
Consistent, Order-Preserving Data Management
in Distributed Storage Systems

Baruch Awerbuch
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
baruch@cs.jhu.edu

Christian Scheideler
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
scheideler@cs.jhu.edu

February 5, 2004

Abstract

In this paper we consider the problem of maintaining a mapping of data objects to memory modules
so that the mapping is order preserving, i.e. objects closely together in the sorted set of current objects
are also closely together in the mapping. Keeping close objects closely together is important for many
applications such as efficiently executing programs using alarge amount of space or complex search
queries such as semi-group range queries. Our main result assumes a static set of memory modules of
uniform capacity, but we also show how to extend this to a dynamic set of memory modules of non-
uniform capacity in a decentralized environment.

We assume that insert and delete requests of objects are continuously injected into the system, and
the injection is under adversarial control. Data objects are of uniform size and every module can send or
receive at most one object in each unit of time. We prove asymptotically tight upper and lower bounds for
the maximum rate at which the adversary can inject update requests into the modules so that an ordered
placement can be preserved without exceeding the capacity of a module at any time. Specifically, we
show that in a(1 − ǫ)-utilized system (i.e. the available space is used up to anǫ fraction) the maximum
injection rate that can be sustained isΘ(ǫ). While this does not seem to be particularly surprising, it is
actually hard to prove in a rigorous way.

Besides having interesting consequences for distributed storage and information systems, we also
feel that our approach offers interesting future problems for theoretical research.

1

1 Introduction

1.1 Motivation

The concept ofvirtualization or indirection is a basic concept in computer science. Perhaps one of its most
basic manifestations is the invention ofvirtual memory. That is, program variables (array entries, file blocks)
are referred to by theirvirtual name, rather then by their physical address. Consider a program that performs
a loop over an array. From the point of view ofcorrectnessof this program, it does not matter where the
array elements are stored. However, from the point of view ofperformance, it is desirable to map entries
of an array into the same page in the memory, or at least to try to minimize the number of pages that store
the array’s entries. Thus, for certain applications it is important to consider locality when mapping data to
pages.

Locality also plays an important role in information retrieval. Imagine a geographic range or a time
range, and values being assigned to certain points in this range, e.g. the temperature, stock quotes, etc.
Consider the problem of performing, upon request, range operations like computing the average tempera-
ture in a geographic region or determining the maximum weekly fluctuation of a stock. This is known as
semi-group range queries. Semi-group range queries are useful for web search engines, geographic infor-
mation systems, inventory control, and consistency checksof file systems. To achieve a high efficiency, it
is important to keep elements that are close to each other in the object space also close to each other when
mapping them to pages, i.e. to store them in a de-fragmented way. The reason for this is that the work
for locally processing semi-group range queries usually scales logarithmic with the number of objects (e.g.,
[5, 1, 37, 38]), whereas the work for aggregating the resultsfrom different pages scales linearly with the
number of pages involved in a range query. Thus, uniform hashing, i.e. globally scattering data objects over
the pages, makes range queriesvery expensive. This is particularly painful in large, distributed information
systems, where the data is distributed over multiple sites,because apart from the communication overhead,
hashing may require a range query to be processed at a large number of sites instead of just a single site.

Since hashing has many benefits in a distributed setting suchas evenly distributing data and simple
lookup requests among sites, one is tempted to use locality-preserving hash functions as a compromise.
Such a function maps objects from some underlying universe of object names (e.g., file blocks, array entries,
etc.) into pages of memory such that a consecutive range of objects is stored in a small number of pages.
The question is,can such hashing possibly work? The paper by Linial and Sasson [29] seems to indicate that
this is possible. (See also follow-up work in [28, 22, 21]). However, it should be clear that no static mapping
can preserve locality for a dynamically changing set of dataobjects without causing the load at some site to
exceed its capacity. Hence, dynamic mapping schemes have tobe used. Whereas dynamic hashing schemes
that do not preserve locality are known [25, 6, 7], it is questionable whether dynamic locality-preserving
hashing can be done and actually makes sense (since the benefit of hashing over deterministic strategies is
unclear in this case).

Instead of using hashing, this paper accomplishes the goal of de-fragmented data storage using ade-
terministic, adaptivememory assignment strategy that keeps the data objects in order and that is efficiently
manageable under adversarial inputs in concurrent environments.

1.2 Our approach: models and results

Order-preserving data management. For our algorithmic approach, we focus on a natural model of
storage, where each memory module (or node) is responsible for a consecutive range of object names.
This will also be calledorder-preservingdata management. In formal terms, consider a universeP ∗ of
all objects with a linear order defined on these objects so that w.l.o.g. we can assume that objects are
represented by real numbers in[0, 1). Consider also a set of memory modules or nodesV with naming

1

functionName : V → P ∗ so that each nodev ∈ V has a nameName(v) in P ∗ = [0, 1). Given an objecto,
we expect to find this object in memory modulev whose name is the closest predecessor ofName(o), i.e.

v = argmin{Name(v) | v ∈ V andName(v) ≤ Name(o)} . (∗)

Similar to [25] and follow-up work in the area of peer-to-peer systems [36, 33, 39, 11], we say that a set
of objects is storedconsistentlyamong a set of nodes if each object is stored at the node specified in (∗).
However, our approach significantly differs from these approaches:

• object names:in [25, 36, 33, 39, 11], the real numbers describing the namesof the objects arestatic
hash valuesof their true names. In the current paper, the real numbers represent theoriginal names
in order to avoid fragmentation and enable (one-dimensional) range queries.

• node names:in [25, 36, 33, 39, 11], the real numbers describing the namesof the nodes arestatic
hash valuesof their IP addresses orrandom values. In the current paper, the real numbers of the nodes
are dynamically changed to adapt the mapping to a changing set of currently used objects.

Operational and transient consistency. To adapt to a changing set of objects, we only allow two opera-
tions: renamingof nodes, andmigratingobjects. Clearly, the object assignment must return to a consistent
state after any insertion and deletion of an object because otherwise objects cannot be found efficiently any
more. This property is calledoperational consistency. In the transient state, i.e., during the execution of
insert/delete operations, the storage system may be inconsistent. A stronger (more restrictive) model oftran-
sient consistencyrequires consistency even in the transient state. That is, after every elementary operation
(such as renaming a node or migrating an object), the system must be back in a consistent state. Transient
consistency is important to make sure that the system can process read requests at any time and recover
easily from a crash.

Concurrency. Information systems based on a large number of processing units (such as storage area
networks and peer-to-peer systems) are becoming increasingly important. Hence, our focus will be on a
multiple processing unit environment, i.e. each node represents its own processing unit.

Generation of update requests. We are interested in thedynamicsetting where continuously new objects
are inserted and old objects are deleted. We assume that the generation of insert/delete requests is under
adversarial control. Aλ-bounded adversary is allowed to generate an arbitrary set of object updates in each
time step as long as the average number of object updates thathave to be handled by a node isλ or less. If this
is always true when averaging over time windows of sizeT , we call such an adversary a(λ, T)-bounded
adversary. Given such an adversary, an algorithm is calledstable if it can preserve an order-preserving
mapping without exceeding the capacity of a module at any time. Since we assume that every module can
receive or send at most one object per time unit,λ can be at most 1 for an algorithm to be stable.

Memory utilization vs. update rate. The memory utilization of a system denotes the degree to which it
is filled, i.e. forγ ∈ [0, 1], a γ-utilized system needs aγ fraction of its resources to store the data objects
currently in the system.

We assume that we have a static set of memory modules of uniform capacity, and we are interested in
investigating the maximum rate of update requests that can be sustained given a certain memory utilization
to keep the assignment of data to memory modules consistent and order-preserving without exceeding the
capacity of a module. The main contributions of this paper are matching upper and lower bounds on the rate
of insert and delete requests that can be sustained for a given memory utilization. Specifically, in Section 2
we show

2

Theorem 1.1 There is aΘ(ǫ)-bounded adversary so that any operationally consistent, order-preserving
online algorithm is unstable in a(1 − ǫ)-utilized system.

For our model, that demands memory consistency even in transient state, we show:

Theorem 1.2 For any 0 < ǫ < 1, the online algorithm in Figure 1 is maintaining an order-preserving
mapping under anyα · ǫ-bounded adversary (for some constantα > 0) as long as the system is at most
(1 − ǫ)-utilized at any point in time.

Thus, our upper and lower bounds for stability are essentially tight.

Fragmentation. Our online algorithm achieves actually more than just beingstable. For a data man-
agement algorithm to be work-competitive for range queries, it has to be ensured that a set of consecutive
objects is not distributed among too many nodes. Given nodeswith capacityC, we define the placement
of objects to nodes to be(1 + α)-fragmentedif for any set ofs consecutive objects currently in the sys-
tem, the number of nodes storing the objects is at most⌈(1 + α) ·max[s/C, 1]⌉. Our algorithm maintains a
(1+O(ǫ))-fragmented mapping in an at most(1−ǫ)-utilized system and is therefore(1+O(ǫ))-competitive
concerning the number of nodes to be contacted for range queries.

Dynamic servers or dynamic capacity model. We also consider the case that memory modules contin-
uously join and leave the system and that the memory modules have arbitrary, non-uniform capacities. In
fact, by viewing the object movements necessary to cope witha dynamic set of memory modules or capacity
changes as object injections, we can reduce these cases to the case of insertions and deletions of objects in
a static system, allowing us to carry over our stability result for a static system to dynamic, non-uniform
systems. Specifically, we prove (see Sections 3.2 and 3.1):

Theorem 1.3 The online algorithm in Figure 1 is maintaining an order-preserving mapping under anyα ·ǫ-
bounded adversary (for some constantα > 0, considering both object updates and capacity changes) as
long as the system is at most(1 − ǫ)-utilized at any point in time.

Certainly, considering1+ǫ-fragmentation does not make sense in a heterogeneous environment because
the number of nodes storing a range of objects depends on their capacities.

Decentralized storage systems. Finally, we will address the issue of how to turn our online algorithm into
a decentralized storage system. We will distinguish between “busy” nodes, i.e. nodes storing information,
and “idle” nodes, i.e. empty nodes that will be taken whenever nodes are needed to help out busy nodes.
The busy nodes and the idle nodes are organized in suitable overlay networks, with links from busy nodes
to random idle nodes so that nodes can be transferred betweenthe busy and the idle structures as necessary
(see Section 4 for details).

1.3 Previous work

We first discuss prior work in the centralized setting, i.e. there is a central dispatcher that inserts and deletes
data at the memory modules and moves data between the memory modules to prevent the object load at a
module from exceeding its capacity. For this model, order-preserving search structures have been presented
in the context of cache-obliviousB-trees and monotonic list labeling. Bender et al. [4] present a cache-
obliviousB-tree that, in our context, needs an amortized work ofO(log2 n) per insert and delete operation
to keep objects distributed among the memory modules in an order-preserving way without exceeding the

3

capacity of a memory module. This bound holds as long as the system is at most1/2-utilized at any time.
The same result has also been shown independently by Itai et al. [23]. Brodal et al. [8] generalized the
bound toO((log2 n)/ǫ) as long as the system is at most(1 − ǫ)-utilized at any time.

Also lower bounds have been investigated. Dietz and Zhang [13] showed that for the case that the order
of the (names of the) memory modules cannot be changed, any smooth, order-preserving data management
algorithm has an amortized cost ofΩ(log2 n) per insertion. In words, an algorithm is calledsmoothif the
items moved before each insertion form a contiguous neighborhood of the position for the new item, and the
new labels are as widely and equally spaced as possible. The algorithms in [4, 8, 23] fulfill these properties,
and their upper bound is therefore best possible. Later, Dietz et al. [12] showed that any online order-
preserving placement strategy that preserves the order of the memory modules needs an amortized work of
Ω(log n). Our algorithm can break through this lower bound because itallows the order of the memory
modules to bechanged, i.e. memory modules can be renamed to help out overloaded memory modules in
another area.

Also concurrent forms of search trees have been reported [26, 31, 24] though they seem to be more
suitable for a parallel processing environment than a distributed environment. Our algorithm can easily be
adapted to a completely decentralized environment, and dueto the lower bounds above it can achieve a
better work overhead than achievable by these trees

The issue of memory allocation preserving object locality has also been extensively investigated in the
systems community, even though we are unable to pinpoint clear algorithmic statements. The open problem
of finding locality preserving hashing in the context of range queries is stated in [16]. A recent work [14]
attempts to guarantee locality properties for SHA-1 hashing used in Chord [36]. Data clustering on a single
disk is best described in the “Fast-file” system which keeps all of the data in a single file contiguous (up to
64K at a time) [30]. More recent work at AT&T deals with clustering of all the data in the same web page
together on a disk [35]. Other relevant work includes striping file systems [9, 19]. Zebra [19], for example,
is a log-structured file system that stripes data across multiple disks for efficient parallel writes. GPFS [34]
is a high-performance file system that stripes data across multiple disk servers each of which is a RAID
array. Other work includes [32, 18, 10, 17, 3, 3, 27, 15].

2 Lower bounds and instability

This section states a number of results proved in the Appendix. The first result gives a lower bound on the
work overhead of arbitrary order-preserving placement methods when using operational consistency.

Theorem 2.1 For any operationally consistent, order-preserving online algorithm there is an (adaptive)
Θ(ǫ)-bounded adversary so that the algorithm is unstable in a(1 − ǫ)-utilized system.

The question is, what kind of properties an algorithm has to fulfill to be stable under aΘ(ǫ)-bounded
adversary. A placement algorithm is called(1 + ǫ)-faithful if every node has a number of objects that is at
leastℓ/(1 + ǫ) and at most(1 + ǫ)ℓ whereℓ is the average load in the system. Furthermore, a placement
algorithm is callednode-order preservingif it imposes a fixed order on the nodes, or equivalently, a fixed
numbering from 1 ton, so that for alli ∈ {1, . . . , n − 1}, the ranges of the nodes fulfillRi ≤ Ri+1 at any
time. Notice that a faithful algorithm is always node-orderpreserving since nodes can never be empty and
therefore can never change their position in the node ordering. However, node-order preserving algorithms
may not be faithful.

Theorem 2.2 For any constant0 < ǫ < 1, any (offline or online) operationally consistent and faithful
placement algorithm in a(1 − ǫ)-utilized system is already unstable underΘ(1/n)-bounded adversaries.

4

Hence, faithful algorithms perform poorly. What about node-order preserving algorithms? The results
in the previous work section imply the following theorem.

Theorem 2.3 There is an operationally consistent node-order preserving online algorithm so that for any
0 < ǫ < 1 it holds that as long as the system is at most(1 − ǫ)-utilized, the algorithm is stable under any
α/ log2 n-bounded adversary for some constantα > 0.

Thus, the ability to make nodes empty is crucial for a high efficiency. However, due to the lower bounds
in [13, 12], these algorithms cannot be stable under anyΘ(1/ log n)-bounded adversary because of a work
overhead ofΩ(log n), and it is conjectured in [4] that the correct lower bound is actually Ω(log2 n). In
any way, it appears to be necessary to reorder nodes in order to obtain Theorem 2.1. This is exactly our
approach.

3 An asymptotically optimal placement algorithm

We assume that we have a static set ofn nodes of uniform capacity and that object updates are generated by
a (λ, T)-bounded adversary. Later, we show how to extend the algorithm to dynamically changing sets of
nodes and nodes of non-uniform capacity.

For simplicity, we assume in the following that1/ǫ is an integer. We partition then nodes into two sets
B andI. B represents the set ofbusynodes, andI represents the set ofidle nodes. Objects are only stored
in the busy nodes. Busy nodes are organized inclustersof betweens(ǫ)/2 and2s(ǫ) nodes, wheres(ǫ)
is specified later. Each cluster consists of nodes with consecutive ranges. The range in[0, 1) a nodev is
responsible for is denoted byRv, and the range of a clusterC is defined asRC =

⋃

v∈C Rv. |C| denotes the
number of nodes inC, and the nodes inC are denoted byvC

1 , vC
2 , . . . , vC

|C|. Let Pt denote the set of objects
in the system at timet and letℓt = |Pt|/n denote the average load of the system. We will use an integral
versionℓ̄t of ℓt in a sense that̄ℓt is equal to the last integer crossed byℓt′ with t′ ≤ t. This will prevent fast
oscillations in the algorithm.

For any nodev and clusterC, let ℓt(v) denote the load (i.e. the number of objects) ofv and define the
load ofC, ℓt(C) and a special parameterℓ̂t as

ℓt(C) =
∑

v∈C

ℓt(v) ℓ̂t = ⌈(1 + ǫ/2)ℓ̄t⌉ + ∆

for some fixed integer∆ to be specified later. As we will see later,∆ is important to cope with bursty
injections of object updates.

The basic strategy of the algorithm is to move objects between nodes of a cluster so that at any stept, in
every clusterC all but the node of highest range inC have close to(1 + ǫ/2)ℓt objects (see Fig. 1).

In the following, we assume that0 < ǫ < 1, s(ǫ) = 20/ǫ, ∆ ≥ T , andλ ≤ ǫ/750. It is possible to
get much better constants, but we did not try to optimize themhere to keep the proof at a reasonable length.
The following fact is easy to check.

Fact 3.1 The smoothing algorithm achieves transient consistency.

Next we prove a lemma about the number of objects in the nodes that holds as long as the system is at
most(1 − ǫ)-utilized. For each nodevC

k
, let

ℓ∗t (v
C
k) =

{

ℓ̂t if k < |C|

ℓt(C) − (|C| − 1)ℓ̂t otherwise
(1)

5

1. Each nodevC
k

computesδℓ = (k − 1)ℓ̂t −
k−1
∑

i=1

ℓt(v
C
i) and δr =

k
∑

i=1

ℓt(v
C
i) − k · ℓ̂t .

(a) If k > 1 andδℓ ≥ 1, then {too few objects invC
1 , . . . , vC

k−1
}

i. the object with lowest number invC
k

is moved tovC
k−1

.

ii. If k = |C| andvk is empty,vC
k

is taken out ofC and inserted as an idle node inI.

(b) If k < |C| andδr ≥ 1, then {too many objects invC
1 , . . . , vC

k
}

i. the object with highest number invC
k

is moved tovC
k+1

.

(c) If k = |C| andδr ≥ 1, then

i. an idle node is fetched fromI and integrated intoC with numberk + 1.

ii. the object with highest number invC
k

is moved tovC
k+1

.

2. Each node inC receives the objects moved to it and updates its range accordingly.

3. Each node processes the newly injected object updates belonging to its range.

4. If |C| exceeds or equal to2s(ǫ), then

(a) C is split into two clusters of sizes(ǫ).

5. If |C| goes below or equal tos(ǫ)/2, apply Procedure MERGE to C (Fig. 2).

Figure 1:The smoothing algorithm, performed in every clusterC in each time stept.

The proofs of the statements in this section are given in Section B in the Appendix. The next lemma is
the most difficult one to prove. We use a potential method for it. The complexity of applying this method
comes from the fact that one cannot just look at individual nodes but has to look at clusters, but clusters may
split and merge.

Lemma 3.2 At any timet, it holds for every nodevC
k

that ℓt(v
C
k

) ∈ [ℓ∗t (v
C
k

) − ǫ∆, ℓ∗t (v
C
k

) + ǫ∆].

Next we show that there are always sufficiently many idle nodes in I.

Lemma 3.3 For all ǫ ≤ 1 it holds: If s(ǫ) ≥ 20/ǫ, then at any point in time,|I| is at least the current
number of clusters in the system.

Combining the lemmata yields the following theorem.

1. Procedure MERGE: cover all merge candidates in disjoint groups of 2 or 3 consecutive clusters.

(a) for allC in a group(C,C ′) s.t. either onlyC or bothC andC ′ are merge candidates:

i. If |C| + |C ′| ≤ 3s(ǫ)/2, thenC andC ′ are merged into a single cluster.

ii. else nodes of lowest range are moved fromC ′ to C so that both have the same # of nodes.

(b) for all C in a group(C,C ′, C ′′) that are all merge candidates: merge group into a single cluster.

Figure 2:The cluster merging procedure applied to every clusterC in each time stept.

6

Theorem 3.4 As long as the system is at most(1 − ǫ)-utilized, it holds: For any(λ, T)-bounded adversary
with λ ≤ ǫ/750 andT ≤ ∆ the smoothing algorithm is stable. Furthermore, the algorithm guarantees a
1 + ǫ-fragmentation as long as the system is at least2(1 + ǫ)(T + 2)/(ǫc) utilized, wherec is the capacity
of a node.

Next, we discuss some extensions of the algorithm.

3.1 Handling arrivals and departures of nodes

Suppose that we allow nodes to join and gracefully leave the system. If a node joins, it is initially declared
an idle node. If a nodev wants to leave, the following strategy is used.

If v is an idle node, it can just leave. Otherwise, supposev is a busy node in some clusterC. Thenv
fetches an idle nodew and moves all of its objects in decreasing order tow. While these movements are
happening,v will still accept all objects from its predecessor inC, but w will receive all objects fromv’s
successor. Oncev is empty, it can leave the system.

¿From Lemma 3.3 and Theorem 3.4 it follows:

Theorem 3.5 As long as the system is at most(1 − ǫ)-utilized and the rate of node departures in a cluster
is at mostρ · ǫ/C for some constantρ > 0, whereC is the capacity of a node, the smoothing algorithm
achieves the same performance as in Theorem 3.4.

3.2 Nodes with non-uniform capacities

Suppose we have a system of non-uniform nodes, i.e. each nodehas a different capacity, and this capacity
may even change over time. Given some time pointt, we define the capacity of a nodev by Ct(v) and the
average capacity of the system asCt = n−1

∑

v Ct(v). Furthermore, let̄Ct(v) be the discretized version of
Ct(v)/Ct. Instead of a common̄ℓt, we will then usēℓt · C̄t(v) in the algorithm. This will give the following
result:

Theorem 3.6 As long as the system is at most(1 − ǫ)-utilized,Ct(v) changes by at mostλT in T steps for
anyv andλ = O(ǫ) is sufficiently small, the smoothing algorithm is stable against arbitrary (λ, T)-bounded
adversaries.

Notice that considering1 + ǫ-fragmentation does not make sense in a heterogeneous environment be-
cause the number of nodes storing a range of objects depends on their capacities.

4 A decentralized storage system

The algorithm in Figure 1 has the advantage that it can be turned into an algorithm for the distributed setting.
For this, we basically use three overlay networks – one for computing the average load, one for managing
the busy nodes, and one for managing the idle nodes –, and eachnode in the busy network has a random link
to the network of idle nodes to fetch idle nodes or to move to the idle nodes if necessary. This represents
the first alternative to the DHT-based peer-to-peer systemsthat can use thereal names of the data objects
instead of their hashed names for consistent mapping while preserving a load balanced distribution.

In order to convert the smoothing algorithm into a local control algorithm for decentralized storage
systems such as peer-to-peer systems, several issues have to be addressed:

• How to break symmetry?Merge candidates need a mechanism to decide with whom to merge. Clus-
ters have to coordinate their selection of idle nodes.

7

• How to organize busy and idle nodes in a distributed setting?Busy and idle nodes have to be inter-
connected to allow the access to busy and idle nodes and to move nodes between the two sets.

• How to determine the average load?We need a distributed mechanism that can quickly and accurately
determine the average load of the system.

4.1 The basic structure

Recall that the algorithm in Figure 1 partitions the nodes into two classes:busynodes andidle nodes. The
busy nodes represent the group of nodes responsible for storing the objects, and the idle nodes do not store
any objects and will be used as floating resources.

Let V be the set of all nodes,B be the set of busy nodes,I be the set of idle nodes, andF be the set
of busy nodes representing the last node of a cluster. We willuse the following graphs to interconnect the
nodes:

• GA = (V,EA): This graph interconnects all nodes with the sole purpose ofdetermining the average
load.

• GB = (B,EB): This graph consists of a cycle in which the busy nodes are ordered according to
their names (resp. the ranges that they represent). Also, every cluster of busy nodes is completely
interconnected.

• GF = (F,EF): This graph interconnects the final nodes of each cluster in away that allows to break
the symmetry for merge operations.

• GI = (I,EI): This graph contains all idle nodes.

• GBI = (B, I,EBI): This is a bipartite graph assigning a random idle node to each busy node.

First, we describe how new nodes join the system and old nodesleave the system, and then we describe in
detail how each of the graphs works our system is composed of.

4.2 Joining and leaving the system

If a new nodeu joins the system by contacting some nodev, thenv calls the join operation ofGA to integrate
u into that graph, andv calls the join operation ofGI , i.e. u is initially an idle node.

If a nodeu wants to leave the system andu is currently an idle node, thenu starts the leave operation in
GI . Otherwise,u fetches a node inGI via GBI to exchange their roles and then starts the leave operation
in GI .

4.3 The graphGA

Here, we use a so-calleddeterministic skip graph[20, 2]. In this skip graph, the nodes are connected in a
doubly linked cycle. This cycle will be calledbase cycleand denoted byC−, where “−” denotes the empty
string. On top of this base cycle, a hierarchy of cycles is maintained so that the following invariants are
fulfilled:

1. Each cycleCb with binary stringb that is of size at least 8 has two cycles,Cb0 andCb1, in an inter-
twined fashion on top of it so thatV (Cb0) ∪ V (Cb1) = V (Cb) andV (Cb0) ∩ V (Cb1) = ∅.

2. For any binary stringb and anyx ∈ {0, 1}, every edge inCbx bridges at most 3 edges inCb.

8

We also assume that the cycles have a common orientation so that the predecessor and successor of a node
in a cycle is well defined. If these invariants are true, the following result is easy to show (see also [20, 2]):

Lemma 4.1 The deterministic skip graph has a diameter ofO(log n).

Join

Next we explain how to join the skip graph. Suppose that an idle nodeu has been taken to be inserted
between two nodesv andw. After this is completed forC−, u checks the edges ofC0 andC1 bridging it.
If there is an edge{v′, w′} bridging it that violates Invariant 2, thenu is integrated into the corresponding
cycle by replacing{v′, w′} by {v′, u} and{u,w′}. Otherwise, any edge{v′, w′} from C0 or C1 bridging
u is taken and replaced in the above way. In general, ifu has already been integrated intoCb, it checks
whether an edge inCb0 or Cb1 bridging it is now violating the invariant. If so, this edge is handled in the
way described above. Otherwise, any edge inCb0 or Cb1 is taken and handled in the way above. It is easy
to see that this strategy preserves the invariants. Also, weget:

Lemma 4.2 Inserting a new node into the deterministic skip graph takesO(log n) time and work.

Leave

Leaving the skip graph is similar to joining the skip graph. See [20, 2] for details. If a message can carry up
to log n pointers, then the following result can be shown:

Lemma 4.3 Removing a node from the deterministic skip graph takesO(log n) time and work.

Computing the average load

The average load can be computed in the following way:
Initially, each nodeu forwards the tuple(1, ℓu) to all predecessors ofu (including u) in C− with an

edge inC0 or C1 bridging u. Given an edgee = {v′, w′}, we say thate bridgesu if u is betweenv′ and
w′, includingv′ but excludingw′. Each nodev with edges inC0 (resp.C1) sums up all tuples(xw, ℓw) it
receives to(x, ℓ) = (

∑

w xw,
∑

w ℓw) and sends(x, ℓ) along edges inC0 (resp.C1) to all predecessors of
v (includingv) in C0 (resp.C1) with an edge inC00 or C01 (resp.C10 or C11) bridgingv. The summation
and forwarding is continued for higher layers until all nodes at the highest layer have a tuple(x, ℓ). For each
cycleC in the highest layer, the tuples are summed up to some tuple(nv, Lv) for each nodev in C, which
has the following property:

Lemma 4.4 At the end of the computation above, every nodev in the deterministic skip graph has the same
(nv, Lv), wherenv = n, the current number of nodes in the skip graph, andLv is the current load in the
skip graph. The computation takesO(log n) time.

Hence, every node can easily compute the average load.

4.4 The graphGB

Recall thatGB = (B,EB) consists of a cycle in which the busy nodes are ordered according to their names,
and every cluster of busy nodes is completely interconnected. Hence, if (due to the smoothing algorithm)
some cluster integrates a new nodeu, u will be inserted into the cycle and will be given edges to all other
nodes in that cluster. This can certainly be done with constant time and work.

9

4.5 The graphGF

In order to break the symmetry of merge operations, we form groups of 2 or 3 final nodes in the following
way. Each node inGF has a color specified by the mappingc : VF → {black,white}. We want to maintain
the following invariant forc:

GF contains at most two consecutive nodes of the same color.

In order to maintain this invariant, we use the following rules when a new nodeu joins GF : If u’s
neighbors have the same color, or one ofu’s neighbors has a neighbor with the same color, thenu uses the
other color. Otherwise,u chooses any color. If a nodeu leaves, then its right neighbor,v, checks whether
afterwards the invariant is violated. If so, it changes its color.

The colors allow the clusters to be organized in groups of size 2 or 3:

• For every white nodev ∈ VF where the predecessoru and successorw of distance 2 fulfillc(u) =
c(v) = c(w), v and its successor form a group.

• For every white nodev ∈ VF that has a white successorw, v, w, and the successor ofw form a group.

• For every white nodev ∈ VF that has two black successors,v and its two successors form a group.

The following lemma is not hard to check:

Lemma 4.5 The coloring scheme breaks symmetry in a unique way so that every node belongs to exactly
one group.

Thus, merging can be done in the same way as described in Figure 2.

4.6 The graphGI

ForGI we can use any DHT-based overlay network, such as Chord [36],i.e. every node receives a random
number in[0, 1) as its ID. The nodes are ordered on a cycle according to their IDs and every node with IDx
has shortcut pointers to the closest successors ofx + 1/2i for everyi ∈ IN. Joining and leavingGI can be
done as in Chord.

4.7 The graphGBI

Every busy nodev selects a random numberxv and maintains a pointer to the closest successor inGI to xv.
This makes sure that the edges are randomly distributed among the idle nodes. The edges are used whenever
a final node of a cluster becomes idle and therefore wants to join GI , or a final node of a cluster wants to
integrate a new idle node into it, or a busy node simply wants to leave the system. Since there are more idle
nodes than final nodes and busy nodes rarely leave, it is not difficult to see that it only takesO(log n) time
and work for any one of the cases above to be processed, w.h.p.Details will be given in a final paper.

5 Conclusions

In this paper, we only looked at the problem of maintaining a low fragmentation for one-dimensional data
with a small work overhead. An interesting future problem would be to look also at problems for higher-
dimensional data, since they have many interesting applications in data bases and geographic information
systems. Furthermore, we only looked at worst case scenarios concerning the injection of update requests.

10

In scenarios in which the distribution of update requests ishighly concentrated on certain areas in the name
space, it should be possible to obtain stability for much higher injection rates than justO(ǫ). Exploring
these issues would be particularly interesting for single-disk systems because a work overhead ofO(1/ǫ) as
implied by our results is unacceptable for single disk management.

References

[1] S. Alstrup, G. Stolting Brodal, and T. Rauhe. New data structures for orthogonal range searching. InProc. of the
41st IEEE Symp. on Foundations of Computer Science (FOCS), pages 198–207, 2000.

[2] B. Awerbuch and C. Scheideler. The Hyperring: A low-congestion deterministic data structure for distributed
environments. InProc. of the 15th ACM/SIAM Symp. on Discrete Algorithms (SODA), 2004.

[3] R.A. Baeza-Yates and H. Soza-Pollman. Analysis of linear hashing revisited.Nordic Journal of Computing,
5(1):70–85, 1998.

[4] M. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. InProc. of the 41st.

[5] A. Bolour. Optimal retrieval algorithms for small region queries.SIAM Journal on Computing, 10(4):721–741,
1981.

[6] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient, distributed data placement strategies for storage area
networks. InProc. of the 12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 119–128,
2000.

[7] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,adaptive placement schemes for non-uniform capac-
ities. InProc. of the 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 53–62, 2002.

[8] G. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via trees of small height. InProc. of the
13th ACM/SIAM Symp. on Discrete Algorithms (SODA), pages 39–48, 2002.

[9] L.-F. Cabrera and D.D.E. Long. Swift: Using distributeddisk striping to provide high I/O data rates.Computer
Systems, 4(4):405–436, 1991.

[10] C.Y. Chen, C.C. Chang, and R.C.T. Lee. Optimal mmi file systems for orthogonal range queries.Information
Systems, 18(1):37–54, 1993.

[11] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In
Symposium on Operating Systems Principles, pages 202–215, 2001.

[12] P.F. Dietz, J.I. Seiferas, and J. Zhang. A tight lower bound for on-line monotonic list labeling. InProc. of the 6th
Scandinavian Workshop on Algorithm Theory (SWAT), pages 131–142, 1994.

[13] P.F. Dietz and J. Zhang. Lower bounds for monotonic listlabeling. InProc. of the 2nd Scandinavian Workshop
on Algorithm Theory (SWAT), pages 173–180, 1990.

[14] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range selection queries in peer-to-peer systems. In
Proc. of the First Biennial Conference on Innovative Data Systems Research, 2003.

[15] S. Hanke, T. Ottmann, and E. Soisalon-Soininen. Relaxed balanced red-black trees. InCIAC, pages 193–204,
1997.

[16] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex queries in DHT-based peer-
to-peer networks. InProc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[17] E.P. Harris.Towards optimal storage design for efficient query processing in relational database systems. PhD
thesis, The University of Melbourne, Parkville, Victoria 3052, Australia, December 1994.

[18] E.P. Harris and K. Ramamohanarao. Using optimized multiattribute hash indexes for hash joins. InProc. of the
5th Australasian Database Conference, pages 92–111, 1994.

11

[19] John H. Hartman and John K. Ousterhout. The Zebra striped network file system. In Hai Jin, Toni Cortes, and
Rajkumar Buyya, editors,High Performance Mass Storage and Parallel I/O: Technologies and Applications,
pages 309–329. IEEE Computer Society Press and Wiley, New York, NY, 2001.

[20] N. J. Harvey and I. Munro. Brief announcement: Deterministic skipnet. InProc. of the 22nd IEEE Symp. on
Principles of Distributed Computing (PODC), 2003.

[21] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. pages
604–613, 1998.

[22] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving hashing in multidimensional spaces.
In Proc. of the 29th ACM Symp. on Theory of Computing (STOC).

[23] A. Itai, A.G. Konheim, and M. Rodeh. A sparse table implementation of sorted sets. Technical Report Research
Report RC 9146, IBM T.J. Watson Research Center, Yorktown Heights, New York, November 1981.

[24] T. Johnson and D. Shasha. The performance of concurrentdata structure algorithms.Transactions on Database
Systems, pages 51–101, 1993.

[25] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the World Wide Web. InProc. of the 29th ACM
Symp. on Theory of Computing (STOC), pages 654–663, 1997.

[26] P. Krishna and T. Johnson. Highly scalable data balanced distributed B-trees, 1995.

[27] H.T. Kung and P. Lehman. A concurrent database manipulation problem: binary search trees.ACM Transactions
on Database Systems, 5(3):339–353, 1980.

[28] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimen-
sional spaces. InProc. of the 30th ACM Symp. on Theory of Computing (STOC), pages 614–623, 1998.

[29] N. Linial and O. Sasson. Non-expansive hashing. InProc. of the 28th ACM Symp. on Theory of Computing
(STOC), pages 509–518, 1996.

[30] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry. A fast file system for UNIX. Computer Systems,
2(3):181–197, 1984.

[31] X. Messeguer. Skip trees, an alternative data structure to skip lists in a concurrent approach.Informatique
Theorique et Applications, 31(3):251–269, 1997.

[32] K. Ramamohanarao and E.P. Harris. Effective clustering of records for fast query processing. InCODAS, pages
516–525, 1996.

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In
SIGCOMM ’01, 2001.

[34] F. Schmuck and R. Haskin. GPFS: A shared-disk file systemfor large computing clusters. InProc. of the 1st
Conference on File and Storage Technologies (FAST), 2002.

[35] E. Shriver, E. Gabber, L. Huang, and C.A. Stein. Storagemanagement for web proxies. pages 203–216, 2001.

[36] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. InSIGCOMM ’01, pages 149–160, 2001.

[37] S. Subramanian and S. Ramaswamy. The P-range tree: A newdata structure for range searching in secondary
memory. InProc. of the 6th ACM/SIAM Symp. on Discrete Algorithms (SODA), 1995.

[38] D.E. Willard. New data structures for orthogonal rangequeries.SIAM Journal on Computing, 14:232–253, 1985.

[39] B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and
routing. InUCB Technical Report UCB/CSD-01-1141, 2001.

12

A Proofs in Section 2

A.1 Proof of Theorem 2.1

We only sketch the proof. Consider any fixedǫ > 0 with ǫ = o(n). LetC be thecapacityof the nodes, i.e. the number
of objects that can be stored in a node. The adversarial strategy works in rounds. At the beginning of each round, we
have a(1 − ǫ)-utilized system, i.e. there are(1 − ǫ)n · C objects in the system.

Suppose that we are at the beginning of some round. Since the system is(1 − ǫ)-utilized, we must have at least
ǫn/6 groupsG1, . . . , Gm of 1/ǫ nodes of consecutive names where eachCi is at least(1 − 2ǫ)-utilized. For each of
these groups, the adversary injects insert requests so thatwithout any change in range, each node in the groups would
be(1 + ǫ)-utilized. Certainly, at mostn/6 · 3ǫ = ǫn/2 requests suffice for this. Thus, afterwards, we have a system
that is at most(1 − ǫ) + ǫ/2 = (1 − ǫ/2)-utilized. Finally, any objects are deleted to get back to a(1 − ǫ)-utilized
system for the next round.

We are interested in proving a lower bound for the number of object movements necessary to handle the insertions
of objects. LetH =

⋃m

j=1
Gj denote the set of heavy nodes andL = V \ H denote the set of light nodes. To

simplify the proof, we consider only so-calledlazy reassignment algorithms that first place all the inserted objects
before moving any objects to other nodes. Since an optimal algorithm may have moved the newly inserted objects
immediately to different nodes, an optimal lazy algorithm needs at mostC · ǫn/2 more object movements than an
optimal algorithm.

LetRH ⊂ [0, 1) denote the ranges covered byH andRL denote the ranges covered byL. Consider the assignment
of ranges to nodes inH at the beginning and the end of the object movement phase (i.e. after inserting the new objects
and before deleting any old objects). We do some modifications to the object movements to make our life easier.

First of all, at the end there must be nodes inL that take over ranges insideRH to cope with the overload inH .
Suppose that there are also nodes inH that take over a range insideRL. Then any such node can replace its role
with a node moved fromRL into RH without increasing the number of object replacements. Hence, we only have to
consider object movements where at the end every node inH has a range that is at least partly inRH .

Next, consider the setS of all nodes with ranges intersecting withRH . For every rangeR covered by a node in
S, let the nodev ∈ H that at the beginning had the most objects inR be called itsowner. Then we will rearrange the
nodes so that every range is taken by is owner, if possible. Since every node inH had originally(1 + ǫ)C objects and
every node can store at mostC objects, there must always be a range at the end for which it isthe owner. If there is
more than one, then we assign the owner to the range with the most objects of which it is the owner. For the nodes
in H , this can only lower the number of objects that had to be movedout of them. But for the nodes inL that now
have ranges partly inRH , this may increase the number of object movements. This increase, however, is bounded by
m · 2C (C objects to the lower and higher end of everyRGi

), which is at mostC · ǫn/3.
Hence, we only have to focus on final range assignments where each node inH has a range overlapping with its

old range. Next, we bound|S ∩ L|.
The nodes inH were originally at most 1-utilized. Hence, the average utilization of nodes inL must be at least

((1 − ǫ)n − n/6)/(5n/6) = 1 − 6ǫ/5. Therefore, the average utilization of those nodes inL that are more thanC
objects away fromRH must be at least

(5/6 − ǫ)n − 2m

(5/6)n
= 1 − 8ǫ/5 .

Hence, at most2m + (8/5)ǫn < 2ǫn nodes inL can be inS without overloading the remaining nodes inL. Hence,
|S ∩ L| ≤ 2ǫn.

Since there areǫn/6 groupsGi, there must be at leastǫn/12 groups with at most 24 nodesv in L with Rv∩RGi
6=

∅ because otherwise we have a contradiction to the upper boundon |S ∩ L|.
Let Gi be any one of these groups. At the end,Gi consists of consecutive sequences of nodes inH , each covering

part of its original range, interrupted by nodes inL. Consider any consecutive sequence ofH-nodes, and number them
from 1 tok. Letxi denote the number of objects remaining at nodei and letyi,j be the number of objects moved from
nodei to nodej ∈ {i − 1, i + 1}. It holds thatxi + yi,i−1 + yi,i+1 = (1 + ǫ)C for everyi. No matter howy1,0 is
chosen, since we must havexj ≤ C for all j and the end, the number of objects that have to be moved between the
nodes 1 tok is at least

O

(

k
∑

i=1

i · ǫC

)

= O(k2 · ǫC)

13

Let k1, . . . , ks be the lengths of all sequences of consecutiveH-nodes inGi. Sinces ≤ 24 andGi has1/ǫ nodes, it
holds that the number of object movements is at least

O





s
∑

j=1

k2
j · ǫC



 = O(C/ǫ)

Hence, summing up over all groups, it follows that over all nodes in the system, any strategy preserving an ordered
object placement that does not violate the capacity constraints has to moveΩ(n · C) objects, whereas the number of
object updates is onlyO(ǫn ·C). Hence, there is a(Θ(ǫ), T)-bounded adversary causing more object movements than
the system can handle, and therefore causing instability.

A.2 Proof of Theorem 2.2

We only sketch the proof. Also here, the adversary works in rounds. Suppose that initially we have(1−ǫ)n ·C objects
in the system. In each round, the adversary cuts the current set of objects into three setsS1, S2, S3 whereS1 contains
the lowest third,S2 contains the middle third, andS3 contains the highest third of the names. Now, the adversary
removesǫC objects everyC consecutive objects inS1 and insertsǫC objects everyC consecutive objects inS3.

Recall that the nodes are numbered from 1 ton with nodei always having a lower range than nodei+1. Consider
any roundr and any objecto that is in setS2 at roundr. Suppose thato is thekth smallest object in the system. Then,
the lowest node at whicho can be at roundr is k/C. On the other hand, the highest node at whicho can be at round
r+j is n−((1−ǫ)n ·C−k+jC ·ǫn/3)/C = ǫn+k/C−j ·ǫn/3. It holds thatk/C ≥ ǫn+k/C−j ·ǫn/3 if and only
if j ≥ 3(1+ d/(ǫn)). Hence, after 9 rounds, each object inS2 must have moved to a node of distance at leastd = 2ǫn
of its original node. Thus, the total work for moving the objects inS2 over 9 rounds is at least((1 − ǫ)n/3)C · 2ǫn.
Therefore, on average we needΘ((1 − ǫ)ǫn) object movements per node for these update requests to maintain an
ordered object placement. On the other hand, every node onlyreceivesO(ǫC) update requests within 9 rounds. Thus,
the maximum rate that can be sustained isΘ(ǫ/((1 − ǫ)ǫn)) = Θ(1/((1 − ǫ)n)).

B Proofs in Section 3

B.1 Proof of Lemma 3.2

We first show some basic facts about the behavior of the algorithm.

Claim B.1 For every nodevC
k it holds that ifℓt(v

C
k) ≥ ℓ∗t (v

C
k), then movements of objects do not increaseℓt(v

C
k),

and if ℓt(v
C
k) ≤ ℓ∗t (v

C
k), then movements of objects do not decreaseℓt(v

C
k).

Proof. First, consider the case thatℓt(v
C
k) ≥ ℓ∗t (v

C
k). If k = |C|, then it follows that

|C|−1
∑

i=1

ℓt(v
C
i) ≤ (|C| − 1)ℓ̂t

and therefore no object is moved tovC
k . So suppose thatk < |C|. If an object is moved fromvC

k−1
to vC

k , then also an
object is moved fromvC

k to vC
k+1

because

k−1
∑

i=1

ℓt(v
C
i) ≥ (k − 1)ℓ̂t + 1 and therefore

k
∑

i=1

ℓt(v
C
i) ≥ k · ℓ̂t + 1 .

If an object is moved fromvC
k+1

to vC
k , then also an object is moved fromvC

k to vC
k−1

because

k
∑

i=1

ℓt(v
C
i) ≤ k · ℓ̂t − 1 and therefore

k−1
∑

i=1

ℓt(v
C
i) ≤ (k − 1)ℓ̂t − 1 .

The proof forℓt(v
C
k) ≤ ℓ̂t is similar. ⊓⊔

14

Claim B.2 At any timet in which there is at least one node in a clusterC which deviates by at least one from its ideal
value, there is a nodevC

k with k < |C| whose deviation from its ideal value is reduced by 1.

Proof. Let vC
k be the node of lowestk < |C| with ℓt(v

C
i) 6= ℓ̂t. (If there is no such node, the distribution is already

perfect.) It follows from our balancing rules thatvC
k will lose an object ifℓ(vC

k) < ℓ̂t and will gain an object if
ℓ(vC

k) > ℓ̂t. Hence, its deviation is reduced by 1. ⊓⊔

This motivates the following definition.

Definition B.3 For every clusterC, consider the potential

φt(C) =

|C|−1
∑

i=1

|ℓt(v
C
i) − ℓ∗t (v

C
i)|

Claim B.1 and —B.2 immediately imply the following result.

Claim B.4 If at the beginning of stept, φt(C) ≥ 1, then stages 1 and 2 of the algorithm decreaseφt(C) by at least 1.

Now, consider the time to be partitioned into consecutive time frames of lengthT . Our aim is to show that ifλ is
sufficiently small, then for every time frameF and every nodevC

k , there is a time stept ∈ F at whichℓt(v
C
k) = ℓ∗t (v

C
k).

Suppose for now that this is correct. Then these time steps can be at most2T steps apart from each other. Furthermore,
it follows from Claim B.1 that the deviation ofvC

k from ℓ∗(vC
k) can only be increased if̂ℓt changes or object updates

cause the number of objects invC
k to change. Since at most2λT object updates can be injected per node in2T steps,

the number of objects invC
k changes by at most2λT andℓ̂t changes by at most⌈1 + ǫ/2⌉λT in 2T steps. Hence, it

follows that at any timet,

ℓ(vC
k) ∈ [ℓ∗t (v

C
k) − ⌈(2 + ǫ/2)λT ⌉, ℓ∗t (v

C
k) + ⌈(2 + ǫ/2)λT ⌉] , (2)

which results in a deviation fromℓ∗t (v
C
k) of at mostǫ∆ if ∆ ≥ T andλ ≤ ǫ/3. Thus, it remains to prove the following

claim.

Claim B.5 If λ ≤ αǫ for some sufficiently small constantα > 0, then it holds: For every time frameF and every
nodevC

k , there is a time stept ∈ F at whichℓt(v
C
k) = ℓ∗t (v

C
k).

Proof. We will prove the lemma by induction, using a stronger property than in the claim above, namely that for every
time frameF and every clusterC there is a time stept ∈ F with φ(C) = 0. For this statement to make sense, we have
to specify how to adaptC to split and merge events. Consider any time intervalI and some fixed clusterC existing
at the beginning ofI. If C merges with another cluster duringI, we identifyC with the resulting cluster. Also, ifC
passes nodes to its predecessor or receives nodes from its successor duringI, we identifyC with the resulting cluster.
If C splits into two clustersC1 andC2, we will still view for the analysis the two clusters as a single clusterC in I,
but redefine in this caseφ(C) asφ(C) = φ(C1) + φ(C2). Hence, ifφ(C) = 0 for some time inI, then it is also true
thatφ(C1) = φ(C2) = 0 for that time. Thus, all clusters that were newly created inI are still covered so that a proof
by induction can be constructed for our claim.

Since at the beginning we start out with an empty system (e.g., B just consists of a single empty node), the
induction hypothesis is correct for the first time frame. So let us assume that the hypothesis is true for some time
frameF . Then we will show that it is also true for its successorF ′.

Consider some fixed clusterC with φ(C) = 0 at some time pointt ∈ F . (Note that by our arguments above,C is
a real cluster, and every cluster inF ′ will be covered by one of these clusters.) LetI be the time interval fromt till the
end ofF ′.

First, we bound the maximum sizeC can have duringI using our manipulations. Since in2T steps every node
receives at most2λT object updates, a cluster of sizes can receive at mosts · 2λT updates. Initially,C has a size of
at most2s(ǫ). Hence, in order to have a size ofs at the end, it must hold that2s(ǫ) + (s · 2λT)/∆ ≥ s. If ∆ ≥ 8λT ,
thens can be at most3s(ǫ) to fulfill this inequality. Thus,C splits into at most 2 clusters inI, sayC1 andC2, that are
initially of size s(ǫ). Each timeC1 or C2 merges, this creates a cluster of size at most3s(ǫ/2). Hence, altogether the
size ofC duringI can be at most3s(ǫ).

Next, we go through all possible events inF andF ′ that can possibly increase the potential ofC.

15

• Injections of object updates: Since|C| ≤ 3s(ǫ), the number of objects inC can change by at most2λT · 3s(ǫ),
and thereforeφ(C) can increase by at most

6λT · s(ǫ) (3)

• Changes in̂ℓt: Each change in̂ℓt requires at leastn object updates. Since there are at most2λT ·n object updates
in I, ℓ̂t can change at most2λT times. Each timêℓt changes,φ(C) increases by at most3s(ǫ)·⌈1+ǫ/2⌉ ≤ 6s(ǫ).
Hence, overall, changes in̂ℓt increaseφ(C) by at most

12λT · s(ǫ) (4)

• Split events: A split event does not increaseφ(C), because it will never increase the set of nodes under consid-
eration inφ(C).

• Merge events or events in which nodes are moved toC: Each timeC merges with another cluster, its size is
increased by at leasts(ǫ)/2. If C is involved in a split event, then it must initially have a size of more than
3s(ǫ)/2. Since it can only shrink or grow by at mosts(ǫ)/2 nodes inI, it cannot be involved in a merge event
or an event in which nodes are moved to it before the split event. The resulting clustersC1 andC2 are initially
of sizes(ǫ). SinceC1 cannot become a merge candidate,C2 will not be involved in a merging throughoutI.
However, it may happen thatC1 merges with its predecessor. In this case,C1 gets additionals(ǫ)/2 nodes.
SinceC1 can only grow or shrink by less thans(ǫ)/2 nodes,C1 cannot be part of a merge operation any more.

So suppose thatC is not involved in a split event. SinceC ’s initial size is at leasts(ǫ)/2, two merge events
would give a total size of at least3s(ǫ)/2 under the assumption that no node leaves. SinceC does not split,C
would have to shrink tos(ǫ) nodes to be part of another merge event, which is not possible.

Hence,C can participate in at most two merging events. Since a merging cluster can have a size of at mosts(ǫ)
and from equation (2) it follows that the load of every node deviates from its ideal load by at most⌈2+ ǫ/2⌉λT ,
each merging increasesφ(C) by at mosts(ǫ) · ⌈2 + ǫ/2⌉λT . Hence, merging events can increaseφ(C) by at
most

4⌈(2 + ǫ/2)λT ⌉ · s(ǫ) ≤ 12λT · s(ǫ) (5)

• Events in which nodes are moved toC: This only happens ifC is a merge candidate, i.e. it is of sizes(ǫ)/2.
Since|C| will be increased by at leasts(ǫ)/4 nodes each time nodes are moved toC, C can only participate
twice in such an event. Each event can increaseφ(C) by at mosts(ǫ) · ⌈2 + ǫ/2⌉λT . Hence, the total increase
of φ(C) due to these events is at most

2⌈(2 + ǫ/2)λT ⌉ · s(ǫ) ≤ 6λT · s(ǫ) (6)

• Events in which nodes are taken fromC: This can only decreaseφ(C).

Combining (3) to (6), the total increase ofφ(C) in I can be at most

6λT · s(ǫ) + 12λT · s(ǫ) + 12λT · s(ǫ) + 6λT · s(ǫ) ≤ 36λT · s(ǫ)

This is less thanT if λ < 1/(36s(ǫ)) for some sufficiently small constantα > 0. Since according to Claim B.2φ(C)
decreases in stage 1 and 2 of each step as long asφ(C) > 0, there must be a time point inF ′ whereφ(C) = 0,
completing the proof. ⊓⊔

The proof of the claim ends the proof of Lemma 3.2.

B.2 Proof of Lemma 3.3

First, we show that at any point in time it holds for every clusterC that|C| ≤ ⌈ℓt(C)/ℓ̂t⌉ + 1.
Let Ct be the set of clusters inB at stept. Consider any clusterC ∈ Ct. From the proof of the previous lemma

we know that there was a stept′ at most2T steps beforet whereφ(C) = 0, which implies that|C| ≤ ⌈ℓt(C)/ℓ̂t⌉.

16

During these2T steps,ℓ(C) can change by at most2s(ǫ) · 2λT . Since2s(ǫ) · 2λT ≤ ∆ for our choices ofs(ǫ) andλ,
this means that|C| can change by at most 1. Hence, in the worst case,|C| ≤ ⌈ℓt(C)/ℓ̂t⌉ + 1. Thus,

|B| =
∑

C∈Ct

|C| ≤
∑

C∈Ct

⌈

ℓt(C)

ℓ̂t

⌉

+ 1 ≤
1

ℓ̂t

· n · ℓt + 2|Ct|

≤
n · ℓt

(1 + ǫ/2)ℓ̄t + ∆
+

2n

s(ǫ)/2
≤

n

1 + ǫ/2
+

ǫn

5
≤ ǫn

(

1 −
1

8

)

.

Hence,|I| ≥ ǫn/8. Since|Ct| ≤ 2n/s(ǫ) = ǫn/10, the lemma follows.

B.3 Proof of Theorem 3.4

First, we show that the algorithm is1 + ǫ-balanced. For any nodev we haveℓt(v) ≤ ℓ̂t + ǫ∆. Thus, withℓt ≥
2(1 + ǫ)(∆ + 1)/ǫ we get

ℓt(v) ≤ ⌈(1 + ǫ/2)ℓ̄t⌉ + (1 + ǫ)∆

≤ (1 + ǫ/2)(ℓt + 1) + 1 + (1 + ǫ)

(

ℓt ·
ǫ

2(1 + ǫ)
− 2

)

≤ (1 + ǫ)ℓt .

Next, we consider fragmentation. We know that for every cluster C, |C| ≥ s(ǫ)/2. Furthermore, we know from
Lemma 3.2 that every busy nodev that is not the last one in its cluster,

ℓt(v) ≥ ℓ̂v − ǫ∆ = ⌈(1 + ǫ/2)ℓ̄t⌉ + (1 − ǫ)∆ ≥ (1 + ǫ/2)ℓt .

Hence, for every rangeR containing at least1/ǫ objects, the number of nodes containing objects ofR is at most

ℓt(R)

(s(ǫ)/2 − 1) · ℓt

+
ℓt(R)

(1 + ǫ/2)ℓt

≤ (1 + ǫ) ·
ℓt(R)

ℓt

.

Finally, we bound the work overhead. The potential of a cluster is only changed by object updates or changes inℓ̄t.
Every object update changesφ(C) of the corresponding clusterC by at most 1, and the work necessary to reduce
φ(C) by 1 is at most|C| ≤ 2s(ǫ). Furthermore, at leastn object updates are necessary to changeℓ̄t by 1, and each
change in̄ℓt changes the potentials of each clusterC by at most2|C|. Hence, overall the work overhead isO(1/ǫ).

17

