
A Denial-of-Service Resistant DHT

Baruch Awerbuch?1 and Christian Scheideler??2

1 Dept. of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
2 Institut für Informatik, Technische Universität München, 85748 Garching, Germany

Abstract. We consider the problem of designing scalable and robust
information systems based on multiple servers that can survive even
massive denial-of-service (DoS) attacks. More precisely, we are focus-
ing on designing a scalable distributed hash table (DHT) that is robust
against so-called past insider attacks. In a past insider attack, an adver-
sary knows everything about the system up to some time point t0 not
known to the system. After t0, the adversary can attack the system with
a massive DoS attack in which it can block a constant fraction of the
servers of its choice. Yet, the system should be able to survive such an
attack in a sense that for any set of lookup requests, one per non-blocked
(i.e., non-DoS attacked) server, every lookup request to a data item that
was last updated after t0 can be served by the system, and processing all
the requests just needs polylogarithmic time and work at every server.
We show that such a system can be designed.

1 Introduction

On Feb 6 of this year, hackers launched a distributed denial-of-service (DoS)
attack on the root servers of the Domain Name System (DNS) [10]. DoS attacks
can overwhelm servers with hacker-generated traffic and make them unavail-
able for legitimate communications. While the attacks significantly slowed the
operations of some of the servers, they caused no problems for the overall DNS
system because the system shifts work to other root servers if it has trouble with
the first ones it tries to reach. This is possible because information is replicated
among all root servers, and the root servers together have sufficient bandwidth
to handle even major DoS attacks.

In this paper, we consider the problem of designing distributed information
systems that are highly resilient against DoS attacks even if every piece of in-
formation is not replicated everywhere but only among a small subset of the
servers. For distributed information systems that are connected to the Internet,
like the DNS system, the servers may be known and therefore open for DoS
attacks. There are various forms of DoS attacks. Application-layer DoS attacks,
that try to abuse the protocols of the system in order to prevent it from function-
ing correctly, or network-layer DoS attacks that just aim at overloading servers
? Email: baruch@cs.jhu.edu. Partially supported by NSF CCF 0515080, ANIR-

0240551, CT-0716676, CCR-0311795, and CNS-0617883.
?? Email: scheideler@in.tum.de

with junk or faked messages in order to prevent them from processing legal ones.
We are interested in designing a scalable information system (i.e., a system in
which data and requests are handled in a scalable way) that can withstand even
massive application-layer and network-layer DoS attacks (i.e., the attacker is
powerful enough to generate requests or junk that can affect a constant fraction
of the servers). Certainly, if the attacker has complete knowledge of the informa-
tion system, then scalability and robustness against massive DoS attacks cannot
be achieved at the same time. But what if the attacker only has complete knowl-
edge up to some time step t0 (that may not be known to the system)? Would
it at least be possible to protect anything that was inserted into the system or
updated after time step t0? To answer this question, let us first formally define
the attack model we will be focusing on in this paper.

1.1 The past insider attack model

The past insider attack model is motivated by the fact that a large percentage of
the security breaches in corporate systems have internal reasons, many of them
being caused by human error or negligence or insider attacks. In these cases, the
system may be temporarily exposed, with potentially severe consequences for its
functionality.

In the past insider attack model, we assume that an attacker has complete
knowledge of the system up to some time step t0 that is not known to the system.
It can use this knowledge to attack the system at any time point after t0. Given
n servers, we allow the attacker to generate any collection of lookup requests
it likes, one per non-blocked server, including lookup requests to blocked or
non-existing data, and to block any set of εn servers for some sufficiently small
constant 0 < ε < 1. The goal is to design a storage strategy for the data and a
lookup protocol so that the following conditions are met:

For every data item d, the total space for storing d in the system is by at
most a polylogarithmic factor larger than the size of d, and for any set of lookup
requests with at most one request per non-blocked server, the following holds:

– Scalability: Every server in the system spends at most a polylogarithmic
amount of work and time on the requests.

– Robustness: Every lookup request to a data item inserted after t0 (or a non-
existing data item) is served correctly.

– Correctness: Every lookup request to a data item is served correctly whenever
the system is not under a DoS attack.

By “served correctly” we mean that the latest version of the data item is returned
to the server requesting it. (We assume that there is a unique way of identifying
the latest version such as the version number or a time stamp.)

Note that our model is different from proactive security models in which
the adversary can never learn too much about the system within a certain time
frame. Approaches for this model aim at protecting everything in the system,
but this comes at a high price because this means that all the information in

the system has to be continuously refreshed, which may not be feasible in prac-
tice. We can show that one can protect nearly everything without continuous
refreshing, and most importantly, everything that was updated after the security
breach.

1.2 Towards robustness against past insider attacks

Let us have a quick look at the basic approaches for storing data in a distributed
system.

– An explicit data structure such as a distributed search tree or skip graph:
This approach has major problems with correctness since it is difficult to
update the structure at attacked parts.

– An implicit data structure like a hash table: The hash table is structureless
and therefore has no problems with correctness. It is also scalable, but it is
not robust because the adversary knows exactly where the copies of a data
item are located and can therefore block these.

– The random placement of data copies among the servers: This is not scalable
but certainly robust.

Is there a way of combining these approaches in order to achieve scalability,
robustness and correctness at the same time? Our main contribution in this paper
is to show that a certain hybrid version of a hash table and random placement
can achieve this task. More precisely, we will prove the following result.

Theorem 1. Given n servers, our storage strategy just needs O(log2 n) copies
per data item so that our lookup protocol can serve any set of lookup requests,
one per non-blocked server, in a scalable, robust and correct way, w.h.p. The
robustness holds for any DoS attack in which at most εn servers are blocked,
where ε > 0 is a sufficiently small constant.

In the proof of the theorem, we assume that the servers are completely inter-
connected since we are only focusing on reliable servers, so there are no scalability
problems w.r.t. connectivity.

Although we consider only problems where all lookup requests are given at
the beginning, we note that our lookup protocol can also be applied in a scenario
where continuously new requests are generated. Furthermore, the correctness
condition can be strengthened in a sense that beyond O(n + D/nk) data items,
where D is the total number of data items in the system and k can be an
arbitrary constant, all of the data inserted before t0 can still be accessed by our
lookup protocol under a DoS attack, but it can obviously not be guaranteed
that everything is still accessible. Using coding strategies (like Reed-Solomon
codes), the storage overhead for the data items can be reduced to O(log n) in
Theorem 1. The constant ε that we need in our proofs is ε < 1/144, but we did
not try to optimize constants in this paper.

The beauty of our approach is that, even though it uses much more sophis-
ticated concepts, it is still based on the well-known consistent hashing principle

[5], i.e., the servers are assigned to points in the [0, 1)-interval and a data copy
mapped to point x ∈ [0, 1) is stored at the server that is the closest predecessor
of x in [0, 1). Thus, it could in principle be used on top of existing DHTs based on
consistent hashing such as Chord in order to turn these into highly DoS-resilient
DHTs. However, notice that in the scenarios considered in this paper, we can
afford a completely interconnected network though most DHT implementations
are based on bounded degree overlay networks, which would create an additional
vulnerability.

Finally, we remark that we do not address the problem of handling insert
requests in this paper but only how to store data in the system in a scalable
way so that it can be retrieved despite massive DoS attacks. Managing insert
requests is a tricky issue when application- and network-layer DoS attacks are
allowed, and we discuss some of the reasons behind that in Section 2.1. Taking
this restriction into account, our strategies would work best for archival systems
or systems for information retrieval like Google, CiteSeer or Akamai.

1.3 Related work

The most prominent approach for a scalable information system is to implement
a distributed hash table, or DHT. Well-known examples of DHTs are Chord
[22], CAN [18], Pastry [3], and Tapestry [24]. Most of the DHT-based systems
are based on concepts proposed in two influential papers: a paper by Plaxton et
al. on locality-preserving data management in distributed environments [17] and
a paper by Karger et al. on consistent hashing and web caching [5]. However,
since in both cases the data management is based on hashing, none of these
approaches is robust against past-insider attacks.

Various attacks on the data management layer of DHTs have been considered
in the past. Most of the work considers the flash crowd scenario in which many
peers want to access the same information at the same time. When using a pure
DHT design, this can lead to severe bottlenecks. To remove these bottlenecks,
various caching strategies have been proposed. Among them are CoopNet [16],
Backslash [19], PROOFS [20] in the systems community and [14] in the theory
community. However, being able to handle flash crowds is not sufficient to handle
arbitrary collections of lookup and insert requests in a scalable way because
much worse than having many requests to the same data item is to have many
requests to different data items at the same location. Standard combining or
caching strategies do not work here, but work on deterministic simulations of
CRCW PRAMs (e.g., [11]) turned out come to the rescue here. These concepts
allow the design of insert and lookup protocols that are guaranteed to handle
any set of requests with at most one request per server that can be chosen by
an adversary knowing everything about the system [2]. Thus, application-layer
DoS attacks can be handled but not network-layer attacks since the protocols in
[2] are purely hash-based.

There is a vast amount of literature on network-layer DoS attacks (see, e.g.
[4, 12] for a taxonomy of these DoS attacks). Several authors have explored
the use of DHTs to prevent DoS attacks from outsiders (e.g., [8, 6, 13]). Secure

Overlay Services (SOS) [8], for example, uses a proxy approach based on the
Chord network to protect applications against flooding DoS attacks. WebSOS
[21] is an implementation of SOS for web servers that makes use of graphical
Turing tests, web proxies and client authentication. Mayday [1] generalizes the
SOS architecture and analyzes the implications of choosing different filtering
techniques and overlay routing mechanisms. Internet Indirection Infrastructure
(i3) [9] also uses the Chord overlay to protect applications from direct DoS
attacks. Other DoS limiting overlay network architectures have been explored
in, e.g., [15, 23]. Most of the approaches above use traffic analysis or indirection
approaches to make DoS attacks hard, but none of these would be able to survive
the attackers considered in this paper since they essentially rely on the ability
to protect servers from direct hits of adversarial traffic.

2 A DoS-resistant DHT

In this section we describe how to store information in a scalable and robust
way in a DHT of completely interconnected servers. The DHT is based on the
consistent hashing principle in a sense that the servers (also called nodes hence-
forth) are given points in the [0, 1)-ring and any data copy that is mapped to a
point x ∈ [0, 1) is stored at the node that is the closest predecessor of x in [0, 1).

First, we present our data storage strategy. Afterwards, we present and an-
alyze our lookup protocol. For simplicity, we make the following assumptions:

– The number of nodes in the DHT is fixed to n, and n is a power of 2.
– The nodes are numbered from 0 to n − 1, and node i is responsible for the

interval [i/n, (i + 1)/n) in [0, 1).

Both assumptions can be relaxed (one can imagine, for example, that the nodes
are randomly spread in [0, 1) so that the DHT does not need central coordina-
tion), but we use them here since they will keep our proofs simple.

2.1 The storage strategy

Like in [2], we use c = Θ(log m) hash functions, denoted by h1, . . . , hc, that map
data names to points in the [0, 1) interval, where m represents the size of the
universe of all data names, but this is the only feature the approach in this paper
has in common with [2].

First, we introduce some notation. We assume that the points in [0, 1) are
given in binary form, i.e., point x ∈ [0, 1) is given as (x1, x2, . . .) ∈ {0, 1}∗ with
x =

∑
i≥1 xi/2i. For any two bit sequences x, y ∈ {0, 1}∗, x◦y is the unique point

z ∈ [0, 1) with (z1, z2, . . .) = (x1, . . . , x|x|, y1, . . . , y|y|). For any point x ∈ [0, 1)
and ` ∈ N, we call set T`(x) = {z ∈ [0, 1) | z = y ◦ x for some y ∈ {0, 1}`} the
set of all points at distance ` from x. A route to x of length ` is any sequence of
points R = (z`, z`−1, . . . , z0) with the property that z0 = x and for every i > 0,
zi+1 = b ◦ zi for any bit b ∈ {0, 1} (which implies that zi ∈ Ti(x) for every i).
Let R`(x) be the set of all possible routes of length ` to x. A random route to

x is a route R chosen uniformly and independently at random from R`(x) (i.e.,
z` is chosen uniformly and independently at random from T`(x)).

When a data item d is inserted or updated in the system, we select a random
route Ri = (zi,log n, zi,log n−1, . . . , zi,0) ∈ Rlog n(hi(d)) for every i ∈ {1, . . . , c}.
For each distance j ∈ {0, . . . , log n}, we store γ log n copies of d, for some con-
stant γ that will be determined later. For each of these copies, we select an
i ∈ {1, . . . , c} uniformly and independently at random and store the copy in
point zi,j (resp. the node owning that point according to the consistent hash-
ing scheme). Hence, altogether, we store O(log2 n) copies of each data item in
the system. It would be sufficient for our lookup protocol if instead of storing
O(log n) copies for each data item for each distance j, we use Reed-Solomon or
other codes to store each data item in O(log n) encoded pieces for each distance.
That would reduce the overall storage overhead to O(log n) in Theorem 1, but
for simplicity we will just assume that copies of d are stored.

Notice that as long as the set of DoS-attacked nodes is static, our storage
strategy could be transformed into an efficient insert protocol together with tech-
niques in [2] to avoid congestion problems. However, for a dynamically changing
set of DoS-attacked nodes this is tricky since some non-DoS-attacked nodes
are now missing information that is necessary for our lookup protocol to work
correctly. A potential countermeasure here could be to delay the execution of
the insert protocol at DoS-attacked nodes until the DoS-attack goes away. This
requires extra management overhead and complicates the design of the insert
protocol, which is why we left it out here.

For the rest of this paper, we will assume that the binary representations of
all points are rounded to log n bits (i.e., the points are multiples of 1/n, so there
is one point for each node). For any ` ∈ N let T` = {T`(x) | x ∈ [0, 1)}, where
we consider the points in T`(x) to be rounded to log n bits. That is, |T`| = n/2`

and each set in T` has a size of 2`.

2.2 The lookup protocol

We assume that we are given any collection of lookup requests, one per non-
blocked server. The lookup protocol consists of two stages. The first stage is the
contraction stage and the second stage is the expansion stage. During the con-
traction stage, the lookup requests are forwarded along random routes towards
the hash values of the requested data items. Each lookup request encountering
too many blocked or congested nodes stops and waits for the expansion stage
to be executed. During the expansion stage, lookup requests are woken up in a
controlled manner, and node sets of exponentially increasing size are explored
in order to search for copies of the requested data items until sufficiently many
copies have been found or the protocol decides that the item does not exist in
the system. We start with the formal description of the contraction stage.

The contraction stage Each lookup request for some data item d chooses, for
each i ∈ {1, . . . , c} and j ∈ {1, . . . , α log n}, a random route Ri,j ∈ Rlog n(hi(d))

of length log n to hi(d), where α is a sufficiently large constant. Hence, altogether
there are αc log n random routes. For every i, let Q`,i be the set of all nodes in
the routes Ri,j to hi(d) that belong to T`(hi(d)), and let Q′

`,i be the non-blocked
nodes in Q`,i.

Initially, all lookup requests are active, and all i ∈ {1, . . . , c} are active for
all lookup requests. Then the contraction stage proceeds in rounds, executed
from log n down to 0. In round r, every active request for some data item d
sends a message to all nodes in its set Qr,i for all active i. Each of the nodes
v ∈ Q′

r,i replies back to that request. The reply contains the number mv,i(d)
of messages it has received from requests to data item d for index i, which is
called the multiplicity of d at v, and the number Cv,i of different data items for
which it was contacted by requests for index i, which is called the congestion at
v. Afterwards, each lookup request checks the following rules:

1. For each active i ∈ {1, . . . , c} with |Q′r,i| < (α log n)/2, the request deac-
tivates i. If the total number of deactivated i’s is at least c/2, the request
becomes inactive.

2. For each active i ∈ {1, . . . , c} with |{v ∈ Q′r,i | |Cv,i| ≥ 2αc log n}| ≥ |Qr,i|/2,
the request deactivates i. If the total number of deactivated i’s is at least
c/2, the request becomes inactive.

3. If there is an active i for which there is a node v in Q′r,i with mv,i(d) ≥
2α log n, the request becomes inactive.

Inactive lookup requests do not participate any further in the contraction stage.

The expansion stage Each lookup request for some data item d that was
active till the end of the previous stage, gets the most up-to-date copy of d
from every non-blocked hi(d), returns the most up-to-date copy among these
and finishes.

For the other requests, the expansion stage proceeds in rounds, this time
numbered from 1 to log n. In round r, every lookup request for some data item
d that got deactivated in a round r′ < r and is not finished yet sends a message
of the form (d, r, i,−) (where “−” is an empty placeholder for a copy of d) to a
random node in Q′i,r for each i that was active at the end of that round in the
contraction stage. Each node v stores the IDs of the nodes that sent messages
to it in Sv and stores the messages it received from them into its active pool
of messages Av, one copy for each (d, r, i,−). If |Av| > 3c/δ, then any set of
messages is discarded from Av to get down to |Av| = 3c/δ, where the constant δ
is chosen as in Lemma 1 below. For any remaining (d, r, i,−) in Av for which v
stores a copy b of d (due to the data storage strategy defined above), (d, r, i,−) is
replaced by (d, r, i, b). Afterwards, Av is managed as a FIFO queue. Every node
v in the system executes the following push strategy O(c log n) many times:

– v dequeues one message (d, r, i, b) from Av, enqueues it back to Av and sends
a copy of it to a random node in Tr(hi(d)).

– For each message (d, r, i, b) received by v, v first checks whether Av contains
some message (d, r, i, b′) in which copy b′ is older than b (or empty). If so,

v replaces b′ by b. Otherwise, v checks if |Av| = 3c/δ. If so, v discards the
message. Otherwise, it checks whether it stores a copy b′ of d that is younger
than b. If so, v inserts (d, r, i, b′) into Av, and otherwise it inserts (d, r, i, b)
into Av.

If after these steps |Av| = 3c/δ, then v sends for each node w ∈ Sv with original
message (d, r, i,−) the message (d, r, i, ∗) back to w, where the “∗” indicates that
v was too congested. Otherwise, v sends (d, r, i, b) in Av back to w.

Each lookup request that receives at most c/4 many (d, r, i, ∗) messages re-
turns the message (d, r, i, b) with the most up-to-date b (which may also be “−” if
no copy was found) to whoever generated the request and is finished. Otherwise,
it continues to participate in round r + 1.

2.3 Robust hash functions

In this section, we specify a central property the c hash functions h1, . . . , hc have
to satisfy for the lookup protocol to work correctly and efficiently.

Given a set S of data items and a k ∈ N, we call F ⊆ S×{1, . . . , c} a k-bundle
of S if every d ∈ S has exactly k many tuples (d, i) in F . Given h1, . . . , hc and
a distance `, let ΓF,`(S) =

⋃
(d,i)∈F T`(hi(d)). Let U be the set of all possible

(names of the) data items and H be the collection of hash functions h1, . . . , hc,
and let m = |U |. Given a 0 < σ < 1, we call H a (k, σ)-expander if for any
` ≤ log n, any S ⊆ U with |S| ≤ σn/2`, and any k-bundle F of S it holds that
|ΓF,`(S)| ≥ 2`|S|.

Lemma 1. Let 0 < λ < 1 be any constant. Then it holds for any c ≥ 8 log m and
σ ≤ 1/24 that if the functions h1, . . . , hc are chosen uniformly and independently
at random, then H is a (c/4, σ)-expander with high probability.

Proof. Suppose that, for randomly chosen functions h1, . . . , h2c−1, H is not
a (c/4, σ)-expander. Then there exists an i ≤ log n and a set S ⊂ U with
|S| ≤ σn/2i and a c/4-bundle F of S with |ΓF,i(S)| < 2i|S|. We claim that the
probability ps,i that such a set S of size s exists is at most

(
m

s

)(
cs

cs/4

)(
n/2i

s

)
·
(

s

n/2i

)cs/4

This holds because there are
(
m
s

)
ways of choosing a subset S ⊂ U . Furthermore,

there are
(

cs
cs/4

)
ways of choosing cs/4 pairs (d, j) for F and at most

(
n/2i

s

)
ways

of choosing a set W of s sets in Ti witnessing a bad expansion of the pairs in F .
The fraction of collections H for which the selected pairs (d, j) indeed have the
property that Ti(hj(d)) ⊆ W is equal to (s

n/2i)cs/4 because the hash functions
h1, . . . , hc are chosen independently and uniformly at random.

Next we simplify ps,i. Using the conditions on c and σ in the lemma it holds
that
(

m

s

)(
cs

cs/4

)(
n/2i

s

)
·
(

s

n/2i

)cs/4

≤
(em

s

)s

(4e)cs/4
(en

s2i

)s
(

s2i

n

)cs/4

=

em

s
·
(

4e1+4/c ·
(

s2i

n

)1−4/c
)c/4

s

≤
[
m ·

(
4e1+4/c · σ1−4/c

)c/4
]s

≤
[
m ·

(
1
2

)c/4
]s

≤ 1
ms

if c ≥ 8 log m and m is sufficiently large. Hence, summing up over all possible
values of s and i, we obtain a probability of having a bad c/4-bundle of at most
(2 log n)/m, which proves the lemma. ut

We remark that the hash functions have to form a (c/4, σ)-expander for some
constant σ for our lookup protocol to work, but they do not have to be chosen
at random. The proof above just illustrates that if they are chosen at random,
they will form a (c/4, σ)-expander w.h.p.

2.4 Analysis of the lookup protocol

Next we show that the lookup protocol is correct, robust and efficient, i.e., for
every lookup request for some data item d inserted after time t0 (the threshold
in the past insider model), a correct answer will be delivered for any DoS attack
under our model, and every node spends only polylogarithmic time and work on
the requests in the system. The correctness condition for all other data items is
implied by our proofs. First, we prove the correctness of a lookup request given
that it finishes in the expansion stage.

Lemma 2. If a lookup request for some data item d finishes in round r of the
expansion stage and d was inserted after t0, then it returns the most up-to-date
version of d.

Proof. Consider any lookup request for some data item d that finishes in round
r of the expansion stage and d was inserted after t0. This means that it got at
most c/4 many messages of the form (d, r, i, ∗). The request only participates in
round r of the expansion stage if it was still active at the beginning of round
r − 1 in the contraction stage, which it only the case if it had at least c/2
active indices i at the beginning of round r − 1. These indices were all used
in round r of the expansion stage, which means that at the end of that round
the request got at least c/4 messages back of the form (d, r, i, b) where b is the
most up-to-date copy of d that the node contacted by the request in Tr(hi(b))
found. Let I be the set of these indices. From the fact that each i ∈ I was
active at the beginning of round r − 1 in the contraction stage it follows that
in round r of that stage, Q′r,i ≥ (α log n)/2 (because otherwise i would have

been deactivated in that round). Hence, at least half of the nodes in Qr,i that
were sampled from Tr(hi(b)) are non-blocked nodes. Since the nodes in Qr,i were
chosen independently at random, it follows from the Chernoff bounds that the
total number of blocked nodes in Tr(hi(b)) is at most 2|Tr(hi(b))|/3, w.h.p., if
α is a sufficiently large constant. We call a Tr(hi(b)) satisfying such a property
non-blocked in this proof. We can show the following claim.

Claim 1 For any node v in a non-blocked set Tr(hi(b)) it holds that if after
φc log n executions of the push strategy in the expansion stage, where φ is a
sufficiently large constant, |Av| < 3c/δ, then there are lookup requests for less
than 3c/δ data items that sent messages to nodes in Tr(hi(b)) and every entry
(d, r, i, b) in Av stores the most up-to-date copy of d among the non-blocked nodes
in Tr(hi(b)) at the end.

Proof. Can be shown along the lines of existing proofs on random, push-based
broadcasting in complete networks (e.g., [7]). ut

Hence, the lookup request obtains at least c/4 many replies (d, r, i, b) with
most up-to-date copies in the respective sets Tr(hi(b)). Since for each i ∈ I at
least a third of the nodes in Tr(hi(b)) are not blocked, w.h.p., the lookup request
returns the most up-to-date copy for at least (c/4) · (2r/3) = c2r/12 of the
c2r nodes in all sets Tr(hi(b)), i ∈ {1, . . . , c}. According to the robust storage
strategy, γ log n many most up-to-date copies of d are randomly distributed
among these c2r nodes, and none of these locations is known to the adversary,
so the probability that none of these is stored in the at least c2r/12 non-blocked
nodes accessed by the request is at most (1− 1/12)γ log n, which is polynomially
small if γ is a sufficiently large constant.

We remark that for the data items least recently updated before t0, at most
f = max{n,D/nk} many of them are bad, w.h.p., in a sense that none of their
most up-to-date copies is stored in the at least c2r/12 non-blocked nodes, where
D is the number of data items in the system and k can be any constant. This is
because there are at most 2n ways of selecting c2r/12 non-blocked out of at most
n considered nodes and

(
D
f

)
ways of selecting bad data items while the probability

that these are indeed bad is at most ((1− 1/12)γ log n)f . If γ is sufficiently large
compared to k, multiplying these terms gives a polynomially small probability.
Hence, apart from f data items, the lookup protocol will deliver correct answers
also for data items inserted or updated before t0, w.h.p. ut

Next, we look at the robustness and efficiency and will show that within a
polylogarithmic time every request finishes, w.h.p. First, we consider the contrac-
tion stage. We show that the number of messages sent to any node is polylogarith-
mic in every round, which implies that every node spends only a polylogarithmic
time and work on the contraction stage.

Lemma 3. For every round r, at most O(c log2 n) messages are sent to any
node in the system, w.h.p.

Proof. Consider some fixed node v in some set T ∈ Tr. First, we bound mv,i(d)
for any data item d and index i with Tr(hi(d)) = T . Suppose that mv,i(d) ≥
8α log n. Since every request for d chooses the nodes in Qr,i independently at ran-
dom from the nodes in T , it follows from the Chernoff bounds that the expected
number of messages for d at a node in T is at least 6α log n, w.h.p. Hence, the
expected number of messages for d in Tr+1(hi(d)) was at least 3α log n, w.h.p.
However, in this case it holds for every node w ∈ Tr+1(hi(d)) that mw,i(d) was
at least 2α log n, w.h.p. Thus, every request for d that was still active at round
r + 1 must have either deactivated i or became inactive. Hence, it must hold for
every node v ∈ T that mv,i(d) ≤ 8α log n, w.h.p., for any data item d and i with
Tr(hi(d)) = T .

A congestion bound of |Cv,i| ≤ 8α log n can be shown along exactly the same
lines. Since there are c different indices i, the total number of messages sent to
v is bounded by c(8α log n)2 = O(c log2 n). ut

Hence, the runtime of the contraction stage and work per node is O(c log3 n),
w.h.p. Next we analyze the number of different data items for which lookup
requests become inactive. This will be important to bound the congestion at the
nodes in the expansion phase.

Let Dr be the set of all data items for which there are lookup requests that
become inactive in round r. Furthermore, let BCr be the set of data items with
requests that become inactive due to too many inactive indices and MCr be
the set of data items with requests that become inactive due to a too high
multiplicity. Certainly, Dr = BCr ∪MCr. First, we bound BCr.

Lemma 4. If ε < 1/144, then it holds for every round r that |BCr| ≤ 8εn/2r,
w.h.p.

Proof. For any r and any T ⊆ Tr, we call T blocked if the attacker blocks more
than a third of its nodes with its DoS attack, and T is called congested if more
than a third of the nodes in T have a congestion of at least 2αc log n. Consider
any data item d. We call d blocked at round r if at least c/4 of its c sets Tr(hi(d))
are blocked, and we call it weakly blocked at round r if there are blocked sets
Tr1(hi1(d)), Tr2(hi2(d)), . . . , Trk

(hik
(d)) with r1, . . . , rk ≥ r and k = c/4 and

i1, . . . , ik being pairwise different. Similarly, we call d congested at round r if at
least c/4 of its c sets Tr(hi(d)) are congested, and we call it weakly congested at
round r if there are congested sets Tr1(hi1(d)), Tr2(hi2(d)), . . . , Trk

(hik
(d)) with

r1, r2, . . . , rk ≥ r and k = c/4 and i1, . . . , ik being pairwise different. In the
following, WBr denotes the set of weakly blocked data items and WCr the set
of weakly congested data items at round r.

Claim 2 Whenever a request for some data item d deactivates some index i in
round r, then Tr(hi(d)) is either blocked or congested, w.h.p.

Proof. Consider any request for some data item d in round r. Index i is deacti-
vated for that request if

1. there are more than (α log n)/2 nodes in Qr,i that are blocked, or

2. there are more than (α log n)/2 nodes in Q′r,i that are congested.

In the first case, suppose that Tr(hi(d)) is not blocked. Then the probability
that Ri,j chooses a node in Tr(hi(d)) that is blocked is at most 1/3 and, hence,
the expected number of nodes chosen by the routes Ri,1, . . . , Ri,α log n that are
blocked is at most (α log n)/3. Since the nodes are chosen independently at
random, it follows from the Chernoff bounds that the probability that at least
(α log n)/2 nodes in Qr,i are blocked is polynomially small in n (if the constant
α is sufficiently large). Hence, if the request deactivates index i because of at
least (α log n)/2 blocked nodes, then Tr(hi(d)) is blocked, w.h.p.

The arguments for the congestion follow along the same lines. ut
Now suppose that a request for data item d becomes inactive at round r

due to at least c/2 deactivated indices. Then there are at least c/4 indices for
which condition 1 in the contraction stage is true or at least c/4 indices for
which condition 2 is true. In the first case, it follows from Claim 2 that d is
weakly blocked, and in the second case, it follows from Claim 2 that d is weakly
congested, w.h.p. For weakly blocked data items, the following claim holds.

Claim 3 If s blocked nodes can cause a set of b weakly blocked data items at
round r, then a set of 2s blocked nodes can cause a set of b blocked data items
at round r.

Proof. Consider item d to be weakly blocked, and let Tr1(hi1(d)), Tr2(hi2(d)),
. . . , Trk

(hik
(d)) be the sets witnessing that with k = c/4. Any route through

a set Tr′(hi′(d)) with r′ > r can have at most 2r′−r sets T ∈ Tr it can go
through, and each of these sets T has a size of |Tr′(hi′(d))|/2r′−r. Hence, the
number of nodes causing Tr′(hi′(d)) to be blocked is sufficient to block also all
T ∈ Tr reachable from Tr′(hi′(d)). Hence, for any set of b weakly blocked data
items, we can turn them into blocked data items when moving the blocking of
nodes at distance r′ > r to nodes at distance r. Since we have to keep those sets
Tr′(hi′(b)) with r′ = r blocked, we have to at most double the number of nodes
needed to transform weakly blocked data items into blocked data items. ut

If the adversary can block at most 2εn nodes, then at most 6εn/2r of the
n/2r sets in Tr can be blocked, which covers at most 6εn nodes. Suppose the
attacker can block a set S of data items in round r. Then there is a c/4-bundle
F for S. According to Lemma 1, it holds that |ΓF,r(S)| ≥ 2r|S| if |S| ≤ σn/2r.
Since the largest possible size of ΓF,r(S) is 6εn, it follows that |S| ≤ 6εn/2r,
which is less than σn/2r (so that Lemma 1 implies an upper bound on |S|) if
6ε < 1/24, or ε < 1/144. Hence, if the adversary can block at most 2εn nodes,
then it can cause at most 6εn/2r blocked data items in round r. This implies
together with Claim 3 that if the adversary can block at most εn nodes, then it
can cause at most 6εn/2i weakly blocked data items in round r. Combining this
with Claim 2, it follows that if the adversary can block at most εn nodes, then
|WBr| ≤ 6εn/2r, w.h.p.

Using the same arguments for congested data items, it also follows that
|WCr| ≤ 6εn/2r, w.h.p. Hence, |BCr| ≤ |WBr|+ |WCr| ≤ 12εn/2r, w.h.p. ut

Next we bound MCr.

Lemma 5. For every round r, |MCr| ≤ n/2r.

Proof. Suppose that there are ` many lookup requests for data item d in round
r. Then the expected number of messages per node w.r.t. i in any Tr(hi(d)) is
(α log n)`/2r. If ` ≤ 2r, this is at most α log n. Since each message chooses a node
independently at random, it follows from the Chernoff bounds that the proba-
bility that there is a node in a set Tr(hi(d)) with at least 2α log n messages for d
is polynomially small. Hence, if a lookup request for some data item d becomes
inactive due to condition 3 of the contraction stage, then d has a multiplicity of
at least 2r, w.h.p. Since there are at most n active requests at round r, it follows
that |MCr| ≤ n/2r. ut

Combining Lemmas 4 and 5 it follows that |Dr| ≤ 12εn/2r + n/2r ≤ 2n/2r,
w.h.p. Now we are ready to analyze the expansion stage. First, we bound the
number of messages sent to a node in each round.

Lemma 6. For every round r, at most O(c log n) messages are sent to any node
in the system, w.h.p.

Proof. Only requests that were active in round r−1 of the contraction stage will
participate in round r of the expansion stage. According to Lemma 3, the number
of messages sent to any node in the system in any round of the contraction stage
is O(c log2 n) w.h.p. Since every lookup request sends out αc log n messages in
the contraction stage but only at most c messages in the expansion stage, it
follows that the number of messages sent to any node in the expansion stage is
at most O(c log n), w.h.p. ut

The description of the expansion stage and Lemma 6 immediately imply that
the runtime and work per node of the expansion stage is at most O(c log3 n).
Combining this with our bounds for the contraction stage, we get:

Lemma 7. For any collection of lookup requests, one per non-blocked node, the
lookup protocol needs at most O(c log3 n) time and work at every node.

Next, we show that every request will eventually finish in the lookup protocol,
w.h.p.

Lemma 8. For every round r, the number of data items with requests partici-
pating in it is less than 3n/2r.

Proof. We prove the lemma by induction on the number of rounds. For round
1, the lemma certainly holds. So consider any round r ≥ 1 for which the lemma
holds. A set T ∈ Tr is called congested if there are messages for at least 3c/σ
many different data items in T . Since there are requests for less than 3n/2r many
data items and the messages for each data item are limited to c sets T ∈ Tr,
there must be less than σn/2r many sets T ∈ Tr that are congested. A data
item d is called congested if there are at least c/4 many indices i for which

Tr(hi(d)) is congested. Let S be the set of congested data items. Then there is
a c/4-bundle F for S. According to Lemma 1, it holds that |ΓF,r(S)| ≥ 2r|S| if
|S| ≤ σn/2r. Since the largest possible size of ΓF,r(S) is less than σn, it follows
that |S| < σn/2r. As a worst case, we assume that all requests for congested
data items will not finish in round r and therefore have to continue in round
r + 1. These will combine with the requests for at most n/2r + 12εn/2r data
items with requests that became inactive in round r of the contraction stage,
which gives an upper bound of less than 3n/2r+1 on the number of data items
with requests in round r + 1 (given that ε < 1/144 and σ ≤ 1/24). ut

Hence, in round r = log n, there are at most 3 data items left with requests.
In this round, all sets Tr(hi(d)) are equal to the entire node set, so there is
no congested node set left. Hence, according to the expansion protocol, every
request will finish in that round. Combining this with Lemmas 2 and 7 proves
Theorem 1.

3 Conclusions

In this paper we showed that a DHT for scalable data storage and retrieval can
be designed that is provably robust against massive application- and network-
layer DoS attacks. Certainly, low-level protocols still have to be developed for
our operations that work well and correctly in an asynchronous environment.
Also, it would be interesting to find out whether adaptations of our strategies
are possible to bounded degree DHTs so that they can sustain DoS attacks of a
similar magnitude as considered in this paper.

References

1. D.G. Andersen. Mayday: Distributed filtering for internet services. In 4th Usenix
Symp. on Internet Technologies and Systems, 2003.

2. B. Awerbuch and C. Scheideler. Towards a scalable and robust DHT. In Proc. of
the 18th ACM Symp. on Parallel Algorithms and Architectures (SPAA), 2006. See
also http://www14.in.tum.de/personen/scheideler.

3. P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware 2001), 2001.

4. D. Dittrich J. Mirkovic, S. Dietrich and P. Reiher. Internet Denial of Service:
Attack and Defense Mechanisms. Prentice Hall PTR, 2005.

5. D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahi. Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Proc. of the 29th ACM Symp. on Theory of
Computing (STOC), pages 654–663, 1997.

6. F. Kargl, J. Maier, and M. Weber. Protecting web servers from distributed denial
of service attacks. World Wide Web, pages 514–524, 2001.

7. R. Karp, S. Shenker, C. Schindelhauer, and B. Vöcking. Randomized rumor spread-
ing. In Proc. of the 41st IEEE Symp. on Foundations of Computer Science (FOCS),
pages 565–574, 2000.

8. A.D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. In
Proc. of ACM SIGCOMM, pages 61–72, 2002.

9. K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. Taming ip packet
flooding attacks, 2003.

10. G. Lawton. Stronger domain name system thwarts root-server attacks. IEEE
Computer, pages 14–17, May 2007.

11. K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel mamories. Acta Infor-
matica, 21:339–374, 1984.

12. J. Mirkovic and P. Reiher. A taxonomy of ddos attacks and defense mechanisms.
ACM SIGCOMM Computer Communications Review, 34(2), 2004.

13. W.G. Morein, A. Stavrou, D.L. Cook, A.D. Keromytis, V. Misra, and D. Ruben-
stein. Using graphic turing tests to counter automated ddos attacks against web
servers. In Proc. of the 10th ACM Int. Conference on Computer and Communica-
tions Security (CCS), pages 8–19, 2003.

14. M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-
discrete approach. In Proc. of the 15th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), 2003.

15. G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson. A framework for collab-
orative ddos defense. In Proc. of ACSAC 2006, 2006.

16. V.N. Padmanabhan and K. Sripanidkulchai. The case for cooperative networking.
In Proc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS),
2002.

17. G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proc. of the 9th ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 311–320, 1997.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. of the ACM SIGCOMM ’01, 2001.

19. T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes to address
flash crowds. In Proc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

20. A. Stavron, D. Rubenstein, and S. Sahn. A lightweight robust P2P system to handle
flash crowds. In Proc. of the IEEE Intl. Conf. on Network Protocols (ICNP), 2002.

21. A. Stavrou, D.L. Cook, W.G. Morein, A.D. Keromytis, V. Misra, and D. Ruben-
stein. Websos: An overlay-based system for protecting web servers from denial of
service attacks, 2005.

22. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proc. of the ACM
SIGCOMM ’01, 2001. See also http://www.pdos.lcs.mit.edu/chord/.

23. X. Yang, D. Wetherall, and T. Anderson. A dos-limiting network architecture. In
Proc. of the ACM SIGCOMM, 2005.

24. B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical report,
UCB/CSD-01-1141, University of California at Berkeley, 2001. See also
http://www.cs.berkeley.edu/∼ravenben/tapestry.

