0, 1).

Hence, the departure of a peer may spawn several rejoin operations. We call the combination of the two
rules the cuckoo&flip strategy. With this strategy the balancing and majority conditions can be kept, with
high probability. More precisely, we show the following result.
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Theorem 1.1 For any constants ε and k with ε < 1/2 − 2/k, the cuckoo&flip strategy satisfies the bal-
ancing and majority conditions for any polynomial number of rejoin requests, with high probability, for any
adversarial strategy within our model.

Hence, as long as ε < 1/2, only a constant factor overhead has to be paid (on average) compared to
standard join and leave operations without any perturbation rules. The rest of the paper is devoted to the
analysis of this theorem. Due to strict page limitations, we will only sketch the proof.

2 Analysis of the cuckoo&flip strategy

In the following, we simply call peers nodes. Recall that a region is an interval of size 1/2r in [0, 1) for some
positive integer r that starts at an integer multiple of 1/2r. Let R̂ be any fixed region of size (c log n) · k/n,
for some constant c, for which we want to check the balancing and majority conditions over polynomial in
n many rejoin requests. Thus, R̂ contains exactly c log n many k-regions. We assume that the joining of the
nodes proceeds in rounds, one round per join operation (note that the departure of a node may spawn several
join operations, including its own). The age of a k-region is the difference between the current round and
the last round when it was emptied due to a leave or join operation, and the age of R̂ is defined as the sum
of the ages of its k-regions. A node in a k-region R is called new if it was placed into R when it joined the
system, and otherwise it is called old.

We assume that before the adversary starts with its rejoin requests, only the n honest nodes were in the
system, and sufficiently many rejoin requests have been executed on the honest nodes so that every k-region
has been entered by a new node at least once. Afterwards, the adversary enters with its εn adversarial nodes
one by one, using the cuckoo rule in each round, and then it starts executing rejoin requests on the honest and
adversarial nodes as it likes. The assumption of acting on a sufficiently old system significantly simplifies
the proofs.

The next lemma follows directly from the cuckoo&flip rule because every k-region can have at most one
new node at any time.

Lemma 2.1 At any time, R̂ contains at most c log n new nodes.

In order to bound the number of old nodes in R̂, we first have to bound the age of R̂ (Lemma 2.2).
Then we bound the maximum number of nodes in a k-region (Lemma 2.3) and use this to bound the number
of evicted honest and adversarial nodes in a certain time interval (Lemma 2.4). After that, we bound the
number of old honest and adversarial nodes in R̂ (Lemma 2.5) and use this to prove an upper bound on the
number of nodes that left R̂ (Lemma 2.6). Whereas the proofs of Lemmas 2.3 and 2.4 follow from previous
work [3], the proofs of Lemmas 2.2 and 2.6 are new and tricky.

There are two kinds of leave events. Type-1 events involve departures of nodes outside of R̂ and type-2
events involve departures of nodes within R̂. Whenever there is a type-1 event, then the probability that R̂
will get the emptied k-region is equal to (c log n)k/n, which is equal to the probability of a k-region in R̂
being hit by a joining node. In both cases, the age of that k-region in R̂ is 0. Hence, with respect to the
age, we can reduce the effect of type-1 events in our analysis to join operations. For type-2 events, notice
that some k-region in R̂ switches its position with a k-region chosen uniformly at random from the entire
system. These insights and some facts about the age distribution of the k-regions (for example, the worst
expected age is at most (1 + δ)n/k and the average expected age is at least (1 − δ)n/(2k)) can be used to
show the following lemma.

Lemma 2.2 At any time, R̂ has an age within [(1 − δ)(c log n)n/(2k), (1 + δ)(c log n)n/k], with high
probability, where δ > 0 is a constant that can be made arbitrarily small depending on the constant c.
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Furthermore, since old nodes are only created in join operations, the following lemma is easy to show
(see also [3]).

Lemma 2.3 For any k-region R it holds at any time that R has at most O(k log n) old nodes, with high
probability.

Lemma 2.3 allows us to bound the number of honest and adversarial nodes that are evicted in a certain
time interval (see also [3]).

Lemma 2.4 For any time interval I of size T = (γ/ε) log3 n, the number of honest nodes that are evicted
in I is within (1± δ)T · k, with high probability, and the number of adversarial nodes that are evicted in I
is within (1± δ)T · εk, with high probability, where δ > 0 can be made arbitrarily small depending on γ.

Combining Lemmas 2.2 and 2.4, we obtain the following lemma.

Lemma 2.5 At any time, R̂ has within [(1− δ)(c log n)k/2, (1 + δ)(c log n)k] old honest nodes and within
[(1− δ)(c log n)εk/2, (1+ δ)(c log n)εk] old adversarial nodes when ignoring node departures in R̂, w.h.p.

Suppose that we mark each position in a k-region R at which a node left after R got last emptied. The
next lemma bounds the total number of marked positions in R̂. It needs the crucial fact that (1 + δ)c log n
marked positions must spread over Ω(log n) k-regions in R̂, w.h.p., if c is sufficiently large, which follows
from Lemma 2.5.

Lemma 2.6 At any time, there are at most (1 + δ)c log n marked positions in R̂, with high probability,
where δ > 0 is a constant that can be made arbitrarily small depending on c.

When combining Lemmas 2.1, 2.5 and 2.6, we obtain a lower bound of (c log n)k/2 − c log n honest
nodes and an upper bound of (c log n)εk + c log n adversarial nodes in R̂ in the worst case. Hence, the
majority condition holds if ε < 1/2− 2/k. Due to the upper and lower bounds in Lemmas 2.5 and 2.6, also
the balancing condition holds, which implies Theorem 1.1.
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