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Abstract

In this paper we consider the problem of maintaining a mappfrdata objects to memory modules
so that the mapping is order preserving, i.e. objects gldsglether in the sorted set of current objects
are also closely together in the mapping. Keeping closectbosely together is important for many
applications such as efficiently executing programs usiteyge amount of space or complex search
queries such as semi-group range queries. Our main resultnas a static set of memory modules of
uniform capacity, but we also show how to extend this to a dyinaet of memory modules of non-
uniform capacity in a decentralized environment.

We assume that insert and delete requests of objects aiawmmly injected into the system, and
the injection is under adversarial control. Data objectsadiuniform size and every module can send or
receive at most one object in each unit of time. We prove asyticplly tight upper and lower bounds for
the maximum rate at which the adversary can inject updateestg into the modules so that an ordered
placement can be preserved without exceeding the capddityrmdule at any time. Specifically, we
show that in &1 — ¢)-utilized system (i.e. the available space is used up tofeaction) the maximum
injection rate that can be sustaineddis). While this does not seem to be particularly surprisings it i
actually hard to prove in a rigorous way.

Besides having interesting consequences for distributadge and information systems, we also
feel that our approach offers interesting future probleongHeoretical research.



1 Introduction

1.1 Motivation

The concept ofirtualization or indirectionis a basic concept in computer science. Perhaps one of iis mos
basic manifestations is the inventionwiftual memory That is, program variables (array entries, file blocks)
are referred to by thetwirtual name rather then by their physical address. Consider a prognatperforms

a loop over an array. From the point of view afrrectnesof this program, it does not matter where the
array elements are stored. However, from the point of viewpasformanceit is desirable to map entries

of an array into the same page in the memory, or at least t@ tnyinimize the number of pages that store
the array’s entries. Thus, for certain applications it ipdmant to consider locality when mapping data to
pages.

Locality also plays an important role in information retiaé Imagine a geographic range or a time
range, and values being assigned to certain points in thigerae.g. the temperature, stock quotes, etc.
Consider the problem of performing, upon request, rangeatipas like computing the average tempera-
ture in a geographic region or determining the maximum weélkttuation of a stock. This is known as
semi-group range queriesSemi-group range queries are useful for web search engjeegraphic infor-
mation systems, inventory control, and consistency chetkige systems. To achieve a high efficiency, it
is important to keep elements that are close to each othbeinliject space also close to each other when
mapping them to pages, i.e. to store them in a de-fragmenégd Whe reason for this is that the work
for locally processing semi-group range queries usualyesclogarithmic with the number of objects (e.g.,
[5, 1, 37, 38]), whereas the work for aggregating the redubis different pages scales linearly with the
number of pages involved in a range query. Thus, uniformihgshe. globally scattering data objects over
the pages, makes range queniesy expensiveThis is particularly painful in large, distributed infoation
systems, where the data is distributed over multiple sitesause apart from the communication overhead,
hashing may require a range query to be processed at a lamgeenof sites instead of just a single site.

Since hashing has many benefits in a distributed setting asavenly distributing data and simple
lookup requests among sites, one is tempted to use logatiserving hash functions as a compromise.
Such a function maps objects from some underlying univefrebject names (e.qg., file blocks, array entries,
etc.) into pages of memory such that a consecutive rangeje€tstis stored in a small number of pages.
The question isgan such hashing possibly w@K he paper by Linial and Sasson [29] seems to indicate that
this is possible. (See also follow-up work in [28, 22, 21]pwéver, it should be clear that no static mapping
can preserve locality for a dynamically changing set of déjacts without causing the load at some site to
exceed its capacity. Hence, dynamic mapping schemes héreeused. Whereas dynamic hashing schemes
that do not preserve locality are known [25, 6, 7], it is giogstble whether dynamic locality-preserving
hashing can be done and actually makes sense (since thet lo¢imefshing over deterministic strategies is
unclear in this case).

Instead of using hashing, this paper accomplishes the dadé-&ragmented data storage usinglex
terministic, adaptivenemory assignment strategy that keeps the data objectdén and that is efficiently
manageable under adversarial inputs in concurrent envieors.

1.2 Our approach: models and results

Order-preserving data management. For our algorithmic approach, we focus on a natural model of
storage, where each memory module (or node) is respongibla €onsecutive range of object names.
This will also be calledbrder-preservingdata management. In formal terms, consider a univétsef
all objects with a linear order defined on these objects sbwhien.g. we can assume that objects are
represented by real numbers[in1). Consider also a set of memory modules or nodewith naming



functionName : V' — P* so that each node € V' has a namé&lame(v) in P* = [0,1). Given an objecb,
we expect to find this object in memory modul@vhose name is the closest predecessdtanfie(o), i.e.

v = argmin{Name(v) | v € V andName(v) < Name(o)} . (%)

Similar to [25] and follow-up work in the area of peer-to-pagstems [36, 33, 39, 11], we say that a set
of objects is storedonsistentlyamong a set of nodes if each object is stored at the node suokirifix).
However, our approach significantly differs from these apphes:

e object namesin [25, 36, 33, 39, 11], the real numbers describing the nashé&®e objects arstatic
hash valuef their true names. In the current paper, the real numberesent theriginal names
in order to avoid fragmentation and enable (one-dimengioaage queries.

e node namesin [25, 36, 33, 39, 11], the real numbers describing the naohdise nodes arstatic
hash value®sf their IP addresses eandom valuesin the current paper, the real numbers of the nodes
are dynamically changed to adapt the mapping to a changtrg serrently used objects.

Operational and transient consistency. To adapt to a changing set of objects, we only allow two opera-
tions: renamingof nodes, andnigrating objects. Clearly, the object assignment must return to aistamt
state after any insertion and deletion of an object becatlmawise objects cannot be found efficiently any
more. This property is calledperational consistencyln the transient state, i.e., during the execution of
insert/delete operations, the storage system may be iistemis A stronger (more restrictive) modeltcdn-
sient consistencyequires consistency even in the transient state. Thattés, every elementary operation
(such as renaming a node or migrating an object), the systest Ioe back in a consistent state. Transient
consistency is important to make sure that the system caregsaread requests at any time and recover
easily from a crash.

Concurrency. Information systems based on a large number of processiitg (snch as storage area
networks and peer-to-peer systems) are becoming incghasimportant. Hence, our focus will be on a
multiple processing unit environment, i.e. each node TS its own processing unit.

Generation of update requests. We are interested in tiiynamicsetting where continuously new objects
are inserted and old objects are deleted. We assume thaetieeagion of insert/delete requests is under
adversarial control. A-bounded adversary is allowed to generate an arbitraryf edtject updates in each
time step as long as the average number of object updatdsatieato be handled by a node\isr less. If this

is always true when averaging over time windows of sizeve call such an adversary(a, T')-bounded
adversary. Given such an adversary, an algorithm is callgbleif it can preserve an order-preserving
mapping without exceeding the capacity of a module at ang.ti8ince we assume that every module can
receive or send at most one object per time unitan be at most 1 for an algorithm to be stable.

Memory utilization vs. update rate. The memory utilization of a system denotes the degree totwihic
is filled, i.e. fory € [0, 1], a~-utilized system needs & fraction of its resources to store the data objects
currently in the system.

We assume that we have a static set of memory modules of ommifapacity, and we are interested in
investigating the maximum rate of update requests that eaubtained given a certain memory utilization
to keep the assignment of data to memory modules consistenbraer-preserving without exceeding the
capacity of a module. The main contributions of this papemaatching upper and lower bounds on the rate
of insert and delete requests that can be sustained for a gieenory utilization. Specifically, in Section 2
we show



Theorem 1.1 There is aO(e)-bounded adversary so that any operationally consistertterepreserving
online algorithm is unstable in &l — ¢)-utilized system.

For our model, that demands memory consistency even inidratrstate, we show:

Theorem 1.2 For any0 < e < 1, the online algorithm in Figure 1 is maintaining an ordergserving
mapping under anyv - e-bounded adversary (for some constant> 0) as long as the system is at most
(1 — ¢)-utilized at any point in time.

Thus, our upper and lower bounds for stability are esséntight.

Fragmentation. Our online algorithm achieves actually more than just beitable. For a data man-
agement algorithm to be work-competitive for range queiidsas to be ensured that a set of consecutive
objects is not distributed among too many nodes. Given nadbiscapacityC', we define the placement
of objects to nodes to b@ + «)-fragmentedf for any set ofs consecutive objects currently in the sys-
tem, the number of nodes storing the objects is at Mdst- «) - max[s/C, 1]]. Our algorithm maintains a
(14+0(e))-fragmented mapping in an at mdst- ¢)-utilized system and is therefofé+ O(e€))-competitive
concerning the number of nodes to be contacted for rangéeguer

Dynamic servers or dynamic capacity model. We also consider the case that memory modules contin-
uously join and leave the system and that the memory modales &rbitrary, non-uniform capacities. In
fact, by viewing the object movements necessary to copeandynamic set of memory modules or capacity
changes as object injections, we can reduce these casesdadh of insertions and deletions of objects in
a static system, allowing us to carry over our stability lefar a static system to dynamic, non-uniform
systems. Specifically, we prove (see Sections 3.2 and 3.1):

Theorem 1.3 The online algorithm in Figure 1 is maintaining an order-pesving mapping under any- e-
bounded adversary (for some constant- 0, considering both object updates and capacity changes) as
long as the system is at mdst— ¢)-utilized at any point in time.

Certainly, considerind + e-fragmentation does not make sense in a heterogeneousmmént because
the number of nodes storing a range of objects depends arcHpEcities.

Decentralized storage systems. Finally, we will address the issue of how to turn our onlingagithm into

a decentralized storage system. We will distinguish betwbasy” nodes, i.e. nodes storing information,
and “idle” nodes, i.e. empty nodes that will be taken whenexgles are needed to help out busy nodes.
The busy nodes and the idle nodes are organized in suitabl&agwnetworks, with links from busy nodes
to random idle nodes so that nodes can be transferred betheduasy and the idle structures as necessary
(see Section 4 for details).

1.3 Previous work

We first discuss prior work in the centralized setting, iteré is a central dispatcher that inserts and deletes
data at the memory modules and moves data between the memdrjes to prevent the object load at a
module from exceeding its capacity. For this model, ordes@rving search structures have been presented
in the context of cache-obliviouB-trees and monotonic list labeling. Bender et al. [4] présenache-
oblivious B-tree that, in our context, needs an amortized work/@bg? n) per insert and delete operation

to keep objects distributed among the memory modules in @arqreserving way without exceeding the



capacity of a memory module. This bound holds as long as ttersyis at most /2-utilized at any time.
The same result has also been shown independently by Itai £23. Brodal et al. [8] generalized the
bound toO((log? n)/€) as long as the system is at most— ¢)-utilized at any time.

Also lower bounds have been investigated. Dietz and ZhaBlgsHowed that for the case that the order
of the (names of the) memory modules cannot be changed, amytsnorder-preserving data management
algorithm has an amortized cost@flog? ) per insertion. In words, an algorithm is callethoothif the
items moved before each insertion form a contiguous neidiitoa of the position for the new item, and the
new labels are as widely and equally spaced as possible.|gdwtlams in [4, 8, 23] fulfill these properties,
and their upper bound is therefore best possible. LatetzZeal. [12] showed that any online order-
preserving placement strategy that preserves the ordbeahemory modules needs an amortized work of
Q(logn). Our algorithm can break through this lower bound becaus#iawvs the order of the memory
modules to behangedi.e. memory modules can be renamed to help out overloadedomyemodules in
another area.

Also concurrent forms of search trees have been reported3fR624] though they seem to be more
suitable for a parallel processing environment than aidiged environment. Our algorithm can easily be
adapted to a completely decentralized environment, andaltiee lower bounds above it can achieve a
better work overhead than achievable by these trees

The issue of memory allocation preserving object localdg hlso been extensively investigated in the
systems community, even though we are unable to pinpoiat elgorithmic statements. The open problem
of finding locality preserving hashing in the context of rargueries is stated in [16]. A recent work [14]
attempts to guarantee locality properties for SHA-1 haghised in Chord [36]. Data clustering on a single
disk is best described in the “Fast-file” system which kedpsfdhe data in a single file contiguous (up to
64K at a time) [30]. More recent work at AT&T deals with clustg of all the data in the same web page
together on a disk [35]. Other relevant work includes stggiile systems [9, 19]. Zebra [19], for example,
is a log-structured file system that stripes data acrosspteuttisks for efficient parallel writes. GPFS [34]
is a high-performance file system that stripes data acro$ipreudisk servers each of which is a RAID
array. Other work includes [32, 18, 10, 17, 3, 3, 27, 15].

2 Lower bounds and instability

This section states a number of results proved in the Apgeridie first result gives a lower bound on the
work overhead of arbitrary order-preserving placementiods when using operational consistency.

Theorem 2.1 For any operationally consistent, order-preserving oglialgorithm there is an (adaptive)
©(e)-bounded adversary so that the algorithm is unstable (i & ¢)-utilized system.

The question is, what kind of properties an algorithm hasutfillfto be stable under ®(¢)-bounded
adversary. A placement algorithm is callgid+ ¢)-faithful if every node has a number of objects that is at
least//(1 + €) and at most1 + ¢)¢ where/ is the average load in the system. Furthermore, a placement
algorithm is callechode-order preservingf it imposes a fixed order on the nodes, or equivalently, adfixe
numbering from 1 to, so that for alki € {1,...,n — 1}, the ranges of the nodes fulfi}; < R;,; at any
time. Notice that a faithful algorithm is always node-orgeeserving since nodes can never be empty and
therefore can never change their position in the node argekowever, node-order preserving algorithms
may not be faithful.

Theorem 2.2 For any constan) < ¢ < 1, any (offline or online) operationally consistent and féith
placement algorithm in &1 — ¢)-utilized system is already unstable und¥f1/»)-bounded adversaries.



Hence, faithful algorithms perform poorly. What about nadlder preserving algorithms? The results
in the previous work section imply the following theorem.

Theorem 2.3 There is an operationally consistent node-order presgnanline algorithm so that for any
0 < e < 1 it holds that as long as the system is at mdst- ¢)-utilized, the algorithm is stable under any
o/ log? n-bounded adversary for some constant- 0.

Thus, the ability to make nodes empty is crucial for a higtcifficy. However, due to the lower bounds
in [13, 12], these algorithms cannot be stable under@fiy log n)-bounded adversary because of a work
overhead of)(logn), and it is conjectured in [4] that the correct lower bounddtually Q(log? n). In
any way, it appears to be necessary to reorder nodes in ardasatain Theorem 2.1. This is exactly our
approach.

3 An asymptotically optimal placement algorithm

We assume that we have a static set aiodes of uniform capacity and that object updates are gy
a (A, T)-bounded adversary. Later, we show how to extend the afgorib dynamically changing sets of
nodes and nodes of non-uniform capacity.

For simplicity, we assume in the following thate is an integer. We partition the nodes into two sets
B andI. B represents the set bfisynodes, and represents the set @fle nodes. Objects are only stored
in the busy nodes. Busy nodes are organizedlustersof betweens(e)/2 and2s(e) nodes, where(e)
is specified later. Each cluster consists of nodes with autise ranges. The range |0, 1) a nodev is
responsible for is denoted by, and the range of a clustétis defined af?c = U, R». |C| denotes the
number of nodes i, and the nodes i are denoted by, v5, ... ,v%|. Let P, denote the set of objects
in the system at time and let/; = |P;|/n denote the average load of the system. We will use an integral
version/, of ¢, in a sense that; is equal to the last integer crosseddywith ¢’ < ¢. This will prevent fast
oscillations in the algorithm.

For any node and clusteiC, let /,(v) denote the load (i.e. the number of objectsp@nd define the
load of C, £,(C) and a special parametéras

6(C) =" ty(v) 0y =[(1+¢/2)0] + A

veC

for some fixed intege\ to be specified later. As we will see latek, is important to cope with bursty
injections of object updates.

The basic strategy of the algorithm is to move objects batvmeeles of a cluster so that at any stem
every clustelC' all but the node of highest range @hhave close tq1 + ¢/2)¢; objects (see Fig. 1).

In the following, we assume that < ¢ < 1, s(e) = 20/e, A > T, and\ < €/750. It is possible to
get much better constants, but we did not try to optimize thene to keep the proof at a reasonable length.
The following fact is easy to check.

Fact 3.1 The smoothing algorithm achieves transient consistency.

Next we prove a lemma about the number of objects in the nd@gsdlds as long as the system is at
most(1 — ¢)-utilized. For each nodef’, let

/0 if k< |C|
w0, Oy t ~ 1
i (vg) { 0(C) — (|C] —1)¢; otherwise .



k1 k
1. Each node computesi, = (k — 1), — > _ ¢,(v) and 6, =Y () — k- L, .
=1 i=1

(@) Ifk > 1ands, > 1,then {too few objects in{,... v |}
i. the object with lowest number isf, is moved tov{’ ;.
ii. If k= |C|andvy is empty,v{ is taken out o' and inserted as an idle nodefin

(b) If k < |C|andé, > 1,then {too many objects in{, ..., v}
i. the object with highest number irf’ is moved tovf ;.
(c) If k=|C|andé, > 1, then

i. an idle node is fetched frorhand integrated int@' with numberk + 1.
ii. the object with highest number irf is moved tov{, ;.

2. Each node i’ receives the objects moved to it and updates its range angbyrd
3. Each node processes the newly injected object updatesded) to its range.
4. If |C| exceeds or equal ts(¢), then

(a) C is split into two clusters of size(e).

5. If |C] goes below or equal te(¢) /2, apply Procedure MRGEto C (Fig. 2).

Figure 1:The smoothing algorithm, performed in every clustéin each time step.

The proofs of the statements in this section are given ini@e& in the Appendix. The next lemma is
the most difficult one to prove. We use a potential methodtforhe complexity of applying this method
comes from the fact that one cannot just look at individualasobut has to look at clusters, but clusters may
split and merge.

Lemma 3.2 At any timet, it holds for every node{’ that¢,(v{) € [f; (vS) — €A, €5 (v) + €Al.
Next we show that there are always sufficiently many idle sadé.

Lemma 3.3 For all ¢ < 1 it holds: If s(¢) > 20/¢, then at any point in timel/| is at least the current
number of clusters in the system.

Combining the lemmata yields the following theorem.

1. Procedure MRGE cover all merge candidates in disjoint groups of 2 or 3 coutieée clusters.

(@) forallC in agroup(C, ") s.t. either onlyC or bothC andC" are merge candidates:

i. If |C]+|C'| < 3s(e)/2, thenC andC’ are merged into a single cluster.
ii. else nodes of lowest range are moved frétto C' so that both have the same # of node

(b) forall Cinagroup(C,C’,C") that are all merge candidates: merge group into a singléeclys

12

Figure 2:The cluster merging procedure applied to every cluStém each time step.



Theorem 3.4 As long as the system is at m@st— ¢)-utilized, it holds: For any(\, T')-bounded adversary
with A < ¢/750 and T < A the smoothing algorithm is stable. Furthermore, the altjori guarantees a
1 + e-fragmentation as long as the system is at l4st+ ¢) (7" + 2)/(ec) utilized, where is the capacity
of a node.

Next, we discuss some extensions of the algorithm.

3.1 Handling arrivals and departures of nodes

Suppose that we allow nodes to join and gracefully leave yhtem. If a node joins, it is initially declared
an idle node. If a node wants to leave, the following strategy is used.

If v is an idle node, it can just leave. Otherwise, supposgea busy node in some clustél. Thenw
fetches an idle node and moves all of its objects in decreasing ordetwtoWhile these movements are
happeningy will still accept all objects from its predecessordh butw will receive all objects fromv’s
successor. Onceis empty, it can leave the system.

¢From Lemma 3.3 and Theorem 3.4 it follows:

Theorem 3.5 As long as the system is at most— ¢)-utilized and the rate of node departures in a cluster
is at mostp - ¢/C for some constanp > 0, whereC' is the capacity of a node, the smoothing algorithm
achieves the same performance as in Theorem 3.4.

3.2 Nodes with non-uniform capacities

Suppose we have a system of non-uniform nodes, i.e. eachhasode different capacity, and this capacity
may even change over time. Given some time pgime define the capacity of a nodeby C;(v) and the
average capacity of the system@s= n='3", C;(v). Furthermore, leC;(v) be the discretized version of
Cy(v)/Cy. Instead of a commo#f, we will then use/; - Cy(v) in the algorithm. This will give the following
result:

Theorem 3.6 As long as the system is at most— ¢)-utilized, C;(v) changes by at mostI" in T steps for
anyv and\ = O(e) is sufficiently small, the smoothing algorithm is stableiaggarbitrary (\, T")-bounded
adversaries.

Notice that considerind + e-fragmentation does not make sense in a heterogeneousmmégnt be-
cause the number of nodes storing a range of objects depantsiocapacities.

4 A decentralized storage system

The algorithm in Figure 1 has the advantage that it can bedLinto an algorithm for the distributed setting.
For this, we basically use three overlay networks — one fanmaing the average load, one for managing
the busy nodes, and one for managing the idle nodes —, anchedehn the busy network has a random link
to the network of idle nodes to fetch idle nodes or to move &itte nodes if necessary. This represents
the first alternative to the DHT-based peer-to-peer systhaiscan use theeal names of the data objects
instead of their hashed names for consistent mapping wiekepving a load balanced distribution.

In order to convert the smoothing algorithm into a local coinalgorithm for decentralized storage
systems such as peer-to-peer systems, several issueshwvaddressed:

e How to break symmetry®lerge candidates need a mechanism to decide with whom tcem€igs-
ters have to coordinate their selection of idle nodes.



e How to organize busy and idle nodes in a distributed settiBg@y and idle nodes have to be inter-
connected to allow the access to busy and idle nodes and te nooles between the two sets.

e How to determine the average loadi%e need a distributed mechanism that can quickly and asyrat
determine the average load of the system.

4.1 The basic structure

Recall that the algorithm in Figure 1 partitions the nodés two classesbusynodes anddle nodes. The
busy nodes represent the group of nodes responsible fangtbe objects, and the idle nodes do not store
any objects and will be used as floating resources.

Let V be the set of all noded? be the set of busy nodes,be the set of idle nodes, arfd be the set
of busy nodes representing the last node of a cluster. Weusallthe following graphs to interconnect the
nodes:

e G4 = (V,E,): This graph interconnects all nodes with the sole purpostet#rmining the average
load.

e Gp = (B, Ep): This graph consists of a cycle in which the busy nodes arereddaccording to
their names (resp. the ranges that they represent). Alsoy eluster of busy nodes is completely
interconnected.

e Gr = (F, Er): This graph interconnects the final nodes of each clustemiayathat allows to break
the symmetry for merge operations.

e G; = (I, Ey): This graph contains all idle nodes.
e Gpr = (B,I,FEps): Thisis a bipartite graph assigning a random idle node th basy node.

First, we describe how new nodes join the system and old riedgs the system, and then we describe in
detail how each of the graphs works our system is composed of.

4.2 Joining and leaving the system

If a new nodexu joins the system by contacting some nadéenv calls the join operation aff 4 to integrate
u into that graph, and calls the join operation of/;, i.e. w is initially an idle node.

If a nodeu wants to leave the system ands currently an idle node, themstarts the leave operation in
G. Otherwiseu fetches a node id7; via G gy to exchange their roles and then starts the leave operation
in Gy.

4.3 The graphG 4

Here, we use a so-calletkbterministic skip grapii20, 2]. In this skip graph, the nodes are connected in a
doubly linked cycle. This cycle will be calldohse cycleand denoted by’ _, where “-" denotes the empty
string. On top of this base cycle, a hierarchy of cycles ismad@ed so that the following invariants are
fulfilled:

1. Each cycleC, with binary stringb that is of size at least 8 has two cyclé€s,, andCyy, in an inter-
twined fashion on top of it so thaf(Cyy) UV (Cpy) = V(Cp) andV (Cyo) NV (Ci1) = 0.

2. For any binary string and anyx € {0, 1}, every edge irCy, bridges at most 3 edges {r},.



We also assume that the cycles have a common orientatiorasthéhpredecessor and successor of a node
in a cycle is well defined. If these invariants are true, tHifang result is easy to show (see also [20, 2]):

Lemma 4.1 The deterministic skip graph has a diameteCdiogn).

Join

Next we explain how to join the skip graph. Suppose that am idldeu has been taken to be inserted
between two nodes andw. After this is completed fo€’_, u checks the edges &f, andC bridging it.

If there is an edgdv’, w'} bridging it that violates Invariant 2, thenis integrated into the corresponding
cycle by replacing{v’,w'} by {v’,u} and{u,w’}. Otherwise, any edgé&/’, w'} from Cy or C; bridging

u is taken and replaced in the above way. In general, lias already been integrated ind, it checks
whether an edge i, or Cy; bridging it is now violating the invariant. If so, this edgehandled in the
way described above. Otherwise, any edgéinor Cy; is taken and handled in the way above. It is easy
to see that this strategy preserves the invariants. Alsgete

Lemma 4.2 Inserting a new node into the deterministic skip graph takéleg ) time and work.

Leave

Leaving the skip graph is similar to joining the skip graplkee$20, 2] for details. If a message can carry up
to log n pointers, then the following result can be shown:

Lemma 4.3 Removing a node from the deterministic skip graph t&k@sg n) time and work.

Computing the average load

The average load can be computed in the following way:

Initially, each nodeu forwards the tupl€1, 4,) to all predecessors af (including «) in C_ with an
edge inCy or C4 bridgingu. Given an edge = {v',w’'}, we say that bridgesu if u is between/’ and
w', includingv’ but excludingw’. Each nodes with edges inCy (resp. Cy) sums up all tuplesz,,, £,,) it
receives tax, /) = (3>, Tw, Y, fw) @nd sendgz, £) along edges ity (resp. C) to all predecessors of
v (including v) in Cy (resp.C4) with an edge inCyy or Cy; (resp.Chg or C11) bridgingv. The summation
and forwarding is continued for higher layers until all nede the highest layer have a tugle ¢). For each
cycle C in the highest layer, the tuples are summed up to some tupld.,) for each node in C, which
has the following property:

Lemma 4.4 Atthe end of the computation above, every nedethe deterministic skip graph has the same
(ny, Ly), Wheren,, = n, the current number of nodes in the skip graph, dndis the current load in the
skip graph. The computation takéXlog n) time.

Hence, every node can easily compute the average load.

4.4 The graphGp

Recall thatGp = (B, Ep) consists of a cycle in which the busy nodes are ordered aogptaltheir names,
and every cluster of busy nodes is completely intercondedtence, if (due to the smoothing algorithm)
some cluster integrates a new nade: will be inserted into the cycle and will be given edges to #tiev
nodes in that cluster. This can certainly be done with congiae and work.



4.5 The graphGr

In order to break the symmetry of merge operations, we forougs of 2 or 3 final nodes in the following
way. Each node i/ has a color specified by the mappingVr — {black, white}. We want to maintain
the following invariant forc:

G r contains at most two consecutive nodes of the same color.

In order to maintain this invariant, we use the followingesilwhen a new node joins Gg: If u’s
neighbors have the same color, or onaisfneighbors has a neighbor with the same color, theises the
other color. Otherwisey chooses any color. If a nodeleaves, then its right neighbar, checks whether
afterwards the invariant is violated. If so, it changes @®c

The colors allow the clusters to be organized in groups & 2iar 3:

e For every white node € Vr where the predecessarand successap of distance 2 fulfillc(u) =
c(v) = c(w), v and its successor form a group.

e For every white node € Vr that has a white successor v, w, and the successor efform a group.
e For every white node € Vr that has two black successorsand its two successors form a group.

The following lemma is not hard to check:

Lemma 4.5 The coloring scheme breaks symmetry in a unique way so teay eade belongs to exactly
one group.

Thus, merging can be done in the same way as described ineFigur

4.6 The graphG;,

For Gy we can use any DHT-based overlay network, such as Chordi[86Every node receives a random
number in[0, 1) as its ID. The nodes are ordered on a cycle according to thseiahd every node with IR
has shortcut pointers to the closest successors+ofl /2 for everyi € IN. Joining and leaving; can be
done as in Chord.

4.7 The graphGp;

Every busy node selects a random numbey and maintains a pointer to the closest success6i;ito x,.

This makes sure that the edges are randomly distributed gtheridle nodes. The edges are used whenever
a final node of a cluster becomes idle and therefore wantsriadg, or a final node of a cluster wants to
integrate a new idle node into it, or a busy node simply wamtedve the system. Since there are more idle
nodes than final nodes and busy nodes rarely leave, it is fiicuttito see that it only take® (log n) time

and work for any one of the cases above to be processed, Wétails will be given in a final paper.

5 Conclusions

In this paper, we only looked at the problem of maintainingwa fragmentation for one-dimensional data
with a small work overhead. An interesting future problenmulgdbe to look also at problems for higher-

dimensional data, since they have many interesting apiglitain data bases and geographic information
systems. Furthermore, we only looked at worst case scaneoiacerning the injection of update requests.
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In scenarios in which the distribution of update requestsghly concentrated on certain areas in the name
space, it should be possible to obtain stability for mucthéignjection rates than jus?(¢). Exploring
these issues would be particularly interesting for sirdigde systems because a work overhea®(f/¢) as
implied by our results is unacceptable for single disk managnt.
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A Proofs in Section 2
A.1 Proof of Theorem 2.1

We only sketch the proof. Consider any fixed 0 with ¢ = o(n). LetC' be thecapacityof the nodes, i.e. the number
of objects that can be stored in a node. The adversaria¢giratorks in rounds. At the beginning of each round, we
have a1 — €)-utilized system, i.e. there afé — €)n - C objects in the system.

Suppose that we are at the beginning of some round. Sincestensis(1l — ¢)-utilized, we must have at least
en/6 groupsGy, . . ., G, of 1/e nodes of consecutive names where e@clis at least{1 — 2¢)-utilized. For each of
these groups, the adversary injects insert requests swithatt any change in range, each node in the groups would
be (1 + ¢)-utilized. Certainly, at most /6 - 3¢ = en/2 requests suffice for this. Thus, afterwards, we have a system
that is at mostl — €) 4+ ¢/2 = (1 — ¢/2)-utilized. Finally, any objects are deleted to get back ta & ¢)-utilized
system for the next round.

We are interested in proving a lower bound for the number @ailtmovements necessary to handle the insertions
of objects. LetH = U;”Zl G; denote the set of heavy nodes ahd= V' \ H denote the set of light nodes. To
simplify the proof, we consider only so-calléaizy reassignment algorithms that first place all the insertgdoib
before moving any objects to other nodes. Since an optingakiéhm may have moved the newly inserted objects
immediately to different nodes, an optimal lazy algoritheeds at most' - en/2 more object movements than an
optimal algorithm.

Let Ry C [0, 1) denote the ranges covered Hyand R, denote the ranges covered byConsider the assignment
of ranges to nodes il at the beginning and the end of the object movement phasatffiez inserting the new objects
and before deleting any old objects). We do some modificatiothe object movements to make our life easier.

First of all, at the end there must be noded.ithat take over ranges insidey to cope with the overload if/.
Suppose that there are also nodeddirthat take over a range inside;. Then any such node can replace its role
with a node moved fronR;, into Ry without increasing the number of object replacements. Hewe only have to
consider object movements where at the end every noflehias a range that is at least partlyRy;.

Next, consider the sef of all nodes with ranges intersecting witty;. For every range&? covered by a node in
S, let the nodey € H that at the beginning had the most objectsibe called itsowner Then we will rearrange the
nodes so that every range is taken by is owner, if possibfeeSivery node itif had originally(1 + €)C objects and
every node can store at mastobjects, there must always be a range at the end for whichhiiswner. If there is
more than one, then we assign the owner to the range with tisé ebgects of which it is the owner. For the nodes
in H, this can only lower the number of objects that had to be maedf them. But for the nodes ih that now
have ranges partly iR, this may increase the number of object movements. Thig#ser, however, is bounded by
m - 2C' (C objects to the lower and higher end of evéty,), which is at mosC' - en/3.

Hence, we only have to focus on final range assignments whaetrerede ind has a range overlapping with its
old range. Next, we bound N L|.

The nodes i were originally at most 1-utilized. Hence, the averagédaailon of nodes in. must be at least
((1 —e)n —n/6)/(5n/6) = 1 — 6¢/5. Therefore, the average utilization of those nodes ihat are more thaty
objects away fronRy must be at least

(5/6 —e)n —2m
(5/6)n

Hence, at mostm + (8/5)en < 2en nodes inL can be inS without overloading the remaining nodesiin Hence,
|SNL| < 2en.

Since there aren /6 groups;, there must be at least /12 groups with at most 24 nodesn L with R,NRg, #

() because otherwise we have a contradiction to the upper bauftin L.

Let G; be any one of these groups. At the e consists of consecutive sequences of nodés,ieach covering
part of its original range, interrupted by nodedinConsider any consecutive sequencé/ehodes, and number them
from 1 tok. Letz; denote the number of objects remaining at noded lety; ; be the number of objects moved from
nodei to nodej € {i — 1,7+ 1}. It holds thatx; + y; ;-1 + vi.+1 = (1 + €)C for everyi. No matter howy; o is
chosen, since we must hawe < C for all j and the end, the number of objects that have to be moved betivee

nodes 1 td is at least i
0] <Zi : ec> = O(k? - eC)

=1-8e¢/5.

=1
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Letkq,..., ks be the lengths of all sequences of conseculivaodes inG;. Sinces < 24 andG; hasl/e nodes, it
holds that the number of object movements is at least

(Z k2 - eC’) O(C/e)

Hence, summing up over all groups, it follows that over al@®in the system, any strategy preserving an ordered
object placement that does not violate the capacity cansirhas to mové&(n - C') objects, whereas the number of
object updates is onl@(en - C). Hence, there is €9 (¢), T')-bounded adversary causing more object movements than
the system can handle, and therefore causing instability.

A.2 Proof of Theorem 2.2

We only sketch the proof. Also here, the adversary worksumds. Suppose that initially we hae— ¢)n - C objects

in the system. In each round, the adversary cuts the cuménf sbjects into three sefs , S», S35 whereS; contains

the lowest third,S> contains the middle third, anfl; contains the highest third of the names. Now, the adversary
removes:C objects every” consecutive objects if; and insertgC objects every’ consecutive objects ifs.

Recall that the nodes are numbered from & teith node: always having a lower range than nadel. Consider
any roundr and any object that is in setS; at roundr. Suppose that is thekth smallest object in the system. Then,
the lowest node at whict can be at round is £/C. On the other hand, the highest node at whictan be at round
r+jisn—((1—en-C—k+jC-en/3)/C = en+k/C—j-en/3. Itholdsthatt/C > en+k/C —j-en/3if and only
if > 3(1+d/(en)). Hence, after 9 rounds, each objecSinmust have moved to a node of distance at |dast2en
of its original node. Thus, the total work for moving the atigein S; over 9 rounds is at leagtl — €)n/3)C - 2en.
Therefore, on average we ne€d(1 — ¢)en) object movements per node for these update requests toaimaart
ordered object placement. On the other hand, every nodaecéyvesD(¢C) update requests within 9 rounds. Thus,
the maximum rate that can be sustaine®{g/((1 — €)en)) = O(1/((1 — €)n)).

B Proofsin Section 3
B.1 Proof of Lemma 3.2

We first show some basic facts about the behavior of the dkgori

Claim B.1 For every node)¢ it holds that if¢,(vS) > £;(v{), then movements of objects do not increége’),
and if£;(v$) < £;(v$), then movements of objects do not decrea&el’).

Proof. First, consider the case tha{vS) > £; (v$). If k = |C|, then it follows that

IC|-1

3 60€) < (0] - )i,

i=1

and therefore no object is movedztﬁ. So suppose thdt < |C|. If an object is moved from{ , to v, then also an
object is moved from’ to vf/, ; because

k
th )>(k—1),+1 andtherefore Y (y(ve) > k-l +1.
i=1
If an object is moved from, | to v, then also an object is moved frarfy to v§” ; because

k—1
Zﬁt ) <k-& —1 andtherefore Zﬁt )< (k—1)0;—1.

i=1

The proof forﬁt(v,C ) < /, is similar. a
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Claim B.2 At any timet in which there is at least one node in a clustéwhich deviates by at least one from its ideal
value, there is a node{’ with & < |C| whose deviation from its ideal value is reduced by 1.

Proof. Letv{ be the node of lowest < |C| with £;(v{) # ¢;. (If there is no such node, the distribution is already
perfect.) It follows from our balancing rules tha{ will lose an object if¢/(v{) < ¢, and will gain an object if
¢(v$) > {;. Hence, its deviation is reduced by 1. O

This motivates the following definition.

Definition B.3 For every clusteC, consider the potential

|C|-1

B(C) = 3 16(F) — S

Claim B.1 and —B.2 immediately imply the following result.
Claim B.4 If at the beginning of step ¢:(C') > 1, then stages 1 and 2 of the algorithm decreagg”) by at least 1.

Now, consider the time to be partitioned into consecutivestframes of lengtli”. Our aim is to show that iA is
sufficiently small, then for every time franféand every node{’, there is a time stepe F atwhich?,(v{) = £; (v{).
Suppose for now that this is correct. Then these time stepbeat mos27" steps apart from each other. Furthermore,
it follows from Claim B.1 that the deviation afS’ from ¢*(v{') can only be increased # changes or object updates
cause the number of objectsifi’ to change. Since at mo2AT object updates can be injected per nod@dhsteps,
the number of objects in{’ changes by at mo&\T and/, changes by at mostl + ¢/2]AT in 2T steps. Hence, it
follows that at any time,

U(vg) € [6;(vF) = T2+ ¢/2ATT, G () + [(2+ ¢/2)ATT] )

which results in a deviation froiff (v{') of at mosteA if A > T'and\ < ¢/3. Thus, it remains to prove the following
claim.

Claim B.5 If A < «ae for some sufficiently small constamt> 0, then it holds: For every time framg and every
nodev(, there is a time stepe F at whiché;(v{) = ¢; (vS).

Proof. We will prove the lemma by induction, using a stronger proptran in the claim above, namely that for every
time frameF and every clustef' there is a time stepe F with ¢(C) = 0. For this statement to make sense, we have
to specify how to adapf’ to split and merge events. Consider any time intefvahd some fixed cluster existing

at the beginning of . If C' merges with another cluster duridgwe identify C' with the resulting cluster. Also, i’
passes nodes to its predecessor or receives nodes fromdtssor during, we identifyC' with the resulting cluster.

If C splits into two clusterg’; andC5, we will still view for the analysis the two clusters as a $englusterC' in I,

but redefine in this cas&(C) as¢(C) = ¢(C) + ¢(C2). Hence, ifp(C') = 0 for some time inZ, then it is also true
thato(C1) = ¢(C2) = 0 for that time. Thus, all clusters that were newly created are still covered so that a proof
by induction can be constructed for our claim.

Since at the beginning we start out with an empty system,(&dust consists of a single empty node), the
induction hypothesis is correct for the first time frame. 8bus assume that the hypothesis is true for some time
frameF. Then we will show that it is also true for its successdr

Consider some fixed clustér with ¢(C) = 0 at some time point € F'. (Note that by our arguments abo¥éjs
areal cluster, and every clusterfti will be covered by one of these clusters.) lLdie the time interval from till the
end of F”.

First, we bound the maximum size can have durind using our manipulations. Since ¥¥" steps every node
receives at most\T object updates, a cluster of siz&an receive at most- 2\T" updates. InitiallyC' has a size of
at mosts(e). Hence, in order to have a size ©at the end, it must hold thas(e) + (s - 2AT)/A > s. If A > 8\T,
thens can be at mosis(e) to fulfill this inequality. Thus( splits into at most 2 clusters ih sayC; andCs, that are
initially of size s(¢). Each timeC; or C; merges, this creates a cluster of size at n3eét/2). Hence, altogether the
size of C' during! can be at mosis(e).

Next, we go through all possible eventsfinand F’ that can possibly increase the potentiatof
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Injections of object updates: Sing€| < 3s(e), the number of objects i@’ can change by at mo2AT - 3s(e),
and therefore)(C') can increase by at most

6AT - s(e) )

Changes if,;: Each change i, requires at least object updates. Since there are at n20st-n object updates
in I, ¢; can change at mo8AT times. Each timé; changes$(C) increases by at mo8s(e)-[14€/2] < 6s(e).
Hence, overall, changes i increasep(C) by at most

12T - s(e) (4)

Split events: A split event does not increag€’), because it will never increase the set of nodes under consid
eration ing(C).

Merge events or events in which nodes are move@:td&ach timeC merges with another cluster, its size is
increased by at leas{e)/2. If C is involved in a split event, then it must initially have aesiaf more than
3s(e)/2. Since it can only shrink or grow by at mosi) /2 nodes in, it cannot be involved in a merge event
or an event in which nodes are moved to it before the splitteviéite resulting cluster§’, andC, are initially

of sizes(e). SinceC; cannot become a merge candidate,will not be involved in a merging throughoit
However, it may happen th&t; merges with its predecessor. In this cag,gets additionak(e)/2 nodes.
SinceC can only grow or shrink by less thaife) /2 nodes; cannot be part of a merge operation any more.

So suppose that' is not involved in a split event. Sing@’s initial size is at least(e)/2, two merge events
would give a total size of at lea8%(¢)/2 under the assumption that no node leaves. Sihdees not split('
would have to shrink ta(e) nodes to be part of another merge event, which is not possible

Hence,C can participate in at most two merging events. Since a mgigirster can have a size of at meét)
and from equation (2) it follows that the load of every nodeides from its ideal load by at mog2 + /2| AT,
each merging increasegC') by at mosts(e) - [2 + ¢/2|\T. Hence, merging events can increag€’) by at
most

A4[(2 + €/2)AT] - s(e) < 12T - s(e) (5)

e Events in which nodes are moveddbd This only happens i€ is a merge candidate, i.e. it is of siz&)/2.
Since|C| will be increased by at leas{e)/4 nodes each time nodes are movedtoC can only participate
twice in such an event. Each event can increg$e) by at mosts(e) - [2 + €/2]A\T. Hence, the total increase
of ¢(C) due to these events is at most

2[(2+¢/2)AT] - s(e) < 6AT - s(e) (6)
e Events in which nodes are taken frath This can only decreas&C).
Combining (3) to (6), the total increase ©fC) in I can be at most
6AT - s(€) + 12AT - s(€) + 12AT - s(€) + 6T - s(€) < 36AT - s(e)

This is less thafT" if A < 1/(36s(¢)) for some sufficiently small constant> 0. Since according to Claim B.2(C)
decreases in stage 1 and 2 of each step as lorg@s > 0, there must be a time point iA” where$(C) = 0,
completing the proof. O

The proof of the claim ends the proof of Lemma 3.2.

B.2 Proof of Lemma 3.3

First, we show that at any point in time it holds for every &g that|C| < [¢,(C)/;] + 1.
LetC; be the set of clusters i? at stept. Consider any clustet’ € C;. From the proof of the previous lemma
we know that there was a stépat most2T steps before where¢(C') = 0, which implies thalC| < [£.(C)/¢:].
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During theseT steps{(C) can change by at mo8k(e) - 2AT. Since2s(e) - 2AT < A for our choices of(e) and,
this means thatC| can change by at most 1. Hence, in the worst c&de< [¢,(C)/¢] + 1. Thus,

L:(C 1
B = Siels ¥ [19 1< 5 onea2e

cec, cec, t t

< n -l n 2n < n +en < a1 1
= — € ——=1.
T (I+4+¢€/2)li+A  s(e)/2 T 1+¢/2 5 — 8

Hence,I| > en/8. Since|C;| < 2n/s(e) = en/10, the lemma follows.

B.3 Proof of Theorem 3.4

First, we show that the algorithm is+ e-balanced. For any nodewe have/;(v) < /; + eA. Thus, with¢, >
2(1+€)(A+1)/ewe get

t(v) < [(1+¢/2)0]+(1+e)A
< (1+6/2)(€t+1)+1+(1+6)(ft'ﬁ_2)
< (140

Next, we consider fragmentation. We know that for everytelu€’, |C| > s(e)/2. Furthermore, we know from
Lemma 3.2 that every busy nodehat is not the last one in its cluster,

(v) >0y —eA = [(14€/2)0]+(1—e)A > (1+¢€/2)0, .
Hence, for every rang® containing at least/e objects, the number of nodes containing object® & at most

ti(R) ti(R)

t(R)
(s(e)/2=1)-&  (1+¢€/2) '

b

< .
&_(HE)

Finally, we bound the work overhead. The potential of a elust only changed by object updates or changés.in
Every object update change$C) of the corresponding clustér by at most 1, and the work necessary to reduce
#(C) by 1is at mostC| < 2s(e). Furthermore, at least object updates are necessary to chafigsy 1, and each
change ir/; changes the potentials of each clugtelby at most|C|. Hence, overall the work overhead@1/¢).
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