
Group Spreading: A Protocol for
Provably Secure Distributed Name Service

Baruch Awerbuch
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
baruch@cs.jhu.edu

Christian Scheideler
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
scheideler@cs.jhu.edu

Abstract

In order to enable communication between a dynamic collection of peers with given ID’s, such
as “machine.cs.school.edu”, over the Internet, a distributed name service must be implemented on top
of this collection of peers that translates given names intoIP addresses, by implementing a dynamic
distributed database for concurrent IP lookups.

This paper shows that this very fundamental task can be implemented in a completely decentral-
ized way in the presence of arbitrary massive Byzantine attacks while expending only poly-logarithmic
overhead for retrieval, protection, and maintenance. To accomplish this, this paper introduces a new
methodology that essentially maintains a random distribution of all (honest and Byzantine) peers in an
overlay network for any sequence of arrivals and departuresof nodes up to a certain rate, under a rea-
sonable assumption that Byzantine peers are a significant minority. Keeping nodes randomly distributed
allows the system to form reliable quorums for join, leave, and lookup operations so that for a polyno-
mial number of steps,any of these operations can be executed reliably byany honest peer, with high
probability.

This demonstrates that scalable peer-to-peer systems are not limited to music-swapping and can
potentially perform important applications that require rigorous security guarantees.

1 Introduction

1.1 The problem and the results

In order to enable communication between a dynamic collection of peers with given ID’s, such as “ma-
chine.cs.school.edu”, over the Internet, a distributed name service must be implemented on top of this col-
lection of peers that translates given names into IP addresses, by implementing the following operations:

• p.Join(q, ID): peerp in the system receives a request to join the system from a peerq with identity ID.

• p.Leave(): peerp leaves the system.

• p.Lookup(ID): peerp wants to obtain the IP address of the peerq in the system withID(q) = ID.

These operations must be implemented so that they can be runconcurrentlyand reliably in an asyn-
chronousenvironment in spite of massive insider attacks, i.e. arbitrary Byzantine behavior by a large num-
ber of peers that arepart of the service (for a detailed model see Section 2.1). Protecting against insider
attacks seems a formidable problem, but we can show in a rigorous way:

Theorem 1.1 For anyc > 0 and any sequence of operations lasting for at mostO(nc) steps during which
at most aO(1/ log N) fraction of the nodes in the system can be adversarial at any time, the join/leave
rate of honest nodes isO(1/ log N) (i.e. up toO(N/ log N) honest nodes may join or leave in a time unit),
and the join/leave rate of adversarial nodes isO(1/ log2 N), all operations initiated by honest peers are
correctly executed with probability at least1−O(1/nc), and with communication cost ofO(logO(1) N) bits
per operation, wheren is the minimum number andN is the current number of honest nodes in the system
during the attack.

In other words, for a polynomial number of time steps, even a large fraction of Byzantine peers will
haveno effect on the operation of honest nodes, with high probability, and this can be achieved with only a
polylogarithmicoverhead. Previous solutions to this problem requiredlinear overhead (see below).

In the rest of this paper, we proceed with first explaining thesignificance and basic approach of our
result and then proceed with presenting our protocols and proofs. Since these are very complex, we restrict
ourselves to giving only intuitions in the main part of this manuscript. The details can be found in the
appendix. Though the appendix is quite lengthy, we felt we had to add it to give sufficient evidence that our
techniques indeed work.

1.2 Significance of the problem

Scalability or efficiency of a distributed system is measured in its ability to retrieve the data and to maintain
internal data structures with small overhead; a rule of thumb for a scalable system is that the above overhead
must grow at most poly-logarithmically in its size. Security or reliability of a distributed system is measured
in its ability to withstand massive and malicious attack, including Byzantine behavior of its components.

Achieving security and scalability at the same time is a decades old open problem in the field of dis-
tributed computing. In unreliable centralized systems, such as communication channels and storage systems,
the trade-off between efficiency and reliability has been extensively studied in the context of coding theory,
namely is expressed by the trade-off between the number of errors corrected by the code and the number of
error-correcting bits. It is only natural to pose such a fundamental question in the distributed context.

The additional formidable complication in distributed systems is the need to maintain virtual commu-
nication channels between the peers in the system. Server-based architectures are not an option here since
they are not scalable. Hence, mechanisms are needed that allow the peers to maintain an overlay network in
a distributed way and without a server, also known aspeer-to-peer overlay networks.

1

It is intuitively obvious that an overlay network supporting any service needs to support joining, leaving
and routing between the peers, and that without a secure and scalable implementation of such a network, the
field of scalable and reliable distributed services does notreally exist.

1.3 Existing work

Classical distributed computingmethods [12, 3, 13, 17] use Byzantine agreement and two-phase commit
approaches with inherentlylinear redundancy and overhead to maintain a safe state.

Theproactive securityapproach in [16, 11, 10, 2, 7] uses different coding techniques to protect unreliable
data inreliable networks; applying these methods in our context still yields linear overhead.

Fixed topology networksas in [6], will work only for non-Byzantine peers, and only allow fail-stop
faults; the construction cannot handle malicious behaviorof even a few malicious players.

The reliability of hash-based peer-to-peer overlays(or DHT’s) such as Chord [19], Pastry [18], and
Tapestry [20] hinges on the assumption that the IDs given to the nodes are pseudo-random, so that they can
cope with a constant fraction of the nodes failing concurrently, with only logarithmic overhead. While this
may seem to perfectly defeat massive attacks under these randomness assumptions, DHT’s cannot handle
even small-scale adaptive adversarial attacks involving the selection of adversarial IP addresses (to get close
to desired IDs). One such “sybil” attack is described in [5].Remarkably, the attackers do not need to do
anything complex such as inverting the hash function; all that is needed is to get hold of a handful (actually,
logarithmic) number of IP addresses so that IDs can be obtained that allow to disconnect some target from
the rest of the system. This can be accomplished by a linear number (i.e.O(N)) of offline trial/errors. For
similar attacks, see [4].

Random or unpredictable placement of datain a logarithmic size subset of locations (as in Freenet)
ensures that data is difficult to attack, but also makes itdifficult to retrieve. Specifically, data retrieval of
randomly placed data requires a linear number of queries, which is definitely unscalable.

2 Basic approach and results

A common technique to ensure reliability, which is also the basis of our approach, is to organize the peers
in completely interconnectedquorums. However, instead of just forming a single quorum, we will form an
overlay network of quorums of logarithmic size to ensure that Join, Leave, or Lookup operations by honest
peers cannot only be executed reliably but also efficiently.Taking this into account, our basic goal can be
phrased in the following way:

Design overlay network operations so that foranyarrival-departure sequence of honest and adversarial
nodes overt time steps in which the adversarial nodes never represent more than anǫ fraction of the honest
nodes in the overlay network and the number of join/leave requests of honest nodes does not exceed some
specified rate, any overlay network operation initiated by an honest node will be executed successfully, with
high probability.

We call an overlay networksurvivableif it can ensure this property for anyt = poly(n), wheren is the
smallest number of nodes in the overlay network during the adversarial attack. Our goal will be to formulate
basic conditions and protocols for the network operations to fulfill the survivability condition. Notice that
we have to add the term “with high probability” above, because a priori, it is not possible to distinguish
between honest and adversarial nodes. So no absolute guarantees can be given, unless we put all nodes into
a single quorum, which is highly inefficient and therefore out of question. Furthermore, for bounded degree
networks a rate ofO(1/ log N) departures or arrivals seems to be optimal because for each arrival of a

2

peerΩ(log N) work appears to be necessary for a survivable system. Hence,an arrival rate ofO(1/ log N)
would translate into a work rate ofO(1) for the system, which is at the limit of what it can sustain.

2.1 Basic assumptions

In order to perform a rigorous security analysis, we need a set of basic assumptions. These assumptions are
general enough that we expect them to be of interest beyond this paper and to aid in the design and analysis
of secure overlay networks in the future.

ǫ-bounded adversaries

We consider a peer to beadversarial if it belongs to an adversary or it is simply unreliable. Otherwise, a
peer is calledhonest. We assume that honest peers cannot be taken over by the adversary. However, the
adversary has a collection of own peers that it can integrateinto the network. We allow arbitrary adversaries
with bounded resources, i.e. an adversary can own at most anǫ-fraction of the peers in the system at any
time. Such adversaries are calledǫ-bounded. A priori, adversarial nodes cannot be distinguished from
honest nodes.

These assumptions need some justification. Suppose thatanyhonest peer can in principle be taken over
by the adversary. Then it would be impossible to form reliable quorums of small size, because as soon as
the adversary is part of a quorum, and therefore knows all peers in a quorum, it could simply turn all of
them into adversarial peers, thereby turning this quorum into an adversarial quorum. If quorums cannot be
secured, we do not see any way of establishing a reliable overlay network service. However, weaker models
for the ability of an adversary to take over honest peers are imaginable. For example, only somefixed subset
of the honest peers may be vulnerable to an adversary (for example, because they have not installed the
latest security patch). In this case, we simply view these peers as adversarial peers, so our results still hold
in this case.

The other major assumption we make is that adversaries arebounded. Imagine that an adversary can
have an unbounded number of peers in the overlay network. Then they could easily dominate every quorum,
and therefore the system cannot be secured. Hence, it is reasonable to assume that an adversary can only
have a bounded number of peers in the system at any time. However, theidentitiesof these peers may be
chosen out of someunboundedset of identities that the adversary has at its disposal, so that it does not help
honest peers to remember which peers behaved adversarial inthe past.

Trusted gateway peers

We assume that a limited number of so-calledgateway peersis available that are searchable over the Internet
and always part of the overlay network. Gateway peers are like normal peers, with the only difference that
they are the only ones allowed to integrate new peers. For ourprotocols to work we assume that the gateway
peers are honest. However, the protocols would even work if all gateway peers are adversarial as long as no
honest peer leaves and the adversarial nodes only representanǫ fraction of the system.

Also here, some explanations are in order. We came up with gateway peers because somehow new peers
have to be able to find out about peers already in the system. Assumptions like “peers contact random peers
in the system” are not realistic because how should a peer findthis random peer? Hence, a server or service
that is accessible via the Internet must be available. The easiest solution here would be to have a trusted
server that knows a collection of peers in the system. Thoughthe server may be trusted, the peers in the
system it knows about maynot be trusted (a priori, honest peers cannot be distinguished from adversarial
peers). But if a new honest peer is referred to an adversarialpeer, there is certainly no way of guaranteeing
its correct integration into the overlay network. Hence, for a trusted server to be effective in integrating

3

new peers, the server should bepart of the peer-to-peer system (and not just refer to peers), because in
this case guarantees for the correct execution of join requests can be given by us. Now, we may not want to
assume powerful servers because otherwise we may not have anopen peer-to-peer system any more (because
someone has to pay the bill). Hence, the server or servers that give access to the peer-to-peer network may
just be as powerful as the other peers, with the only difference that they are trusted. These represent our
so-called gateway peers.

Now, one may say that if the gateway peers are honest, why not let them control the overlay network
of the peers so that it is secure. There are two good reasons tonot let them do this. First, if the overlay
network were controlled by gateway peers, it would not be scalable (see the limited lifetime issues we will
address below) because we assume the gateway peers to represent only a negligible fraction of the peers
in the system. Second, the overlay network would have no chance of surviving the situation that gateway
peers are not available (due to some DoS attack) or are even adversarial. Our protocols would survive such a
situation as long as honest peers do not leave because their operation doesnotdepend on the gateway peers.
Gateway peers areonly needed to make sure that new honest peers have a chance to enter the system.

Honest peers are reliable

We use an asynchronous system model in which every honest peer has roughly the same internal clock speed
(i.e. up to a small constant factor) but there is no global time. At any point in time, any message sent by an
honest peerv to another honest peerw will arrive atw within a unit of time. (Other message transmissions
may need any amount of time.)

Undoubtedly, computers do have roughly the same internal clock speed today (otherwise, we could
not rely on them for scheduling appointments). Message delays between honest peers have to be bounded
because time is a very critical issue for dynamic overlay networks. If no upper bound can be given for
message delays between honest nodes, i.e. we have a completely asynchronous system, we strongly believe
that it is impossible to make overlay networks secure (see the limited lifetime issues below). As long as only
a small fraction of messages between honest nodes violate our delay bound, our protocols would still work
correctly, but for simplicity we assume that a delay bound can be guaranteed.

Honest peers have unbounded bandwidth

We assume that honest peers have unbounded bandwidth, i.e. an honest node can receive and send out an
unbounded number of messages in a unit of time.

Though this assumption appears to be very strong, it doesnot protect against legal attacks (i.e. smart
attacks against the protocol) but only against brute-forcedenial-of-service attacks. Hence, it still remains a
challenging task to perform a security analysis. As long as adversarial nodes do not transmit unnecessary
packets (i.e. they adhere to the protocol), the number of messages an honest node will have to deal with
in a time unit will normally be very low in our protocols (i.e.logarithmic in the number of nodes in the
system) so that our protocols are practical despite the unlimited bandwidth assumption. We expect that
designing secure overlay networks for peers of bounded bandwidth will be a very challenging task, which
is unfortunate since in reality this is the case. Nevertheless, we do not view it as impossible, and therefore
our result in this paper may be seen as a first step in this direction (especially becauseno provably secure
design for overlay networks was known before, apart from ourrecent work in [?]).

Security assumptions

We assume that a certification authority is available to issue certified names to peers that want to enter the
system. This prevents peers from taking over the identitiesof other peers, which is important for any name

4

service to work correctly, but it doesnot prevent adversarial peers from registering under adaptively chosen
names that are different from names of the honest peers. An honest peer only establishes connections to
peers with correctly certified names.

Finally, we need some assumptions about how messages are passed. We assume that the source of a
message cannot be forged so that adversarial nodes cannot take over the identity of honest nodes. Also, a
message sent between honest nodes cannot be deleted, or altered by the adversary. However, the adversary
may know about every message sent in the system. Furthermore, we assume the existence of a bit commit-
ment scheme (e.g, [14, 9]) that allows nodes to commit to a certain key without revealing any part of it. This
is important for our ID generation strategy.

Notice that the source issue can actually be solved easily without cryptography as long as adversaries
cannot hijack IP addresses or listen to communication between honest nodes: if a message arrives from
IP addressx, then the receivery asksx for a confirmation that contains a secret (for example, a random
key). Only if y receives an acknowledgement fromx containing the secret,y will accept the message. The
assumption that messages cannot be inspected, deleted, or altered by the adversary is realistic in our case
because we assume the nodes of our overlay network to sit at the edge of the Internet, and therefore peers
cannot inspect communication between other peers.

2.2 The Chord overlay network

Next, we review the construction of the Chord overlay network [19], which is used in our impossibility
results as well as in our secure overlay network construction.

Suppose that we have a system currently consisting of a setV of n nodes, and further suppose we have
a (pseudo-)random hash functionh : V → [0, 1) that maps nodes to real values in the interval[0, 1). The
basic structure of Chord is a doubly-linked cycle, the so-called Chord ring, in which all nodes are ordered
according to their hash values. In addition to this, every nodev has edges to nodespi(v), calledfingers, with
pi(v) = argmin{w ∈ V | h(w) ≥ h(v) + 1/2i} for everyi ≥ 1.

One can show that Chord has a diameter ofO(log n) and an expansion ofΩ(1/ log n) w.h.p. [1], making
it robust in distributed environments under random faults but not against adversarial behavior.

2.3 Main results

Next we summarize our main results in this paper.

Lower bounds

We show that survivability cannot be maintained by predictable overlay networks, i.e. networks in which
for some fixed arrival and departure sequence the topology will always be the same.

Theorem 2.1 No predictable overlay network can be survivable.

We also show that none of the suggested hash-based peer-to-peer systems can be survivable (in their
basic form), even if the hash function for the node identification numbers is chosen at random (instead of
using some fixed SHA-1 function), or all nodes (including theadversarial nodes) use completely random
identification numbers. The basic problem is that a node can potentially be in the system for an unlimited
amount of time.

As we will see, any overlay network that wants to be survivable has to act in a proactive fashion in order
to protect itself, as e.g., in [16, 11, 10, 2, 7]. In particular, it must be possible to exclude nodes from the
overlay network, even against their will. If this were not possible, then any node could potentially stay in
the overlay network for an unlimited amount of time, causingtremendous security problems (as we will see

5

later). We accomplish this in anobliviousway by setting a maximum lifetime after which every node has to
leave the system.

Upper bounds

We then present a strategy, calledGroup Spreadingthat is survivable against adversarial peers. It should
be applicable to all DHT-based peer-to-peer overlay networks suggested in the literature, but in order to
simplify the presentation, we just concentrate on the Chordnetwork given above.

The core idea of the Group Spreading technique is to use a simple mechanism that enforces the selection
of a random ID for every successful ID request of a peer that wants to join. This simple mechanism may fail
if adversarial peers are involved in it. To prevent them fromcausing problems for honest peers, every honest
peer will keep a group ofΘ(log N) nodes in the system so that with high probability sufficiently many
nodes of a peer can rejoin the system as the lifetime of its oldnodes expires. Keeping nodes in clusters of
sizeΘ(log N) and enforcing a limited lifetime then makes sure that for a polynomial number of steps every
cluster will have a majority of honest nodes, with high probability. There are many tough details that have
to be solved to handle this strategy in a dynamic overlay network with Byzantine nodes. For example, the
group spreading protocol has to runwhile nodes join and leave the system. Also, Byzantine nodes make it
extremely difficult for nodes to agree on the membership of a cluster, especially when clusters have to be
reorganized due to a changing number of nodes in the system. Nevertheless, we can show:

Theorem 2.2 GROUP SPREADING survives up to aΘ(1/ log N) fraction of malicious nodes with a com-
munication cost oflogO(1) N bits per operation if the join/leave rate of honest nodes isO(1/ log N) and the
join rate of adversarial nodes isO(1/ log2 N).

2.4 Probabilistic tools

We will frequently use the Chernoff bounds.

Lemma 2.3 (Chernoff [8]) Consider any set of independent random variablesX1, . . . ,Xn ∈ {0, 1}. Let
X =

∑n
i=1 Xi and letµ = E[X]. Then it holds for allδ ∈ [0, 1] that

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

and for all δ ≥ 0 that
Pr[X ≥ (1 + δ)µ] ≤ e−min[δ,δ2]µ/3

3 Non-survivable overlay networks

In this section we prove that predictable overlay networks and hash-based overlay networks (i.e. networks
in which the ID of a node is determined by a hash function) are not survivable. Furthermore, we show that
being able to enforce a limited lifetime is crucial for the survivability of systems based on a virtual space,
like hash-based systems.

3.1 Predictable overlay networks

An overlay network ispredictableif for any fixed arrival and departure sequence the topology will always
be the same. Notice that all hash-based overlay networks with a fixed hash function are predictable.

We start this section by demonstrating thatno predictable overlay network can be survivable under our
definition of survivability.

6

Theorem 3.1 Consider an arbitrary predictable overlay network of maximum degreed that allowsN peers
to join or leave inT time units. Then there is a join/leave sequence of2N honest nodes so that anǫ-bounded
adversary withǫ ≥ d/N can surround an honest peer inO(T) steps.

Proof. The proof is relatively easy. First,2N peers join to create a network of size2N , and afterwards
the firstN peers that joined the network leave. This takesO(T) time steps. Consider now any peer in the
resulting network, sayv, and letw1, . . . , wd be its neighbors. Then, consider the join/leave sequence of
honest peers that is like the sequence above but withoutw1, . . . , wd. Assign the join events forw1, . . . , wd

to the adversary. Then we arrive at the situation thatv is completely surrounded by adversarial nodes. This
sequencealwaysworks because the overlay network is predictable. Hence, the theorem follows. ⊓⊔

3.2 Hash-based overlay networks

Hash-based overlay networks are vulnerable to adversarialattacks even if the hash function is chosen at
random, and it is a one-way hash function. The mere fact that nodes do not change their location over
time turns them into “sitting ducks”. To illustrate how an attack on hash-based approaches would look like,
consider the Chord system.

Take any peeru in Chord with hash valuex ∈ [0, 1) (see figure 1). By generating a setA of adversarial
peers with hash valuesx− ǫ, x + ǫ, andx + 1/2i + ǫ for all relevanti whereǫ is sufficiently small,u will
have no peer pointing to it any more, and all peersu is pointing to belong toA. Hence, if the peers inA
leave,u will be disconnected from the system. Notice that even a relatively modest adversary can come up
with such a setA, even if the hash function is not invertible. It just has to try enough values (which is easily
possible with SHA-1; the fact that the hash values may dependon IP addresses is not a limitation, because
with IPv6 there will be plenty of them available – even for private users). Also, notice that an adversary just
has to know the valuex to start an attack onu. Once an adversary has managed to carve out a peer from the
system, it may park it in a bogus peer-to-peer system so that the peer does not notice being removed from
the original system. In this way, the adversary can remove a large number of peers with a relatively modest
amount of effort.

(b)(a) (c)

u u u

Figure 1: Removing a peer from the Chord system.

As we see next, also truly random IDs do not help as long as no node can be excluded from the system
against its will, even if there is a secure mechanism for enforcing such an ID oneverynode that joins the
system.

7

3.3 Problems with unlimited lifetime

All hash-based systems are based on the concept of a virtual space. The basic idea underlying these systems
is that nodes are given virtual locations in some space, and the overlay network is constructed based on these
virtual locations. That is, depending on its virtual location, a node aims to maintain connections to other
virtual locations and does this by establishing pointers tothe nodes closest to these locations. See, e.g. [15]
for a general framework behind this approach.

Let us consider any hash-based overlay network in which instead of using a hash function, each node
gets a truly random ID. Suppose that for some nodev we wish to attack, there is still some regionR of
volume ǫ left so that if a node obtains an ID inR, then it will receive an edge to or fromv. In order to
get a node into regionR, a single adversarial node, on expectation, only needs1/ǫ attempts. While the
adversary tries to occupy other regions necessary to exclude v, it holds onto those of its nodes that already
successfully made it into a relevant region.

Since for any fixed area of volume1/n2, the probability that at least one out ofn honest nodes chooses
an ID in this area is at most1/n, an adversary will manage to take over a regionR relevant forv in at
mostn2/M rounds, with high probability, whereM is the number of adversarial nodes. Hence, the overlay
network will not survive any polynomial number of steps, andis therefore not survivable according to our
definition.

The sampling approach above can also be used to gain the majority of nodes in any region, thus causing
the approach of just assigning random IDs to nodes and clustering them by grouping close-by nodes together
to fail. Hence, unlimited lifetime can result in a fast degradation of randomness.

4 Outline of the Group Spreading Protocol

In this section, we give an outline of the Group Spreading Protocol. The details can be found in the appendix.
In the following, letN be the current number of honest nodes in the system andM be the current number
of adversarial nodes in the system.

4.1 Basic approach

We start with some basic definitions. Apeer is a user or machine that wants to participate in the peer-to-
peer system, and anode is a logical unit in the system. A peer may have multiple nodesin the system.
However, honest peers will limit their nodes toO(log N). A node is calledhonestif it belongs to an honest
peer. We assume that honest nodes execute our protocols in a faithful and reliable way. Adversarial nodes
may doanything. (Recall that we only have to worry about legal attacks because honest nodes have infinite
bandwidth.)

Organize nodes in regions

Certainly, a system in which the correct execution of an overlay network operation depends on the correct
behavior of individual nodes is not survivable. Hence, quorums of nodes have to be formed to check each
other’s behavior and therefore ensure the reliable execution of operations. However, forming separate quo-
rums of nodes (i.e. grouping the nodes into disjoint clusters) in a distributed system is not an easy task.
The problem here is that the number of clusters cannot be keptfixed if one wants the system to be scalable.
Hence, once in a while clusters have to be created, deleted, split, or merged. However, since adversarial
nodes can create different views of the current situation inhonest nodes, it is hard to find a consensus on
a cluster operation between the honest nodes, creating inconsistencies. To avoid these problems, we do
not form clusters of nodes but instead allow each honest nodeto decide by itself whichregionsof nodes it

8

considers to be safe. In our case, the ID space of the nodes will be the interval[0, 1), and a region may be
any subinterval of length1/2r for somer ∈ IN starting at an integer multiple of1/2r . Overlay network
operations initiated by a node will be executed on a region level. To make sure that these can be executed
reliably and efficiently, we require honest nodes to maintain regions of sizeΘ((log N)/N). Thehome re-
gion of a nodev (i.e. the region containingID(v)) is denoted byRv, and the set of nodes thatv knows in
Rv is denoted byCv.

Use a limited lifetime

As we saw above, an unlimited lifetime can result in a fast degradation of randomness. Hence, we will
only allow nodes to stay in the system forO(log N) steps. This is done by maintaining some parameter
L = Θ(log N) at each node and using the rule that every connection to a nodein the system is dropped
once that node reaches an age ofL. The value ofL will differ slightly between the honest nodes but we will
show that this difference can be kept very small.

Use multiple nodes for each peer

Since we allow adversarial nodes to be part of the system, some of the regions used for generating new
random IDs will contain adversarial nodes. In such a case, our ID generation protocol may not succeed.
Thus, to make sure that sufficiently many ID generation attempts will succeed to rejoin the network, each
honest peer will keepΘ(log N) nodes at random places in the network. As we will see, the adversary will
not be able (with high probability) to place nodes in each of these regions because our ID generation protocol
will make sure that whenever a new ID is generated successfully, it is random.

Spread lifetimes of honest nodes

Every peerp will aim to maintain a set of nodes so that for each of the nextL time units there is exactly one
node ofp that will depart in that unit. Together with the fact that thenodes ofp have random IDs, we will
see that this results in the remaining lifetimes of the honest nodes being well-spread in every region, with
high probability. This allows us to pursue the following approach.

Participation in overlay network operations is not transferable

For security reasons, we do not allow a node to take over the role of another node in an overlay network
operation. Hence, if the lifetime of a node expires before itcompletes an overlay network operation, its state
will be lost. To make sure that this does not endanger the correct execution of overlay network operations,
the following rule is used:

Whenever a new overlay network operation is started, an honest nodev (that has completed its inte-
gration) first checks whether its remaining lifetime is sufficiently large to complete it (given that the node
initiating the operation is honest). If so, it participatesin it, and otherwise not.

With this rule, no honest node will depart in the middle of an overlay network operation, which could
potentially create problems for this operation. Since the lifetimes of honest nodes are sufficiently well spread
in every region, it holds that whenever a new overlay networkoperation is started, there will always be a
sufficient number of honest nodes in a region that can participate in it, with high probability, so that the
operation can be executed correctly.

9

4.2 Protocols

Next we summarize the protocols we will use to achieve the basic approach above. The following protocols
have to be implemented for the user-level operations:

• Join protocol: This lets a new peer join the system.

• Leave protocol: This lets a peer leave the system.

• Lookup protocol: This performs the lookup of a name in the system.

Also protocols for internal operations will be needed:

• Insert protocol: This inserts a name entry into the system.

• Rejoin protocol: This lets nodes of a peer rejoin the system.

• Region protocol: This updates the home region of a node.

• Lifetime protocol : This removes a connection whenever the lifetime of a neighbor expires. Also, it
controls the departure of the own nodes.

Next we discuss the basics of each of the protocols.

4.3 The Region protocol

Recall that aregion in [0, 1) is an interval of length1/2r for somer ∈ IN starting at an integer multiple of
1/2r.

Region decomposition

In Chord, every nodev maintains pointers to nodes closest toID(v)+1/2i for all i. We need to transform this
pointer structure into a more secure version. Towards this goal we proceed as follows. In our construction,
v maintains some integerrv ∈ IN, calledrangeof v. The value ofrv may be different among the nodes, but
as we shall see, the differences are small.

Given rv and ID(v), we definev’s origin asov = ⌊ID(v)⌋1/2rv + 1/2rv+1, where⌊·⌋x rounds to the
nearest integer multiple ofx from below.v’s region decompositionof [0, 1) as the partition of[0, 1) into sub-
intervals[j/2rv , (j + 1)/2rv] with j ∈ IN. Now, instead of pointing to nodew with ID(w) being the closest
match toID(v) + 1/2i, we define the regionR+

v,i as the unique sub-interval fromv’s region decomposition
that containsov + 1/2i and the regionR−

v,i as the unique sub-interval that containsov − 1/2i. The set of all
these regions, together with the regionRv,0 (or simplyRv) containingID(v), is calledRv. v aims to keep
pointers to every nodew with ID(w) ∈ Rv. See Figure 2 for an illustration.

The set of all nodes in a regionR ∈ Rv which v has pointers to is called itsviewof R and denoted by
Cv

R. If R is v’s home region, i.e. the region coveringv itself, we will also denoteCv
R by Cv.

Range computation

Rv will remain the same throughoutv’s lifetime. However,v will inspect its home region to find out whether
future nodes inserted byv need a range different fromv. For thisv needs the Region protocol. LetCv(r)
denote that unique region of size1/2r covering nodev, and letγ > 0 be a fixed parameter (which is the
same for all nodes in the system). Then the protocol simply works as follows:

10

(a) (b)

u u

Figure 2: The left picture shows a nodeu with three fingers in the original Chord network, and the right
picture shows the region decomposition ofu together with the regions to whichu has pointers.

Selectr so that|Cv(r)| is as close as possible toγ(r − log r).

The next lemma bounds the deviation of the range values amongthe nodes in an ideal situation.

Lemma 4.1 If γ (as specified above) is a sufficiently large constant, then under the assumption that each
nodev has a randomID(v) and that each nodev knows the location of every other node in its regionRv,
the ranges of the nodes are by at most 1 apart with high probability.

Proof. Let N be the current number of nodes in the system. Suppose for the moment that we use the rule
that ideallyγr (instead ofγ(r− log r)) nodes should be in a region of sizer/2r (instead of1/2r). Consider
some regionR of sizer/2r in which the number of nodes is(1 + ǫ)N · r/2r. Then it holds that

γr =
(1 + ǫ)N · r

2r
⇔ r = log

(1 + ǫ)N

γ
.

This implies that there are
(1 + ǫ)N · r

2r
= γ log

(1 + ǫ)N

γ

nodes in a region of size

r

2r
=

γ

1 + ǫ
·
log((1+ǫ)N

γ)

N
.

For any constant0 < δ < 1, one can choose a constantγ so that according to the Chernoff bounds, forǫ
outside of[−δ, δ] such a region will not exist with high probability. Hence, with high probability,

r ∈

[⌊

log
(1− δ)N

γ

⌋

,

⌈

log
(1 + δ)N

γ

⌉]

which is an interval of size at most 1 ifδ is sufficiently small. Substituting nowr by log(2r/r), we get our
original rule that we want to haveγ(r − log r) honest nodes in a range of size1/2r, and also for thisr, the
deviation among the nodes is at most 1 with high probability.This completes the proof. ⊓⊔

11

Notice that Lemma 4.1 still holds if the honest nodes have different views but every honest node knows
(almost) every other honest node and the fraction of adversarial nodes is sufficiently small in a region,
because then the views of the honest nodes only differ by a small constant factor. Keeping the join/leave
rate of honest nodes limited toǫ/ log N for some sufficiently smallǫ, a deviation by an additive 1 can even
be ensured overL steps, whereL is the maximum lifetime of a node. This simplifies the protocol design.
However, with slightly more complex protocols one can also tolerate larger deviations, thereby allowing
higher join/leave rates. More details are in the appendix.

4.4 The Lifetime protocol

The lifetimeLv of a nodev is determined at the point when it is integrated into the system, using the formula

Lv = λ · rv

for some constantλ that is the same for all nodes.rv is v’s range whenv joins the system. From our remarks
in the previous subsection we can conclude thatLv will deviate by at mostλ among the honest nodes.Lv

represents the maximum possible lifetime ofv. The peerp owningv will use the following rule for assigning
a lifetime tov bounded byLv:

p maintains a queueQp containing all of its current nodes. The node in sloti still lives for i time steps
before it has to leave the system.p’s aim will be to continuously generate new nodes with randomIDs,
but only if it can find an empty sloti in Qp for some prospective nodev with maximum lifetimeLv where
i ≤ Lv. If so, p will go ahead with a random ID generation forv and, if successful, will assignv to slot i.
Thenp will integratev into the system.

The ID generation and integration will be done with the help of the Rejoin protocol.p will start suffi-
ciently many rejoin operations so that the lifetime of a new nodev will always be sufficiently close toLv,
i.e. Qp will always contain sufficiently many nodes.

The lifetime rule and Lemma 4.1 make sure thatp will have Θ(log N) nodes in the system at any time
and the remaining lifetimes of the honest nodes are uniformly distributed. Both are important prerequisites
for the overlay network operations to be executed correctlyand efficiently. In each time unit,p takes the
node in front of the queue and executes the Leave operation for it.

Besides its own lifetime, an honest nodev will also keep track of the lifetime of its connections, i.e.for
every link to some nodew, v will keep a time stampTw which approximates the time point whenw joined
the system. Once the current time stept exceedsTw + (1 + τ)Lw, v will cut its connection tow, where
(1 + τ) is the maximum factor by which the clocks of two honest nodes deviate.

4.5 The Rejoin protocol

Besides queueQp, peerp also maintains a queueSp. For every nodev thatp has newly integrated into the
system,p will check whether|Sp| < Lv/3. If so, p will assignv to the lowest available slot inSp. In each
time unit,p will remove the lowest slot fromSp and initiates the Rejoin protocol in the node,u, stored in
that slot. Based on the available space inQp, u will execute (up to) three times in parallel the following
three stages, which represent the Rejoin protocol:

1. Random ID generation: Nodeu contacts all nodes in its home regionRu. (Recall that the set of
these nodes is denoted byCu.) Each honest nodev ∈ Cu that has sufficient lifetime left to complete
the Rejoin operation chooses a random valuexv ∈ [0, 1) and sendsh(xv) to all nodes inCu, whereh
is the result of a bit commitment scheme. This allowsv to commit to a value without revealing it.v
then waits forLu/3 steps, and during these stepsv accepts commitments from other nodes. Once this
is over, andu requestsv to reveal its key (because there is room inQp), v will sendxv to all nodes

12

in Cu. Oncev has received allxw’s of theh(xw)’s it has received earlier, it computesx =
⊕

w xw

and sendsx back tou. If u has received at least|Cu|/5 times the samex, u adds a new node with ID
x and maximum lifetimeL(r) = ℓ · r to the slot reserved for that node inQp, wherer is thecurrent
range view ofu.

2. Authorization : Afterwards,u sends an authorization request to all nodes inCu that sentx to u. The
nodes will then send a message to the unique region of size1/2r owning x. Once the region has
replied with an acknowledgement containing its set of nodes, sayC, the nodes inCu forwardC to u
so thatp knows whom to contact in order to integrate a new nodeu′ with ID(u′) = x into the system.
(There may be discrepancies in the view ofC, but we will address them in Section A.)

3. Integration : Finally, p will contactC to obtain information about the connections of the nodes inC
so that it can establish all connections necessary foru′. (Notice that the authorization makes sure that
C knowsu′ andu′ knowsC. Furthermore, the integration will ensure that the neighbors of C know
u′ andu′ knows the neighbors ofC so thatu′ can be fully integrated.)

Once a node completes the integration stage, it is calledmature. An honest node will only partici-
pate in other overlay network operations once it is mature.To make sure that the rejoin rate is limited to
O(1/ log N), each node (except for the gateway nodes) is allowed to execute the Rejoin protocol at most
once during its lifetime. Rejoin requests beyond that number will not be accepted by the other nodes. Notice
that each rejoin request needsΘ(log N) steps to be processed, requiring an adversarial node to stayin the
system forΩ(log N) steps if it wants its request to succeed.

4.6 The Join protocol

Peers may not know anyone in the peer-to-peer system when they want to join it. Hence, we assume that
a limited number of so-calledgateway peersare available that are searchable over the Internet and always
part of the system. Gateway peers are like normal peers, withthe only difference that they can initiate a
potentially infinite number of rejoin operations.

Each new peerp contacts one of these gateway peers, sayq. q then executes the Rejoin operation at each
of its nodes to getp integrated into the system. (To make sure that this can not beabused by adversarial
nodes, i.e. the arrival rate of adversarial nodes is bounded, each peerp that wants to join may have to solve
a computational challenge or a Turing test before being admitted by the honest nodes.)

4.7 The Leave protocol

The Leave protocol is fairly simple. Once a peerp decides to leave, no new nodes will be inserted into the
network byp andp waits until the lifetime of all of its nodes currently in the network has expired.

4.8 The Insert protocol

To be able to explain the Insert protocol, we first describe how to select a path in our framework.
Consider an operationInsert(z) from nodev in the original Chord system for some keyz ∈ [0, 1). Let

ov be the origin ofv as defined in Section 4.3, and let theIDs of the virtual locations traversed byInsert in
Chord form the path

p(v, z) = (x0 = ov, x1, . . . , xℓ−1, xℓ = z)

Since this path narrows down onz in an exponential way, paths in Chord have a length ofO(log n), w.h.p.,
which is important for our strategies to work. In the Group Spreading framework, this path translates into
a sequence of regionsR0, R1, . . . , Rℓ whereRi, i < ℓ, is the unique region of size1/2rv that containsxi

13

andRℓ is the unique region containingz. This is also called therv-path of (v, z). Correspondingly, the
Lookup protocol for some system nodev and name (resp. hash value of the name)z and IP addressi works
as follows:

1. Search for the region owningz: v first sends the insert request to all nodes inRv who will then send
it further along anrv-path till the requests reach the regionR responsible forz.

2. Insert(z, i) in R: all honest nodes inR keep the entry(z, i) stored till they leave (i.e. their lifetime
expires).

Nodes will not pass their data on to other nodes when they leave. Hence, information has to be refreshed to
prevent it from being washed out. Therefore, every honest peer has to initiate the Insert protocol everyL/3
steps. Though this creates extra overhead, it has the advantage that adversarial nodes cannot accumulate
an unbounded number of name entries in the system, protecting it from getting overloaded. Also, this
mechanism makes a Delete protocol obsolete.

4.9 The Lookup protocol

TheLookup protocol for some system nodev and keyz works in two stages:

1. Search for the region owningz: v first sends the lookup request to all nodes inRv who will then send
it further along anrv-path till the requests reach the region responsible forz.

2. Delivery of IP address: The nodes in the region owningz will send the IP address associated withz
back tov, using again anrv-path.

4.10 Basic invariants

Among other aspects, the following invariants have to be preserved for the Group Spreading protocol to be
survivable. We call a node alegal memberif at least one honest node in the system has a pointer to it.

1. Every legal member has a random ID, and this random ID was generated at mostO(log N) steps
before the node became a legal member.

2. For every legal memberv, all honest nodes that have pointers tov have the same view ofID(v) and
the age ofv (up to minor deviations), and this view has not changed sincev joined the system.

3. For every mature honest nodev it holds thatv is connected to all other mature honest nodes in its
regions.

More details can be found in the appendix.

References

[1] B. Awerbuch and C. Scheideler. Chord++: Low-congestionrouting in chord. Technical report, See
http://www.cs.jhu.edu/∼scheideler, 2003.

[2] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection against break-ins.
RSA CryptoBytes, 3(1):1–8, 1997.

[3] Castro and Liskov. Practical byzantine fault tolerance. In OSDI: Symposium on Operating Systems Design and
Implementation. USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999.

[4] S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. InUsenix Security, Aug 2003.

14

[5] J. R. Douceur. The sybil attack. InIn Proc. of the IPTPS02 Workshop, Cambridge, MA (USA), 2002.

[6] A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable networks. InACM-SIAM Symposium
on Discrete Algorithms (SODA), 2002.

[7] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proactive public-key cryptosystems.
In IEEE Symposium on Foundations of Computer Science, pages 384–393, 1997.

[8] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds.Information Processing Letters, 33:305–308,
1989/90.

[9] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free hashing. In
CRYPTO 96, pages 201–215, 1996.

[10] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, andM. Yung. Proactive public key and signature systems.
In ACM Conference on Computer and Communications Security, pages 100–110, 1997.

[11] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope with perpetual
leakage.Lecture Notes in Computer Science, 963:339–??, 1995.

[12] L. Lamport. The weak Byzantine generals problem.Journal of the ACM, 30(3):669–676, 1983.

[13] L. Lamport and N. Lynch. Distributed computing. Chapter of Handbook on Theoretical Computer Science.
Also, to be published as Technical Memo MIT/LCS/TM-384, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1989.

[14] M. Naor. Bit commitment using pseudorandomness.Journal of Cryptology, 4(2):151–158, 1991.

[15] M. Naor and U. Wieder. Novel architectures for p2p applications: the continuous-discrete approach. InSPAA
Proceedings, 2003.

[16] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. InIn Proceedings of the 10th Annual ACM
Symposium on Principles of Distributed Computing, pages 51–59, 1991.

[17] R. D. Prisco, B. W. Lampson, and N. A. Lynch. Revisiting the paxos algorithm. InWorkshop on Distributed
Algorithms, pages 111–125, 1997.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer
systems. InIFIP/ACM International Conference on Distributed SystemsPlatforms (Middleware), Heidelberg,
Germany, 11 2001.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InSIGCOMM ’01, San Diego, CA, 8 2001.

[20] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and
routing. InUCB Technical Report UCB/CSD-01-1141, 2001.

15

A Details of the Group Spreading Protocol

In the following, we concentrate on a formal presentation ofthose protocols that are crucial for the Group Spreading
approach, which are the Insert, Lookup, and Rejoin protocol. This is followed by an analysis of the survivability of
the system.

A.1 Protocol notation

Since our protocols are highly interactive, we found it moreconvenient to extend the notation in the cryptography
literature rather than using abstract protocol notation such as Estelle, Esterel, or Promela. Our notation is rather
simple. If nodev wants to send messagesM1, . . . , Mk to w, we write “send tow : (M1, . . . , Mk)”. The execution
of a process on nodev is specified byv [〈conditions〉] : 〈action〉. The conditions specify the events that trigger the
execution of the action. A label of the form(ℓ) in the conditions specifies that a correct message of label(ℓ) must have
been received. By “correct” we mean that the form, contents,and signatures in the message are correct (as far as this
can be verified by the node).

A.2 The Insert and Lookup protocol

The protocols forInsert andLookup can be found in Figure 3.

A.3 The Rejoin protocol

The different stages of the Rejoin protocol can be found in Figures 4, 5, and 6.

A.4 Analysis

We start with some notation. A node is calledlegal if at least one honest node in the system has a pointer to it. A node
is calledmatureonce it completes the (re)join operation. Notice that a nodemay be legal before it is mature. Theage
of a node is the time that has passed by since it initiated stage 3 of the Rejoin protocol. A view of regionR is called
legal if it contains only legal nodes inR and it contains all mature honest nodes inR. For any time pointt, we define
ℓt = minv Lv andLt = maxv Lv where themin andmax is taken over all mature honest nodes that are in the system
at timet. If t is clear from the context, we will omit it. A system is calledsafeat timet if in every regionR with
|R| ≥ (γ log N)/N for some sufficiently large constantγ

1. the number of honest nodes that are legal members inR is at least(2/3)γ log N and at most(4/3)γ log N ,

2. for any intervalI in [0, L] of sizeℓ/2, the number of mature honest nodes inR that have an age inI is at least
(1/3)γ log N , and

3. the number of adversarial nodes that are legal members inR is at most(1/30)γ log N .

The main theorem of this paper is:

Theorem A.1 The Group Spreading protocol makes Chord survivable.

A.5 Proof of Theorem A.1

For this we first need to show:

Lemma A.2 For anyjoin/rejoin/leave sequence of honest and adversarial nodes over a number of time steps polyno-
mial in n in which

• the number of honest nodes is at leastn at any time,

• the join/rejoin/leave behavior of honest nodes satisfies the protocol conditions,

• the gateway nodes are honest,

• the rate of join/leave requests of honest nodes is at mostǫ/ logN ,

16

• the rate of join requests of adversarial nodes is at mostǫ/ log2 N , and

• the adversarial nodes never represent more than anǫ/ logN fraction of the honest nodes in the overlay network,

the peer-to-peer system constructed by the Group Spreadingprotocol will be safe, with high probability.

Suppose that this is true. Then we can show that all overlay network operations initiated by honest peers are
executed successfully, which would imply Theorem A.1. For this we first have to define what we mean by “successful”.

• A join request by some peerp is calledsuccessfulif p manages to integrate at leastℓ nodes into the system
within O(log N) steps that satisfy the Invariants in Section A.6.

• An insert request by some peerp is calledsuccessfulif the nodeu of p initiating that operation manages to store
p’s namex in O(log N) steps in every honest node in the regionR of size1/2ru containingx that was mature
whenu initiated the operation.

• A lookup request by some peerp for some namex is calledsuccessfulif p receives the IP address of the peer
with namex within O(log N) steps.

We prove these properties in several claims and lemmata. We start with two statements that we cannot show here since
we first have to introduce some invariants for these. Their proofs can be found in Section A.6.

Lemma A.3 As long as the system is safe, any join request by some honest peer is successful.

The next statement gives a bound on the deviation ofN , the number of nodes in the system.

Claim A.4 For any constant0 < ρ < 1 there is a constant0 < ǫ < 1 so that the number of nodes in the system
changes by a factor of at most(1 + ρ) in L steps, whereL is the maximum over allLt during these steps.

Hence, to simplify the statement of the claims below, we willassume in the following that as long as we just look
at time intervals of size at mostL (whereL is the maximum over allLt during these steps),N is fixed. However,
whenever the exact value ofN matters in the proofs, we will consider the deviations, as done in the following claim.

Claim A.5 As long as the system is safe it holds that for any regionR of size at least(γ log N)/N and any node with
a legal view ofR, the number of honest nodes inR that were maturet ≤ L/2 steps ago is at least|Cv

R|/5 and the
number of adversarial nodes inR is at most|Cv

R|/20.

Proof. From the safeness condition we know that the number of maturehonest nodes inR that were already inR
t ≤ L/2 steps ago is at least(1/3)γ log N for the numberN that was truet steps ago. According to Claim A.4, this
number is still at least1/(3(1 + ρ)) · γ log N after at mostt ≤ L/2 steps, compared to the currentN . Because at
the current time the number of honest nodes is at most(4/3)γ log N and the number of adversarial nodes is at most
(1/30)γ log N , it follows that if ρ is sufficiently small, the number of honest nodes inR that were maturet steps ago
is still at least|Cv

R|/5.
The upper bound on the adversarial nodes follows from the fact that the number of honest nodes is at least

(2/3)γ log N and the number of adversarial nodes is at most(1/30)γ log N . ⊓⊔

Claim A.6 The adversarial nodes cannot forge an insert or lookup request from an honest node.

Proof. Suppose that the adversarial nodes make some honest nodev accept a requestM from some other honest node
u. Further suppose thatv is the first honest node acceptingM and it is in a regionRk representing thekth region along
the path of the request fromu. If k > 1, thenv must have receivedM from at least a1/5 fraction of the nodes in its
view of Rk−1(r) wherer ∈ {rv, rv + 1}. However, due to the safeness of the system, there must have been an honest
nodev′ in Rk−1(r) that has already acceptedM beforev, creating a contradiction. Hence, assume thatk = 1. In
this case,v would have accepted a messageM from u although it did not come fromu. But according to our model,
which assumes that the source of a message cannot be forged, this cannot happen, also creating a contradiction.⊓⊔

17

Claim A.7 As long as the system is safe and the distanced the request has to travel to reach some regionR is at most
L/3, it takes at mostd steps for an insert or lookup request initiated by a mature honest node to reach all (remaining)
honest nodes inR that were mature when the request was initiated, and the request arrives at these nodes in an
unchanged form.

Proof. We prove the lemma by induction over the number of hops. If some honest nodev initiates some request
M , then it follows from our delay assumptions that it takes at most 1 step until all honest nodes inRv receiveM .
So suppose that it has already been shown that it takes at mostk steps until all mature honest nodes inRk, thekth
region along the path of the request, received the originalM from all honest nodes inRk−1 that were mature when
the request was initiated.

Suppose that the request was initiated at stept and letγ be chosen so that1/2rv = (γ log N)/N . From Claim A.5
we know that the number of mature honest nodes inRk−1 and any sufficiently large subregion of it that were in the
system at timet is at least a fraction of1/5 of all the nodes in any legal view of that region. Hence, at least a1/5
fraction forwards the originalM in at mostk time steps to all the mature honest nodes inRk. Since the adversarial
nodes represent at most1/20 of the nodes inRk−1 and any of its sufficiently large subregions at any time, it follows
that when an honest nodev waits until it has received the same request from at least a1/5 fraction of nodes its view of
the previous region of the request (which includesRk−1 or one of its subregions), every honest node inRk that was
already mature at timet will accept the original messageM in at mostk steps. Therefore, it takes at mostk + 1 steps
until all mature honest nodes inRk+1 receive and accept the original requestM . This completes the induction and
therefore the proof. ⊓⊔

Two remarks are in order for this claim. First, notice that itis really sufficient to just guarantee at most(1/30)γ log N
adversarial nodes at any time since honest nodes willonlyconsider messages in any threshold rule that are from nodes
that are still legal members of the system. Second, one may think that for every region along the path the honest nodes
will accept a messageM at basically the same time. However, since we do not assume a lower bound on the trans-
mission delay of messages, in the worst case the adversarialnodes can cause time differences between the messages
from honest nodes that grow linearly with the distance, forcing us to resort to honest nodes that were mature when the
request was initiated.

Lemma A.8 As long as the system is safe, any insert operation executed by an honest node is successful within
O(log N) steps.

Proof. Suppose that some honest nodeu initiates an insert operation for namex. From Claim A.7 it follows that
an insert request only takesO(log N) time to reach its destination in its original form. There,x will be stored in all
honest nodes that were mature when the request was initiated, and hence the insert request is successful. ⊓⊔

Lemma A.9 As long as the system is safe, any lookup operation executed by an honest node is successful within
O(log N) steps.

Proof. Recall that at latest everyL/3 steps a peerp will refresh its namex. Since refreshing the name via an insert
operation only takesO(log N) steps, it follows from Claim A.5 that for the nextL/3 time steps the fraction of mature
honest nodes storingx compared to the total number of nodes in any view of an honest node of the region ofx is at
least1/5. Hence, it follows from Claim A.7 that any lookup request forsome namex will successfully reach the name
of x and its answer will successfully travel backwards inO(log N) steps. ⊓⊔

A.6 Proof of Lemma A.2

We prove the lemma by induction on the time the system has run so far. We assume that the system initially consists
only of honest nodes, and the number of these nodes is at leastn, the parameter for our probability bounds. In this
case, it is easy to show that the system has been safe so far. Sowe can proceed with the induction step. For the
induction step to work, we want to show apart from safeness that the following invariants are fulfilled:

1. Every legal member has a random ID, and this random ID was generated at mostO(log N) steps before the
node became a legal member.

18

2. For every legal memberv, all honest nodes that have pointers tov have the same view ofID(v) and the age of
v (up to minor deviations), and this view has not changed sincev joined the system.

3. For every mature honest nodev it holds thatv is connected to all other mature honest nodes in its regions.

Our strategy is to show that if the system has been safe and theinvariants have been true so far, the invariants also
hold for subsequent (re)join/leave operations, which thencan be used to show that the system remains safe, with high
probability.

We need a couple of claims to prove the invariants, which are based on the assumption that the system has been
safe so far.

Claim A.10 For every honest nodev accepting an IDx (by executing step (6b)) in an ID generation stage of some
nodeu it holds thatx must be random and the generation took at least(1− τ)Lu/3 steps and at most(1 + τ)Lu/3 +
O(1) steps fromv’s point of view.

Proof. According to the ID generation protocol,v must have contributed a random keyxv tox, and oncev revealedxv

it did not accept any further commitments from other nodes. Hence,x =
⊕

w xw (where⊕ denotes the bit-wise XOR)
must be random. Sincev waits for at least(1 − τ)Lu/3 steps before revealingxv and at most(1 + τ)Lu/3 + O(1)
steps before it does not execute (6b) any more, the claim follows. ⊓⊔

Claim A.11 For every honest nodev adding an entry(x, u, r, j, Tv, 1) to Jv it holds that there must have been an
honest nodew acceptingx in the ID generation stage at mostO(log N) steps before.

Proof. Suppose there is such a nodew, and suppose thatw is part of regionRi. Review stage 2 of the Rejoin
protocol. Thenw must have added an entry(x, u, r, j, Tw, 0) to Jw before. Continuing with this backwards in time,
we distinguish between two cases.

If i = 0 (i.e. the new IDx is in Ru(r)), thenw must have received message (v, auth,(s, t), x, Cv(r), u, r, j) from
at least3|Cw(ru)|/20 nodes inCw(ru). Hence, there must have been an honest nodew acceptingx in stage 1.

So assume thati > 0. In this case,w received message (v, auth,(s, t), x, Av, u, r, j) from at least|Cw
Ri−1

(r+1)|/5

nodes inCw
Ri−1

(r + 1). (w can really check this because due to our discrepancy assumption on the rates,r ≥ rw − 1.)
In this case, there must have been an honest nodev in Rw

i−1(r+1) that successfully received an authentication message
from a previous region. Continuing with this argument by induction, we end up with some honest nodew in region
R0 that must have received message (v, auth,(s, t), x, Cv(r), u, r, j) from at least3|Cw(ru)|/20 nodes inCw(ru).
Hence, again there must have been an honest nodew acceptingx in stage 1.

It remains to bound the runtime of this process. For this we first have to show that for any node honestw ∈ Ri,
the setAw computed in (3) is always a legal view ofRu(r). This can be done by induction oni. Fori = 0, w received
Av from at least3|Cw(ru)|/20 nodesv in Cw(ru). If w includes a nodew′ in Aw, thenw′ must be inAv for at least
|Cw(ru)|/10 of thesev’s, and thereforew′ must be part of a view ofCv(r) of some honest nodev. Thus,w′ must be a
legal member. On the other hand, every mature honest node inCv(r) will be included inAw because an honest node
in Cw(ru) sends an authentication message tow only if it is mature, and these mature honest nodes know all other
mature honest nodes inRu(r).

Now, w only changes(x, u, r, j, Tw, 0) in Jw to (x, u, r, j, Tw, 1) if it has received messages (v, accept,(u, j))
from at least3|Aw|/20 nodes inAw. SinceAw is a legal view ofRu(r), this means it has received an accept message
from at least one honest node inRu(r). But an honest node inRu(r) only sends an accept message if the time that
passed by till it executed (2) in stage 2 is at mostδ log N . Furthermore, an honest node only executes (2) if it accepted
the new ID (in (6b) of stage 1) at mostδ steps before. Hence, the time between the point whenw received the message
from the honest node and the point where an honest node accepts x in the ID generation is at mostO(log N). Since
w also uses the rulēT − Tw < δ log N to convert(x, u, r, j, Tw, 0) into (x, u, r, j, Tw, 1) and there must have been an
honest node sending an accept message tow afterT̄ , the claim follows. ⊓⊔

Claim A.12 For every honest nodev establishing a connection to some new nodeu with ID x and lifetimet in its
region it holds thatv must have added an entry(x, u, r, j, Tv, 1) for u in Jv at mostO(log N) steps before.

Proof. Follows immediately from the condition in step (2) of stage 3. ⊓⊔

19

Claim A.13 For every mature honest nodev establishing a connection to some new nodeu that did not add an entry
for u in Jv it holds thatv must have received a message from an honest nodev′ that added an entry(x, u, r, j, Tv, 1)
for u to Jv at mostO(log N) steps before.

Proof. Honest nodes only establish connections to new nodes in step(4) of stage 3. Hence, consider some honest
nodev doing this. Then it must have received messages (w, new node,u′, x, r, j) from at least3|Cv

Ru′
(r + 1)|/20

nodesw in Cv
Ru′

(r + 1) for somer ≤ rv + 1. In this case, at least one of the nodesw must be honest, and this
node must have executed step (2) in stage 3, i.e. it has an entry (x, u, r, j, Tw, 1) for u in Jw. Also, there must be an
honest node whose message arrived atv after T̄ , and therefore the delay between some honestw executing (2) andv
executing (4) is at mostδ. Furthermore,w only sends messages (w, new node,u′, x, r, j) if the time since it added
(x, u, r, j, Tv, 1) for u to Jv is at mostδ log N . Hence, the time bound of the claim holds. ⊓⊔

Claim A.14 For every new honest nodev establishing a connection to some nodeu with ID x and aget it holds that
there is a mature honest node that established a connection to u in (2) of stage 3 at least(1− τ)t−O(1) steps before
and there is a mature honest node that established a connection tou in (2) of stage 3 at most(1 + τ)t + O(1) time
steps before.

Proof. Recall that honest nodes take the generation of other honestnodes into account when accepting an ID and an
age (see step (6) in stage 3). An honest nodev will always pick the minimum generation for which it can receive from
at least1/5 of the nodes of its view ofu’s region the samex for u. Using the safeness property,v never has to go
beyond a generation of 3, where the generation 0 are the honest nodesw that addedu to Jw. v is of generationi if it
considered a1/5 fraction for generationi−1. So suppose thatv is of generationi. Because of the safeness condition it
follows that there must have been an honest nodew of generationi−1 reporting an age belowv’s median foru and an
honest nodew′ of generationi− 1 reporting an age abovev’s median. Let us ignore for the moment deviations in the
time clocks and message delays. In this case, continuing with the argument above for earlier generations, there must
have been an honest nodew of generation 0 reporting an age belowv’s median and an honest nodew′ of generation 0
reporting an age abovev’s median. Hence, when taking deviations in the time clocks and message delays into account,
w must have established a connection tou at most(1 + τ)t + O(1) steps before andw′ must have established a
connection tou at least(1 − τ)t−O(1) time steps before, which completes the proof. ⊓⊔

This claim yields the following claim.

Claim A.15 For every nodeu, all honest nodesv that established a connection tou have views of the age ofu that
are in [(1− τ)t−O(log N), (1 + τ)t + O(log N)] for somet. If u is honest, then all honest nodesv that established
a connection tou have views of the age ofu that are in[(1− τ)t−O(1), (1 + τ)t + O(1)] wheret is u’s own view of
its age, i.e.u initiated the integration staget steps ago.

Proof. We start with the first statement. Certainly, an honest nodev only accepts an integration request by some node
u in (2) of stage 3 ifv added an entry foru into Jv at mostO(log N) steps before. Ifv did this, then we know from
Claim A.11 that there must have been an honest nodew that accepted the IDx for u at mostO(log N) steps before.
w only accepts the ID (i.e. it executes (6b) in stage 1) if it hasalready executed (3a) in stage 1, which it only does
once|Ku,j| ≥ |Cw(ru)|/5. In this case,w must have received commitments from≥ 3|Cw(ru)|/20 mature honest
nodes inCw(ru) in a time interval of size at mostT = (1 + τ)Lu/3 + O(1). Thus, due to the safeness of the system,
every mature honest nodev that was already aroundT steps ago will have received at least|Cv(ru)|/10 commitments
from other mature honest nodes beforew executes (3a). This means that every one of these mature honest nodes will
setiu = 1 at mostδ steps afterw executes (3a). There are at least|Cv′ (ru)|/5 of these nodes from the view of every
mature honest nodev′. Hence, every honest nodev′ that was not matureT steps before will either receiveiu = 1 from
at least|Cv′(ru)|/10 honest nodes in step (7) of stage 3 or (5a)-messages from at least|Cv′(ru)|/10 honest nodes in
stage 1. In either case,v′ setsiu = 1. Hence, no honest node will accept another rejoin request from u O(1) steps
afterw executes (3a). Furthermore, any honest node can only acceptan ID afterw revealed its key, and honest nodes
wait for at least(1 − τ)Lu/3 steps before revealing their keys and at most(1 + τ)(Lu/3 + δ) before aborting the
protocol. Hence, the time deviation among the honest nodes that accept IDx can be at mostO(δ), which together with
Claim A.14 finishes the proof of the first statement.

20

The second statement follows from the fact that an honest nodeu sends an integration message to all honest nodes
v with an entry aboutu in Jv within one time unit. Hence, all of these nodes start their counters with a difference of
at most one time step. ⊓⊔

As a result of the claims above, we get that the invariants 1 and 2 are fulfilled. Thus, it remains to prove invariant
3.

Claim A.16 For every honest nodeu that successfully completes the ID generation stage for some ID x it holds that
at least3|Cu|/20 mature honest nodes capable of completing the rejoin operation acceptedx, and the ID genera-
tion stage took at mostO(log N) steps. Furthermore, ifRu only contains legal members that are honest, thenu is
guaranteed to succeed with the ID generation.

Proof. Recall the safeness condition and Claim A.5. Suppose that anhonest nodeu has initiated an ID generation.
Since invariant 3 was fulfilled foru when it did this,u contacted mature honest nodes that can participate in the join
operation that represent at least|Cu|/5 of the nodes ofu’s view ofRu throughout the execution of the rejoin operation.
Hence, ifu’s region only contains honest nodes,u is guaranteed to succeed. In general, ifu successfully completes
the ID generation stage, then it has received answers with the same IDx from at least|Cu|/5 nodes inRu within
O(log N) steps. Thus, according to the safeness condition, at least3|Cu|/20 mature honest nodes inRu acceptedx,
completing the proof. ⊓⊔

Claim A.17 If an honest nodeu successfully completes the ID generation, then it also successfully completes the
authorization stage inO(log N) steps.

Proof. From the previous claim we know that ifu successfully completes the ID generation stage for some IDx, then
at least3|Cu|/20 mature honest nodes capable of completing the rejoin protocol acceptedx. Hence, onceu starts the
authorization stage, at least3|Cu|/20 honest nodesw will execute (2).

Thus, all mature honest nodesw in Cv,1(r) and Cv,2(r) (see the protocol) will receive at least3|Cu|/20 >
|Cw(ru)|/10 authentication messages of the correct form foru and therefore forward the authentication message to
Cw

R1
(r + 1). Since there are at least|Cw′

R1
(r + 1)|/5 honest nodes forwarding the message further, all honest nodesw′

in R2 will receive at least|Cw′

R1
(r +1)|/5 authentication messages of the correct form foru. Thus, they will accept the

message and send it further. Hence, by induction, at least|CRx
(r + 1)|/5 mature honest nodesv in both subregions

of x’s regionRx of size1/2r+1 capable of completing the rejoin operation will add an entryfor u in Jv.
Now, all of these honest nodes will report their views ofRx(r + 1) backwards. Consider any mature honest

nodew in R′
1(r + 1). First of all, w will receive views of (its relevant subregion)Rx(r + 1) (of Rx) from at least

|CRx
(r + 1)|/5 honest nodes inRx(r + 1). Hence,w will produce a viewC and send it further to all mature honest

nodes inR′
2(r + 1). C is guaranteed to be legal because every nodew′ can only be added toC if it occurs in at least

3|CRx
(r + 1)|/20 views, and therefore in a view of an honest node inRx(r + 1). On the other hand, every mature

honest nodew′ will be in C becausew will consider views from at least3|CRx
(r + 1)|/20 mature honest nodes inRx

and all of these, by invariant 3, know all other mature honestnodes inRx(r + 1). Hence,C is legal and contains all
honest nodesw′ in Rx(r + 1) that added an entry foru into Jw′ . By induction, this can be shown for all honest nodes
on the path backwards tou. Hence, every honest nodev that sent(2a) will compute setsAv,1 andAv,2 for the two
subregions ofRx that are legal.

Because there are at least3|Cu|/20 > |Aw |/10 nodesv that sent(2a) from the viewpoint of every honest nodew
in Rx (note thatAw is a legal view ofCu), and according to Claim A.7 it only takesO(log N) steps for the routing
part to succeed, every honest nodew that added an entry foru to Jw will execute(6a). Since there must be at least
3|Av,1|/20 and at least3|Av,2|/20 such nodes from the viewpoint of every honest node inRu, all the honest nodes
that executed(5a) will also execute(7a). Hence,u will execute(8) and will compute legal viewsAu,1 andAu,2 of
the two subregions ofRx, i.e. they contain allw in Rx that added an entry foru into Jw. ⊓⊔

Claim A.18 For every new honest nodeu with a successful authorization stage it takes at mostO(1) steps untilu has
a pointer to every mature honest node in its region.

Proof. If the authorization stage is successful, thenu contacts all nodes in its view ofRx to integrateu′. Since these
contain at least|CRx

|/5 mature nodesv having an entry foru in Jv, and all of these are inAu, each of these nodes

21

will acceptu′, and all mature honest nodes in the regions relevant foru′ will acceptu′. On the other hand,u′ will
receive back views of its relevant regions from at least3|CRx

|/20 honest nodes inRx and will establish pointers to all
mature honest nodes in its regions. Up to this point, the integration only tookO(1) steps, and at its end, every mature
honest node inu′’s region has a pointer tou′. Thus,u′ will be accepted by every new honest node entering the system
afterwards.

Now, u′ waits forO(1) time steps (see step (3)). The reason for this is thatu′ first wants to make sure that every
new honest node entering the system will now establish a connection tou′ andu′ will also establish a connection to
this node. Hence,u′ only has to worry about honest nodes that came into the systembefore that time point, including
honest nodes that joined the system at the same time asu′. To solve this problem,u′ sends a request for views to all
nodes in its regions once it is sure that it passed the first stage of the integration. Sinceu′ will receive back views of
at least3|CR|/20 mature honest nodes of each of its relevant regionsR, it will establish pointers to all mature honest
nodes inR and those that have already passed the first stage of the integration, i.e.u′ fulfills the conditions in invariant
3 of being mature. Also this part of the integration stage only needsO(1) steps. ⊓⊔

Combining these claims yields invariant 3. Thus, the invariants are fulfilled. So given that the invariants are true,
it remains to show that the system is safe. For this we also need a couple of claims.

Claim A.19 Every adversarial node can only initiate one successful rejoin operation during its lifetime.

Proof. If a nodeu wants a rejoin operation to be successful, then at least one honest nodew must add an entry
for u in Jw because otherwise the integration stage will not be executed by any honest node. However, if there is
such a nodew, then by induction backwards on the routing path it follows that there must have been an honest node
v in Ru executing step (3) in the authorization stage. But this can only happen if at least one honest nodev in Ru

executed step (6a) in the ID generation stage, which can onlyhappen ifv executed step (3a) in the ID generation stage
before. Thus, at least|Cv(ru)|/5 nodes committed to some key, and all honest among these have to reveal their keys
in approximately the same time for an honest node to execute (6a). Hence, their initiations of step (2) must have been
more than(1 − τ)L/3 steps beforev reaches its time limit of(1 + τ)(L/3 + δ). It follows from the arguments in
Claim A.15 that then any honest node will only accept a rejoinrequest fromu up to (1 − τ)L/3 − δ steps before
v reaches its time limit. However, in this case all key commitments of these nodes will count for the current rejoin
execution, i.e.u cannot enforce another successful rejoin operation, completing the proof. ⊓⊔

Claim A.20 Given that the system has been safe and the invariants hold, the number of adversarial nodes in any
regionR of size(γ log N)/N for a sufficiently largeγ is at most(1/30)γ log N .

Proof. We need to combine several arguments:

1. According to Claim A.15, the lifetime of every legal member must be bounded byλ′ log N for some constant
λ′ close toλ in the lifetime bound.

2. According to Claim A.19, every node can only initiate one rejoin operation during its lifetime that will be
accepted by sufficiently many honest nodes in its region, anda rejoin operation is only successful if that node
stays in the system for at least(λ log N)/3 steps (up to some minor deviations).

3. There can be at mostǫN/ logN adversarial nodes in the system at any time.

4. At mostǫN/ log2 N new adversarial nodes can join the system in a time step.

Hence, the maximum number of join and rejoin requests that can be issued by adversarial nodes withinλ′ log N time
steps is at most

(λ′ log N) ·

(

ǫN

log2 N
+

ǫN/ logN

(λ log N)/3
· 3

)

=
λ′ǫ(1 + 9/λ)N

log N
≤

ǫ′N

log N

if ǫ is sufficiently small compared toλ. Hence, at any time, there can be at mostǫ′N/ log N many IDs the adversarial
nodes can choose from. On expectation, at mostǫ′γ of these fall into an rangeR of size(γ log N)/N . According to
invariant 1, every legal member must have an chosen independently at random. Hence, it follows from the Chernoff
bounds that there can be at most(1/30)γ log N adversarial IDs inR with high probability and therefore at most
(1/30)γ log N adversarial nodes inR at any time. ⊓⊔

22

Claim A.21 As long as the system has been safe and the invariants hold, itholds for any honest peerp and any
constantδ > 0 that there is anL = λ log N for a sufficiently large constantλ so thatp needs at most(1 + δ)L
attempts to integrateL nodes into the system, with high probability.

Proof. Notice that in the ID generation stage an honest peer will only ask the nodes to reveal their random keys if the
new node forp to be integrated into the system has an available slot inQp. Since in each step a node is removed from
Qp, p needs to integrateL new nodes withinL steps. We want to bound the attempts necessary for integrating these
nodes. Since every attempt is started in an honest nodeu with a random ID and adversarial nodes can generate at most
ǫ′N/ logN IDs within L steps, the probability that for a region size of(γ log N)/N there is an adversarial node in the
region ofu is at most2ǫ′ · γ. If ǫ′ > 0 is sufficiently small, this can be reduced to someq ≤ δ/(6(1 + δ)). Suppose
now thatp uses(1 + δ)L attempts. Then the expected number of attempts that fail is at most(1 + δ)L · q ≤ δL/6,
and therefore the expected number of different honest nodesthat fail is at mostδL/6. The different honest nodes have
independent, random IDs, it follows from the Chernoff bounds that with high probability at mostδL/3 nodes will fail
if λ is sufficiently large. Now, each failure of an honest node maycause up to 3 failed attempts. Hence, at mostδL
attempts with fail, with high probability, which means thatp needs at most(1+δ)L attempts to integrateL new nodes,
with high probability. ⊓⊔

Claim A.22 For any regionR of size(γ log N)/N for a sufficiently large constantγ, the number of honest nodes in
R is at most(4/3)γ log N w.h.p.

Proof. The tricky aspect in the proof is that although the IDs of nodes are random, the adversarial nodes can create a
bias by determining which of the rejoin attempts by honest peers should succeed and which not. Fortunately, one can
show that this influence is relatively small.

From Claim A.21 we know that for every peerp currently havingLp nodes in the system at most(1 + δ)Lp

attempts for some small constantδ > 0 were necessary for this, w.h.p.. Hence, given that all of these attempts were
successful, there would be at most(1 + δ)N peers in the system instead ofN . Hence, the maximum expected number
of honest nodes in a regionR of size(γ log N)/N is at most(1 + δ)γ log N . If δ ≤ 1/6 andγ is sufficiently large,
then it follows from the Chernoff bounds that at most(4/3)γ log N honest nodes can be inR with high probability.⊓⊔

Claim A.23 For any regionR of size(γ log N)/N for a sufficiently large constantγ, the number of honest nodes in
R is at least(2/3)γ log N w.h.p.

Proof. From the proof of Claim A.21 we can conclude that for every peer p currently havingLp nodes in the system
at least(1−δ)Lp of these are based on attempts in some completely honest region, w.h.p. Hence, the expected number
of honest nodes in a regionR of size(γ log N)/N is at least(1 − δ)γ log N . If δ ≤ 1/6 andγ is sufficiently large,
then it follows from the Chernoff bounds that at least(2/3)γ log N honest nodes must be inR with high probability.

⊓⊔

Claim A.24 For any regionR of size(γ log N)/N for a sufficiently large constantγ, it holds: The number of honest
nodes inR with a lifetime of at leastL/2 (with L being an upper bound on the lifetime) is at least(1/3)γ log N , w.h.p.

Proof. First, suppose that none of the attempts of the honest peers to integrate new nodes has failed. Because every
peer has a node departure for every time step and the nodes have random IDs, it would follow in this case that for any
interval of sizeL/2 in the lifetime interval[0, ℓ] (whereℓ is a lower bound on the lifetime) there are on expectation at
least(1/2)γ log N honest nodes inR. However, the adversarial nodes can create a bias on the lifetimes of nodes that
we need to bound.

Again, from Claim A.21 we know that for every peerp currently havingLp nodes in the system at most(1+ δ)Lp

attempts for some small constantδ > 0 were necessary for this. Hence, the lifetime of a node resulting from an attempt
can deviate by at mostδL steps. Thus, for any interval of sizeL/2 there are on expectation only at least

L/2− 2δL

L
γ log N ≥ (1/2− 2δ)γ log N

honest nodes inR that will surely end up in the desired interval. This is stillfine for our lower bound ifδ < 1/12.
In this case, ifγ is a sufficiently large constant, then it follows from the Chernoff bounds that at least(1/3)γ log N
honest nodes with a lifetime in an interval of sizeL/2 are inR, with high probability, which completes the proof.⊓⊔

Finally, we can also prove Claim A.4 stated above.

23

Claim A.25 For any constant0 < ρ < 1 there is a constant0 < ǫ < 1 so that the number of honest nodes in the
system changes by a factor of at most(1± ρ) in L steps, whereL is the maximum over allLt during these steps.

Proof. Several factors can influenceN :

1. new peers may not yet have at leastℓ nodes in the system,

2. peers that want to leave may have less thanℓ nodes in the system

3. adversarial peers may select their number of nodes freely, as long as it does not exceed theǫ/ logN bound, and

4. honest peers that are mature (i.e. their join operation has completed) and that are not in the process of leaving
may have a variable number of nodes in the system, depending on their success.

For our consideration of these items, we will slightly abusethe notation by assuming thatlog N is a fixed value though
it is not. We can do this since it turns out that the deviation in N is actually small, and therefore insignificant when
consideringlog N .

We start with the first two items. Due to our bounds on the arrival and departure rate of peers and our time bounds
for performing a join or leave operation, we know that at any time there can be at most anL · ǫ/ log2 N = ǫ′/ logN
fraction of honest peers that are leaving or entering the system. Since each of these has between 0 andL nodes, the
maximum deviation they can cause isL · ǫ′/ logN = ǫ′′, whereǫ′′ > 0 can be an arbitrarily small constant depending
on ǫ.

Next we consider item 3. According to our model, there can be at most anǫ/ logN fraction of adversarial nodes
in the system at any time. Hence, the deviation they can contributed is bounded byǫ/ logN .

It remains to consider item 4. For this we need to show that with high probability, every mature honest peer will
have at least(1 − δ)ℓ nodes in the system at any time. Since the maximum number of nodes of an honest peer isL,
L− ℓ ≤ λ, andℓ ≥ λ′ log N for some constantλ′, it follows in this case that the maximum deviation caused byitem
4 is at most(δℓ + λ)/ℓ = δ + λ/(λ′ log N). This can be bounded by an arbitrarily small constantǫ′′′ > 0 depending
on ǫ andλ. So we need to show:

Claim A.26 For any constantδ > 0 there is a constantλ > 0 (used for the lifetime) so that for any mature honest
peerp and any time step,p will have at least(1− δ)ℓ nodes in the system at that time, with high probability.

Proof. Suppose that for some peerp and timet, p has less than(1 − δ)ℓt nodes in the system. Then we followp
backwards in time till it had at leastℓt0 nodes in the system, which it had because it successfully joined the system.
This means that in a time interval of sizeT = t − t0, p has only been successful for at most(1 + λ/ logn)T − δℓt

join attempts. However, inT stepsp will initiate 3T join attempts. SinceT ≥ δℓt, it follows that
Use backwards argument in time, it follows from arguments similar to Claim A.22 that this is not possible, with

high probability, if the constantλ is sufficiently large. ⊓⊔

Settingρ = ǫ′′ + ǫ′′′ + ǫ/ logN gives the bound in Claim A.4. ⊓⊔

Combining the claims above yields the safeness of the system.

24

Insert(z, i):
// We assume:
// s = ⌊ID(u)⌋1/2r , the starting point ofu’s region
// t = ⌊x⌋1/2r , the starting point ofz’s region

(1) u: send to allv ∈ Cu: (u, insert,ID(u), ru, (z, i))

(2) v [upon receiving(1) from a nodeu ∈ Cv(ru) or (2a) from≥ |Cv
Ri−1

(r)|/5 nodes inCv
Ri−1

(r), r ∈ {rv, rv + 1}]:
if rv − 1 ≤ ru ≤ rv + 1 then

if v 6∈ [t, t + 1/2ru) then
(2a) send to allw ∈ Cv

Ri+1
(rv): (v, insert,x, ru, (z, i))

else
// v stores(z, i) in its data baseDv

Dv ← Dv ∪ {(z, i)}

Lookup(z):
(1) u: send to allv ∈ Cu: (u, lookup,x, ru, z)

(2) v [upon receiving(1) from a nodeu ∈ Cv(ru) or (2a) from≥ |Cv
Ri−1

(r)|/5 nodes inCv
Ri−1

(r), r ∈ {rv, rv + 1}]:
if rv − 1 ≤ ru ≤ rv + 1 then

if v 6∈ [t, t + 1/2ru) then
(2a) send to allw ∈ Cv

Ri+1
(rv): (v, lookup,x, ru, z)

else
if (z, i) ∈ Dv then

(2b) send to allw ∈ [t, t + 1/2r): (v, reply,x, ru, (z, i))

(3) w [upon receiving(2b) or (3a) from at least|Cw
R′

i−1

(r)|/5 nodes inCw
R′

i−1

(r), r ∈ {rv, rv + 1}]:

if rv − 1 ≤ ru ≤ rv then
if w 6∈ [s, s + 1/2r) then

(3a) send to allw′ ∈ R′

i+1(rw): (w, reply,x, ru, (z, i))
(3b) elsesend tou: (w, reply,(z, i))

(4) u: [upon receiving(3b) from≥ |Cu|/5 nodes with the same(z, i)]:
return i

Figure 3:The Insert(z, i) andLookup(z) protocol initiated by nodeu. (Ri)i≥0 is the sequence of regions traversed
towards the region ofz, and(R′

i)i≥0 is the sequence of regions traversed back to the region ofID(u) according to
the Chord routing strategy. Notice that the view ofRi may depend on the receiving and sending nodes. If a nodev
receives sufficiently many messages for the same requestM from Ri w.r.t. a ranger ∈ {rv − 1, rv}, it will accept it
and forwardM to all nodes in its view ofRi+1.

25

// u: node that initiates Rejoin protocol
(1) u : send to allv ∈ Cu: (u, join)

wait for Lu/3 steps
// compute current ranger
r ← Region(u)
// L(r): lifetime depending on currentr
if |Qp| < L(r) and (no nodeu′ of p hasstateu′ = critical) then

// start of critical section, only executed by one node at a time,
// but Rejoin operations are scheduled by peer, so no problem
for j = 1 to L(r)− |Qp| do

reserve slot|Qp|+ j in Qp for jth join operation
(1a) send to allv ∈ Cu: (u, reveal,j)

// give honest nodes time to computexj ’s
wait for δ steps
release all reservations that have not entered (1) of stage 2

(2) v [upon receiving (1)]:
// iu ∈ {0, 1}: rejoin indicator foru, see also stage 3
// N : estimated byv via rv

if ID(v) ∈ Ru and iu = 0 and (remaining life ofv is≥ (1 + τ)(Lu/3 + δ log N)) then
iu = 1 // u cannot rejoin again
for each j ∈ {1, 2, 3}:

xv,j
R
← [0, 1) // generate random key

Ku,j = ∅ // initialize set of other keys
// Cv(ru): v’s view ofu’s region
// h(·): result of bit commitment scheme

(2a) send to allw ∈ Cv(ru): (v, commit,h(xv,j), (u, j))
wait for (1 + τ)(Lu/3 + δ) steps
if (6b) has not been executed yetthen abort protocol

// some node inRu (includingu) must be adversarial

(3) v [upon receiving (1a) with parameterj]:
wait until at least(1− τ)Lu/3 steps are over since (2) started
if |Ku,j | ≥ |Cv(ru)|/5 then

(3a) send to allw ∈ Cv(ru): (v, key,xv,j , (u, j))

(4) v [upon receiving(2a) from a nodew ∈ Cv(ru)]
if ((2a) has been executed)and ((2a) from w received≤ δ steps before receiving(1)) and

((3) has not been executed yet)then
store(w, h(xw,j)) in Ku,j

(5) v [upon receiving(2a) from≥ |Cv(ru)|/10 or (5a) from≥ |Cv(ru)|/10 nodes inCv(ru)]:
// adversarialu may try to contact only subset of honest nodes
if iu = 0 then

wait for δ steps //to giveu sufficient time to initiate (2)
iu = 1 // no more rejoin requests accepted fromu

(5a) send to allw ∈ Cv(ru): (v, no rejoin,u)

(6) v [upon receiving(3a) from a nodew ∈ Cv(ru) and having executed(3a)]:
if h(xw,j) matches(w, h(xw,j)) in Ku,j then

replace(w, h(xw,j)) by (w, xw,j)
if no (w′, h(xw′,j)) left in Ku,j then

(6a) xj ← xv,j ⊕ (
⊕

(w′ ,xw′,j)∈Ku,j
xw′,j) // ⊕ is the bit-wise XOR

(6b) send tou: (v, key,xj , j)

Figure 4: Stage 1 of the Rejoin protocol for nodeu. We assume that the clocks of the nodes deviate in speed
by at most a(1± τ) factor for some0 < τ << 1 and thatδ > 0 is a sufficiently large constant.

26

// r: range computed byu in stage 1
(1) u [upon receiving the same (6b) of stage 1 for somej from≥ |Cu|/5 nodes]:

if reservation not released forj then
insertu′ into reserved slot inQp

(1a) send to allv ∈ Cu(r): (u, authenticate,x, r, j)

(2) v [upon receiving(1a) and having sent(6b) in stage 1 withx]:
if at mostδ time since(6b) of stage 1then

s← ⌊ID(v)⌋1/2r+1 // starting point of source region
t← ⌊x⌋1/2r+1 // starting point of destination region

// Cv,1(r), Cv,2(r): node sets in two halves ofRu(r)
(2a) send to allw ∈ Cv,1(r) ∪ Cv,2(r): (v, auth,(s, t), x, u, r, j)

(3) w [upon receiving(2a) from > |Cw(ru)|/10 nodesv in Cw(ru) or (3a) from≥ |Cw
Ri−1

(r + 1)|/5 nodesv in
Cw

Ri−1
(r + 1) for somer ≤ rw + 1]:

if (2a)-messages receivedthen Aw ← Cw(r)
else

// Av: cluster in message ofv, C ∈ {Cw(ru), Cw
Ri−1

(r + 1)}

Aw ← {v
′ ∈

⋃

v
Av : |{v | v′ ∈ Av}| ≥ |C|/10}

if w 6∈ [t, t + 1/2r) then
(3a) send to allw′ ∈ Cw

Ri+1
(r + 1): (w, auth,(s, t), x, Aw, u, r, j)

else
// N : estimated byw via rw

if remaining lifetime ofw ≥ δ log N then
// w may allowp to join its region and remembers its current timeTw

Jw ← Jw ∪ {(x, u, r, j, Tw, 0)}
(3b) send to allw′ ∈ [t, t + 1/2r): (w, reply,(s, t), x, Cw(r + 1), u, r, j)

(4) w′ [upon receiving(3b) or (4a) from at least|Cw
R′

i−1

(r + 1)|/5 nodes inCw
R′

i−1

(r + 1) with r ≤ rw′ + 1]:

// Aw: cluster in message ofw

Aw′ ← {w′′ ∈
⋃

w
Aw : |{w | w′′ ∈ Aw}| ≥ 3|Cw′

R′

i−1

(r + 1)|/20}

if w′ 6∈ [s, s + 1/2r) then
(4a) send to allw′′ ∈ Cw′

R′

i+1

(r + 1): (w′, reply,(s, t), x, Aw′ , u, r, j)

else
(4b) send to allv ∈ Cw′ (ru): (w′, reply,(s, t), x,Aw′ , u, r, j)

(5) v [upon receiving(4b) from≥ |Cv,1(r)|/5 nodes inCv,1(r) and≥ |Cv,2(r)|/5 nodes inCv,2(r)]:
if ≤ δ log N time since execution of (2)then

Av,1 ← {w
′ ∈

⋃

w
Aw : |{w ∈ Cv,1(r) | w

′ ∈ Aw}| ≥ 3|Cv,1(r)|/20}
Av,2 ← {w

′ ∈
⋃

w
Aw : |{w ∈ Cv,2(r) | w

′ ∈ Aw}| ≥ 3|Cv,2(r)|/20}
(5a) send to allw ∈ Av,1 ∪ Av,2: (v, accept,(u, j))

(6) w [upon receiving(5a) from > |Aw|/10 nodes inAw]:
T̄ ← median of arrival times of messages
if (x, u, r, j, Tw, 0) ∈ Jw and Tw − T̄ < δ log N then // Tw: current time ofw

change entry to(x, u, r, j, Tw, 1)
(6a) send to allv ∈ Aw: (w, accept,(u, j))

(7) v [upon receiving(6a) from≥ 3|Av,1|/20 nodes inAv,1 and≥ 3|Av,2|/20 nodes inAv,2

and having sent(5a)]:
(7a) send tou: (v, join, x, Av,1, Av,2, j)

(8) u [upon receiving(7a) from≥ 3|Cu|/20 nodes inv ∈ Cu with the samex]:
Au,1 ← {w ∈

⋃

v
Av,1 : |{v | w ∈ Av,1}| ≥ |Cu|/10}

Au,2 ← {w ∈
⋃

v
Av,2 : |{v | w ∈ Av,2}| ≥ |Cu|/10}

Figure 5: Stage 2 of the Rejoin protocol. In this authentication stage, (Ri)i≥0 represents the sequence of regions
traversed towards the region ofx, and (R′

i)i≥0 is the sequence of regions traversed back to the region ofID(v)
according to the Chord routing strategy. Notice that the view of Ri may depend on the receiving and sending nodes.

27

(1) u: for each i ∈ {1, 2}:
send to allv ∈ Au,i: (u, integrate,u′, x, r, j)
// u′: new node to joinAu

(2) v [upon receiving(1)]:
// Tv: current time ofv
// Sv: set of data about all nodes in the view ofv, contains tuples(w, xw , rw, Tw, gw, iw)
// (Tw: step whenw joined,gw ≥ 0: generation,iw ∈ {0, 1}: rejoin indicator forw)
// u authorized and authorization not too old?
if (x, u, r, j, Tu, 1) ∈ Jv and Tv − Tu < δ log N and rv − 1 ≤ r ≤ rv + 1 then

Sv ← Sv ∪ {(u′, x, r, Tv, 0, 0)}
//Rv(r + 1): set of all pointer regions ofv relevant foru′

(2a) send to allw ∈
⋃

R∈Rv(r+1) Cv
R: (v, new node,u′, x, r, j)

(2b) send tou′: (v, welcome,(Cv
R)R∈Rv(r+1))

(3) u′ [upon receiving(2b) from≥ 3|Au,1|/20 nodes inAu,1 and≥ 3|Au,2|/20 nodes inAu,2]:
Su′ = ∅
for eachR ∈ Ru′ :

Cu′

R,1 ← {v ∈
⋃

w Cw
R : |{w ∈ Au,1 | v ∈ Cw

R}| ≥ |Au,1|/10}

Cu′

R,2 ← {v ∈
⋃

w Cw
R : |{w ∈ Au,2 | v ∈ Cw

R}| ≥ |Au,2|/10}

Cu′

R ← Cu′

R,1 ∪Cu′

R,2

for eachw ∈ Cu′

R :
Su′ = Su′ ∪ {(w, ?, ?, ?, ?, 0)}

// wait until properly integrated into all honest nodes inRu′ by (2a) messages
wait for δ steps

(3a) send to allv ∈
⋃

R∈Ru′
Cu′

R : (u′, integrate,x, r, j)
ru′ ← r andLu′ ← ℓ · r
wait for δ steps
remove all entries inSu′ that still have a “?” in them
// u′ is now mature

(4) v [upon receiving(2a) from≥ 3|Cv
Ru′

(r + 1)|/20 nodesw ∈ Cv
Ru′

(r + 1) with the same(u′, x, r, j)

for somer ≤ rv + 1]:
T̄ ← median of arrival time of messages
if Tv − T̄ ≤ δ then

Sv ← Sv ∪ {(u′, x, r, Tv, 1, 0)}

(5) v [upon receiving(3a)]:
// tvw = Tv − Tw: w’s age fromv’s view

(5a) send tou′: (v, welcome,(w, xw , rw, tvw, gw, ivw)w∈Cv(r))

(6) u′ [upon receiving(5a) from somev ∈ R ∈ Ru′ and(5a) from≥ |Cu′

R |/5 nodesw ∈ R with the
same(v, xv, rv) andgv ≤ g for the minimum safe generationg]:
// g = tu

′

v /(Lu′/3) is safe because≥ |Cu′

R |/5 mature honest nodes for this
tu

′

v = medianw{twv }
Su′ ← Su′ ∪ {(v, xv, rv, Tu′ − tu

′

v , g + 1, iv)}

(7) u′ [upon receiving(5a) from≥ |Cu′

R |/10 nodesw ∈ R with iwu = 1]:
iu = 1

Figure 6:Stage 3 of the Rejoin protocol for new nodeu′. Au is the new cluster foru′, i.e. the clusteru computed in
stage 2. Again,δ is a sufficiently large constant.

28

