Group Spreading: A Protocol for
Provably Secure Distributed Name Service

Baruch Awerbuch Christian Scheideler
Department of Computer Science Department of Computer Science
Johns Hopkins University Johns Hopkins University
3400 N. Charles Street 3400 N. Charles Street
Baltimore, MD 21218, USA Baltimore, MD 21218, USA
baruch@cs.jhu.edu scheideler@cs.jhu.edu
Abstract

In order to enable communication between a dynamic cotleatif peers with given ID’s, such
as “machine.cs.school.edu”, over the Internet, a dideidhmame service must be implemented on top
of this collection of peers that translates given names liRtaddresses, by implementing a dynamic
distributed database for concurrent IP lookups.

This paper shows that this very fundamental task can be mmaiéed in a completely decentral-
ized way in the presence of arbitrary massive Byzantineldtavhile expending only poly-logarithmic
overhead for retrieval, protection, and maintenance. Tmmplish this, this paper introduces a new
methodology that essentially maintains a random distidbudf all (honest and Byzantine) peers in an
overlay network for any sequence of arrivals and departf@®des up to a certain rate, under a rea-
sonable assumption that Byzantine peers are a significamtrity. Keeping nodes randomly distributed
allows the system to form reliable quorums for join, leavel &ookup operations so that for a polyno-
mial number of stepsany of these operations can be executed reliablyahy honest peer, with high
probability.

This demonstrates that scalable peer-to-peer systemsoadenited to music-swapping and can
potentially perform important applications that requigorous security guarantees.

1 Introduction

1.1 The problem and the results

In order to enable communication between a dynamic cotleabf peers with given ID’s, such as “ma-
chine.cs.school.edu”, over the Internet, a distributatienaervice must be implemented on top of this col-
lection of peers that translates given names into IP adelseby implementing the following operations:

e p.Join(g,ID): peerp in the system receives a request to join the system from agpeith identity ID.
e p.Leave(): peerp leaves the system.
e p.Lookup(ID): peerp wants to obtain the IP address of the pgér the system withD(q) = ID.

These operations must be implemented so that they can beongurrentlyandreliably in an asyn-
chronousenvironment in spite of massive insider attacks, i.e. eahjitByzantine behavior by a large num-
ber of peers that arpart of the service (for a detailed model see Section 2.1). Ptioge@gainst insider
attacks seems a formidable problem, but we can show in aotigoray:

Theorem 1.1 For anyc > 0 and any sequence of operations lasting for at ni@&t©) steps during which

at most aO(1/log N) fraction of the nodes in the system can be adversarial at ang,tthe join/leave
rate of honest nodes 3(1/log N) (i.e. up toO(N/ log N) honest nodes may join or leave in a time unit),
and the join/leave rate of adversarial nodes($1/log® N), all operations initiated by honest peers are
correctly executed with probability at least- O(1/n¢), and with communication cost 6f(log®") N) bits

per operation, where: is the minimum number anly is the current number of honest nodes in the system
during the attack.

In other words, for a polynomial number of time steps, eveargd fraction of Byzantine peers will
haveno effect on the operation of honest nodes, with high probigb#ind this can be achieved with only a
polylogarithmicoverhead. Previous solutions to this problem requiiregiar overhead (see below).

In the rest of this paper, we proceed with first explaining slgmificance and basic approach of our
result and then proceed with presenting our protocols anofgr Since these are very complex, we restrict
ourselves to giving only intuitions in the main part of thimmuscript. The details can be found in the
appendix. Though the appendix is quite lengthy, we felt wekthaadd it to give sufficient evidence that our
techniques indeed work.

1.2 Significance of the problem

Scalability or efficiency of a distributed system is meadiireits ability to retrieve the data and to maintain
internal data structures with small overhead; a rule of thfon a scalable system is that the above overhead
must grow at most poly-logarithmically in its size. Secput reliability of a distributed system is measured
in its ability to withstand massive and malicious attack]uding Byzantine behavior of its components.

Achieving security and scalability at the same time is a desadld open problem in the field of dis-
tributed computing. In unreliable centralized systemshsas communication channels and storage systems,
the trade-off between efficiency and reliability has beetemsively studied in the context of coding theory,
namely is expressed by the trade-off between the numberaserorrected by the code and the number of
error-correcting bits. It is only natural to pose such a ameéntal question in the distributed context.

The additional formidable complication in distributed t&yss is the need to maintain virtual commu-
nication channels between the peers in the system. Semgedkarchitectures are not an option here since
they are not scalable. Hence, mechanisms are needed tvatladl peers to maintain an overlay network in
a distributed way and without a server, also knowipasr-to-peer overlay networks

It is intuitively obvious that an overlay network suppogiany service needs to support joining, leaving
and routing between the peers, and that without a securecatabte implementation of such a network, the
field of scalable and reliable distributed services doesewlty exist.

1.3 Existing work

Classical distributed computinmethods [12, 3, 13, 17] use Byzantine agreement and tweept@smit
approaches with inherentlinear redundancy and overhead to maintain a safe state.

Theproactive securityapproach in [16, 11, 10, 2, 7] uses different coding techesdo protect unreliable
data inreliable networks; applying these methods in our context still \ddidear overhead.

Fixed topology networkss in [6], will work only for non-Byzantine peers, and onlyoat fail-stop
faults; the construction cannot handle malicious behasi@ven a few malicious players.

The reliability of hash-based peer-to-peer overlafg DHT's) such as Chord [19], Pastry [18], and
Tapestry [20] hinges on the assumption that the IDs givehdmbdes are pseudo-random, so that they can
cope with a constant fraction of the nodes failing concutyewith only logarithmic overhead. While this
may seem to perfectly defeat massive attacks under thedemaress assumptions, DHT’s cannot handle
even small-scale adaptive adversarial attacks invoiiegselection of adversarial IP addresses (to get close
to desired IDs). One such “sybil” attack is described in [Remarkably, the attackers do not need to do
anything complex such as inverting the hash function; all ihneeded is to get hold of a handful (actually,
logarithmic) number of IP addresses so that IDs can be adaimat allow to disconnect some target from
the rest of the system. This can be accomplished by a lineabeu(i.e.O(NV)) of offline trial/errors. For
similar attacks, see [4].

Random or unpredictable placement of dataa logarithmic size subset of locations (as in Freenet)
ensures that data is difficult to attack, but also makelifficult to retrieve Specifically, data retrieval of
randomly placed data requires a linear number of querieghat definitely unscalable.

2 Basic approach and results

A common technique to ensure reliability, which is also thsib of our approach, is to organize the peers
in completely interconnecteguorums However, instead of just forming a single quorum, we witnfoan
overlay network of quorums of logarithmic size to ensure thvén, Leave, or Lookup operations by honest
peers cannot only be executed reliably but also efficiefithking this into account, our basic goal can be
phrased in the following way:

Design overlay network operations so that émyarrival-departure sequence of honest and adversarial
nodes over time steps in which the adversarial nodes never represerg than ane fraction of the honest
nodes in the overlay network and the number of join/leaveests of honest nodes does not exceed some
specified rate, any overlay network operation initiated hyhanest node will be executed successfully, with
high probability.

We call an overlay networ&urvivableif it can ensure this property for anty= poly(n), wheren is the
smallest number of nodes in the overlay network during tves@rial attack. Our goal will be to formulate
basic conditions and protocols for the network operationulfill the survivability condition. Notice that
we have to add the term “with high probability” above, be@aspriori, it is not possible to distinguish
between honest and adversarial nodes. So no absolute tpera@an be given, unless we put all nodes into
a single quorum, which is highly inefficient and therefore @ugquestion. Furthermore, for bounded degree
networks a rate 0©(1/log V) departures or arrivals seems to be optimal because for eechl &f a

peerQ(log N) work appears to be necessary for a survivable system. Hanagrival rate ofD(1/log N)
would translate into a work rate 61(1) for the system, which is at the limit of what it can sustain.

2.1 Basic assumptions

In order to perform a rigorous security analysis, we need afdgasic assumptions. These assumptions are
general enough that we expect them to be of interest beydmgdper and to aid in the design and analysis
of secure overlay networks in the future.

e-bounded adversaries

We consider a peer to mversarialif it belongs to an adversary or it is simply unreliable. Qthise, a
peer is callechonest We assume that honest peers cannot be taken over by thesagvelowever, the
adversary has a collection of own peers that it can integmétehe network. We allow arbitrary adversaries
with bounded resources, i.e. an adversary can own at masftrantion of the peers in the system at any
time. Such adversaries are calletbounded A priori, adversarial nodes cannot be distinguished from
honest nodes.

These assumptions need some justification. Supposarigibnest peer can in principle be taken over
by the adversary. Then it would be impossible to form regatpiorums of small size, because as soon as
the adversary is part of a quorum, and therefore knows alispeea quorum, it could simply turn all of
them into adversarial peers, thereby turning this quorumam adversarial quorum. If quorums cannot be
secured, we do not see any way of establishing a reliabldagveetwork service. However, weaker models
for the ability of an adversary to take over honest peersmagjinable. For example, only sorfieed subset
of the honest peers may be vulnerable to an adversary (fon@ra because they have not installed the
latest security patch). In this case, we simply view thesrpas adversarial peers, so our results still hold
in this case.

The other major assumption we make is that adversarieb@aneded Imagine that an adversary can
have an unbounded number of peers in the overlay networka fhey could easily dominate every quorum,
and therefore the system cannot be secured. Hence, it isnadale to assume that an adversary can only
have a bounded number of peers in the system at any time. Howbeidentitiesof these peers may be
chosen out of somenboundedset of identities that the adversary has at its disposahatdttdoes not help
honest peers to remember which peers behaved adversdhal past.

Trusted gateway peers

We assume that a limited number of so-calideway peers available that are searchable over the Internet
and always part of the overlay network. Gateway peers agenlikmal peers, with the only difference that
they are the only ones allowed to integrate new peers. Fqurotwcols to work we assume that the gateway
peers are honest. However, the protocols would even wotkghteway peers are adversarial as long as no
honest peer leaves and the adversarial nodes only repassefraction of the system.

Also here, some explanations are in order. We came up witdwgat peers because somehow new peers
have to be able to find out about peers already in the systesurdstions like “peers contact random peers
in the system” are not realistic because how should a peettfisdandom peer? Hence, a server or service
that is accessible via the Internet must be available. Thgasolution here would be to have a trusted
server that knows a collection of peers in the system. Thdhglserver may be trusted, the peers in the
system it knows about mayot be trusted (a priori, honest peers cannot be distinguistued ddversarial
peers). But if a new honest peer is referred to an advergageal there is certainly no way of guaranteeing
its correct integration into the overlay network. Hence, darusted server to be effective in integrating

new peers, the server should part of the peer-to-peer system (and not just refer to peershusecin
this case guarantees for the correct execution of join gguwE@n be given by us. Now, we may not want to
assume powerful servers because otherwise we may not hapeampeer-to-peer system any more (because
someone has to pay the bill). Hence, the server or servergitleaccess to the peer-to-peer network may
just be as powerful as the other peers, with the only diffezethat they are trusted. These represent our
so-called gateway peers.

Now, one may say that if the gateway peers are honest, whyehttdm control the overlay network
of the peers so that it is secure. There are two good reasamst {et them do this. First, if the overlay
network were controlled by gateway peers, it would not béakta (see the limited lifetime issues we will
address below) because we assume the gateway peers tentmely a negligible fraction of the peers
in the system. Second, the overlay network would have nocghahsurviving the situation that gateway
peers are not available (due to some DoS attack) or are eversadial. Our protocols would survive such a
situation as long as honest peers do not leave because pleeation doesotdepend on the gateway peers.
Gateway peers am@nly needed to make sure that new honest peers have a chancertihersgstem.

Honest peers are reliable

We use an asynchronous system model in which every honeshageoughly the same internal clock speed
(i.e. up to a small constant factor) but there is no globaétit any point in time, any message sent by an
honest peev to another honest peer will arrive atw within a unit of time. (Other message transmissions
may need any amount of time.)

Undoubtedly, computers do have roughly the same intermakcspeed today (otherwise, we could
not rely on them for scheduling appointments). Messageydddatween honest peers have to be bounded
because time is a very critical issue for dynamic overlaynogts. If no upper bound can be given for
message delays between honest nodes, i.e. we have a cayngdgtechronous system, we strongly believe
that it is impossible to make overlay networks secure (seéirtited lifetime issues below). As long as only
a small fraction of messages between honest nodes violatdetay bound, our protocols would still work
correctly, but for simplicity we assume that a delay bounul lsa guaranteed.

Honest peers have unbounded bandwidth

We assume that honest peers have unbounded bandwidthn ib@nast node can receive and send out an
unbounded number of messages in a unit of time.

Though this assumption appears to be very strong, it doéprotect against legal attacks (i.e. smart
attacks against the protocol) but only against brute-fole@ial-of-service attacks. Hence, it still remains a
challenging task to perform a security analysis. As longd&esarial nodes do not transmit unnecessary
packets (i.e. they adhere to the protocol), the number osages an honest node will have to deal with
in a time unit will normally be very low in our protocols (i.dogarithmic in the number of nodes in the
system) so that our protocols are practical despite themitell bandwidth assumption. We expect that
designing secure overlay networks for peers of boundedviadiid will be a very challenging task, which
is unfortunate since in reality this is the case. Never®lae do not view it as impossible, and therefore
our result in this paper may be seen as a first step in thistiineespecially becausao provably secure
design for overlay networks was known before, apart fromreaent work in f]).

Security assumptions

We assume that a certification authority is available todssertified names to peers that want to enter the
system. This prevents peers from taking over the identitiesther peers, which is important for any name

service to work correctly, but it doewt prevent adversarial peers from registering under addptbl®sen
names that are different from names of the honest peers. Aesh@eer only establishes connections to
peers with correctly certified names.

Finally, we need some assumptions about how messages aedpad/e assume that the source of a
message cannot be forged so that adversarial nodes cakeaivier the identity of honest nodes. Also, a
message sent between honest nodes cannot be deletedrext bitehe adversary. However, the adversary
may know about every message sent in the system. Furthermergssume the existence of a bit commit-
ment scheme (e.qg, [14, 9]) that allows nodes to commit totaicekey without revealing any part of it. This
is important for our ID generation strategy.

Notice that the source issue can actually be solved easihouti cryptography as long as adversaries
cannot hijack IP addresses or listen to communication Eiwmnest nodes: if a message arrives from
IP addresst, then the receivey asksx for a confirmation that contains a secret (for example, aoand
key). Only if y receives an acknowledgement frantontaining the secret;, will accept the message. The
assumption that messages cannot be inspected, deletdtered dy the adversary is realistic in our case
because we assume the nodes of our overlay network to si &dipe of the Internet, and therefore peers
cannot inspect communication between other peers.

2.2 The Chord overlay network

Next, we review the construction of the Chord overlay netwd9], which is used in our impossibility
results as well as in our secure overlay network constmctio

Suppose that we have a system currently consisting of H &ét: nodes, and further suppose we have
a (pseudo-)random hash functibn: V' — [0, 1) that maps nodes to real values in the intefgal). The
basic structure of Chord is a doubly-linked cycle, the sbkedaChord ring, in which all nodes are ordered
according to their hash values. In addition to this, eveilgenohas edges to nodes(v), calledfingers with
pi(v) = argmin{w € V | h(w) > h(v) + 1/2'} for everyi > 1.

One can show that Chord has a diametaD@bg n) and an expansion 6f(1/ log n) w.h.p. [1], making
it robust in distributed environments under random faultisrot against adversarial behavior.

2.3 Main results

Next we summarize our main results in this paper.

Lower bounds

We show that survivability cannot be maintained by prediegtaoverlay networks, i.e. networks in which
for some fixed arrival and departure sequence the topololjamiays be the same.

Theorem 2.1 No predictable overlay network can be survivable.

We also show that none of the suggested hash-based peeeiteystems can be survivable (in their
basic form), even if the hash function for the node identificanumbers is chosen at random (instead of
using some fixed SHA-1 function), or all nodes (including #uversarial nodes) use completely random
identification numbers. The basic problem is that a node céengially be in the system for an unlimited
amount of time.

As we will see, any overlay network that wants to be survigdids to act in a proactive fashion in order
to protect itself, as e.g., in [16, 11, 10, 2, 7]. In particuiamust be possible to exclude nodes from the
overlay network, even against their will. If this were notpible, then any node could potentially stay in
the overlay network for an unlimited amount of time, caugiegnendous security problems (as we will see

5

later). We accomplish this in asbliviousway by setting a maximum lifetime after which every node loas t
leave the system.

Upper bounds

We then present a strategy, call@doup Spreadinghat is survivable against adversarial peers. It should
be applicable to all DHT-based peer-to-peer overlay nétsiguggested in the literature, but in order to
simplify the presentation, we just concentrate on the Chetdiork given above.

The core idea of the Group Spreading technigue is to use desimgrhanism that enforces the selection
of arandom ID for every successful ID request of a peer thatsv@ join. This simple mechanism may fail
if adversarial peers are involved in it. To prevent them ficausing problems for honest peers, every honest
peer will keep a group 08 (log N) nodes in the system so that with high probability sufficigmtiany
nodes of a peer can rejoin the system as the lifetime of itmotiks expires. Keeping nodes in clusters of
size©(log N) and enforcing a limited lifetime then makes sure that for lgamial number of steps every
cluster will have a majority of honest nodes, with high pioibiy. There are many tough details that have
to be solved to handle this strategy in a dynamic overlay agtwvith Byzantine nodes. For example, the
group spreading protocol has to rwhile nodes join and leave the system. Also, Byzantine nodes make i
extremely difficult for nodes to agree on the membership diiater, especially when clusters have to be
reorganized due to a changing number of nodes in the systemertiieless, we can show:

Theorem 2.2 GROUP SPREADING survives up to @&(1/log N) fraction of malicious nodes with a com-
munication cost ofog®") N bits per operation if the join/leave rate of honest node8($/log N) and the
join rate of adversarial nodes i©(1/1og? N).

2.4 Probabilistic tools

We will frequently use the Chernoff bounds.

Lemma 2.3 (Chernoff [8]) Consider any set of independent random variabigs. .., X,, € {0,1}. Let
X =>",X;and lety = E[X]. Then it holds for alb € [0, 1] that

PriX <(1-96)u] < e n/2

and for all 5 > 0 that o
PI‘[X > (1 4 5)#] < e—mln[é,é /3

3 Non-survivable overlay networks

In this section we prove that predictable overlay networks laash-based overlay networks (i.e. networks
in which the ID of a node is determined by a hash function) atesarvivable. Furthermore, we show that

being able to enforce a limited lifetime is crucial for thensuability of systems based on a virtual space,

like hash-based systems.

3.1 Predictable overlay networks

An overlay network ipredictableif for any fixed arrival and departure sequence the topolodlyalways
be the same. Notice that all hash-based overlay networksaxiked hash function are predictable.

We start this section by demonstrating thatpredictable overlay network can be survivable under our
definition of survivability.

Theorem 3.1 Consider an arbitrary predictable overlay network of madimdegreel that allowsN peers
to join or leave inT’ time units. Then there is a join/leave sequence&dthonest nodes so that arbounded
adversary withe > d/N can surround an honest peer @(7") steps.

Proof. The proof is relatively easy. Firs2/N peers join to create a network of si2é&/, and afterwards

the first vV peers that joined the network leave. This tak¥g") time steps. Consider now any peer in the
resulting network, say, and letws, ..., wy be its neighbors. Then, consider the join/leave sequence of
honest peers that is like the sequence above but without. . , wgy. Assign the join events fow, ..., wy

to the adversary. Then we arrive at the situation thistcompletely surrounded by adversarial nodes. This
sequencalwaysworks because the overlay network is predictable. Heneghiorem follows. O

3.2 Hash-based overlay networks

Hash-based overlay networks are vulnerable to adversattetks even if the hash function is chosen at
random, and it is a one-way hash function. The mere fact thdées do not change their location over
time turns them into “sitting ducks”. To illustrate how ateak on hash-based approaches would look like,
consider the Chord system.

Take any peer. in Chord with hash value € [0, 1) (see figure 1). By generating a sébf adversarial
peers with hash values— ¢, = + ¢, andz + 1/2° + ¢ for all relevanti wheree is sufficiently smallu will
have no peer pointing to it any more, and all pegiis pointing to belong tod. Hence, if the peers il
leave,u will be disconnected from the system. Notice that even divelg modest adversary can come up
with such a set4, even if the hash function is not invertible. It just has toégnough values (which is easily
possible with SHA-1; the fact that the hash values may depen® addresses is not a limitation, because
with IPv6 there will be plenty of them available — even fovatte users). Also, notice that an adversary just
has to know the value to start an attack on. Once an adversary has managed to carve out a peer from the
system, it may park it in a bogus peer-to-peer system so liegbéer does not notice being removed from
the original system. In this way, the adversary can remowaege Inumber of peers with a relatively modest
amount of effort.

u u
(@) (b) (©)
Figure 1: Removing a peer from the Chord system.
As we see next, also truly random IDs do not help as long as de nan be excluded from the system

against its will, even if there is a secure mechanism for reiig such an ID oreverynode that joins the
system.

3.3 Problems with unlimited lifetime

All hash-based systems are based on the concept of a vipaed sThe basic idea underlying these systems
is that nodes are given virtual locations in some space,le@ndverlay network is constructed based on these
virtual locations. That is, depending on its virtual looati a node aims to maintain connections to other

virtual locations and does this by establishing pointerthéonodes closest to these locations. See, e.g. [15]
for a general framework behind this approach.

Let us consider any hash-based overlay network in whickeausbf using a hash function, each node
gets a truly random ID. Suppose that for some nodee wish to attack, there is still some regiéhof
volumee left so that if a node obtains an ID iR, then it will receive an edge to or from In order to
get a node into regio®, a single adversarial node, on expectation, only ndg¢dsattempts. While the
adversary tries to occupy other regions necessary to exelutlholds onto those of its nodes that already
successfully made it into a relevant region.

Since for any fixed area of volumig'n?, the probability that at least one out@honest nodes chooses
an ID in this area is at modt/n, an adversary will manage to take over a regi®melevant forv in at
mostn? /M rounds, with high probability, wher&/ is the number of adversarial nodes. Hence, the overlay
network will not survive any polynomial number of steps, amtherefore not survivable according to our
definition.

The sampling approach above can also be used to gain theityajanodes in any region, thus causing
the approach of just assigning random IDs to nodes and dlugtinem by grouping close-by nodes together
to fail. Hence, unlimited lifetime can result in a fast deggion of randomness.

4 OQutline of the Group Spreading Protocol

In this section, we give an outline of the Group Spreadinddeal. The details can be found in the appendix.
In the following, letNV be the current number of honest nodes in the systemlarm the current number
of adversarial nodes in the system.

4.1 Basic approach

We start with some basic definitions. pgeeris a user or machine that wants to participate in the peer-to-
peer system, and modeis a logical unit in the system. A peer may have multiple nadethe system.
However, honest peers will limit their nodes@log V). A node is callechonestf it belongs to an honest
peer. We assume that honest nodes execute our protocolsithfalfand reliable way. Adversarial nodes
may doanything (Recall that we only have to worry about legal attacks beednonest nodes have infinite
bandwidth.)

Organize nodes in regions

Certainly, a system in which the correct execution of an layenetwork operation depends on the correct
behavior of individual nodes is not survivable. Hence, quas of nodes have to be formed to check each
other’s behavior and therefore ensure the reliable exatuati operations. However, forming separate quo-
rums of nodes (i.e. grouping the nodes into disjoint clg3ter a distributed system is not an easy task.
The problem here is that the number of clusters cannot befixepltif one wants the system to be scalable.
Hence, once in a while clusters have to be created, delghét, & merged. However, since adversarial

nodes can create different views of the current situationomest nodes, it is hard to find a consensus on
a cluster operation between the honest nodes, creatingdistencies. To avoid these problems, we do
not form clusters of nodes but instead allow each honest twodecide by itself whichiegionsof nodes it

considers to be safe. In our case, the ID space of the nodelsentthe interval0, 1), and a region may be
any subinterval of length /2" for somer € IN starting at an integer multiple df/2". Overlay network
operations initiated by a node will be executed on a regivalleTo make sure that these can be executed
reliably and efficiently, we require honest nodes to mamtagions of sizéd((log N)/N). Thehome re-
gion of a nodew (i.e. the region containingD(v)) is denoted byR,, and the set of nodes thatknows in

R, is denoted by,,.

Use a limited lifetime

As we saw above, an unlimited lifetime can result in a fastraégtion of randomness. Hence, we will
only allow nodes to stay in the system fOrlog V) steps. This is done by maintaining some parameter
L = ©(log N) at each node and using the rule that every connection to aindtie system is dropped
once that node reaches an agd.ofThe value ofL will differ slightly between the honest nodes but we will
show that this difference can be kept very small.

Use multiple nodes for each peer

Since we allow adversarial nodes to be part of the systeme szinthe regions used for generating new
random IDs will contain adversarial nodes. In such a case]®generation protocol may not succeed.

Thus, to make sure that sufficiently many ID generation gitsrwill succeed to rejoin the network, each

honest peer will keeP (log N) nodes at random places in the network. As we will see, theraduewill

not be able (with high probability) to place nodes in eacthebe regions because our ID generation protocol
will make sure that whenever a new ID is generated succégstus random.

Spread lifetimes of honest nodes

Every peemp will aim to maintain a set of nodes so that for each of the debitne units there is exactly one
node ofp that will depart in that unit. Together with the fact that thedes ofp have random IDs, we will
see that this results in the remaining lifetimes of the hbnedes being well-spread in every region, with
high probability. This allows us to pursue the following aggch.

Participation in overlay network operations is not transferable

For security reasons, we do not allow a node to take over tlieeofcanother node in an overlay network
operation. Hence, if the lifetime of a node expires befooeihpletes an overlay network operation, its state
will be lost. To make sure that this does not endanger theecbexecution of overlay network operations,
the following rule is used:

Whenever a new overlay network operation is started, andtoraev (that has completed its inte-
gration) first checks whether its remaining lifetime is suéitly large to complete it (given that the node
initiating the operation is honest). If so, it participatest, and otherwise not.

With this rule, no honest node will depart in the middle of aertay network operation, which could
potentially create problems for this operation. Sinceifletiines of honest nodes are sufficiently well spread
in every region, it holds that whenever a new overlay netwap&ration is started, there will always be a
sufficient number of honest nodes in a region that can pgatieiin it, with high probability, so that the
operation can be executed correctly.

4.2 Protocols

Next we summarize the protocols we will use to achieve th&lzgproach above. The following protocols
have to be implemented for the user-level operations:

¢ Join protocol: This lets a new peer join the system.
e Leave protocot This lets a peer leave the system.
e Lookup protocol: This performs the lookup of a name in the system.

Also protocols for internal operations will be needed:

Insert protocol: This inserts a name entry into the system.

Rejoin protocol: This lets nodes of a peer rejoin the system.

Region protocol This updates the home region of a node.

Lifetime protocol: This removes a connection whenever the lifetime of a naglkpires. Also, it
controls the departure of the own nodes.

Next we discuss the basics of each of the protocols.

4.3 The Region protocol

Recall that aegionin [0, 1) is an interval of length /2" for somer € IN starting at an integer multiple of
1/2".

Region decompoaosition

In Chord, every node maintains pointers to nodes closestidgv)+1/2¢ for all i. We need to transform this
pointer structure into a more secure version. Towards ibag we proceed as follows. In our construction,
v maintains some integet, < IN, calledrangeof v. The value of-, may be different among the nodes, but
as we shall see, the differences are small.

Givenr, andID(v), we definev's origin aso, = [ID(v)] /9~ + 1/2"**1, where|-|, rounds to the
nearest integer multiple affrom below.v’s region decompositionf [0, 1) as the partition of0, 1) into sub-
intervals[j /2", (j + 1)/2™] with j € IN. Now, instead of pointing to node with ID(w) being the closest
match tolD(v) + 1/2¢, we define the regiom%:i as the unigue sub-interval froms region decomposition
that contains, 4+ 1/2' and the regior?, ; as the unique sub-interval that contains— 1/2°. The set of all
these regions, together with the regiBQo (or simply R,) containinglD(v), is calledR,. v aims to keep
pointers to every node with ID(w) € R,. See Figure 2 for an illustration.

The set of all nodes in a regidR € R, which v has pointers to is called itsewof R and denoted by
C%. If Risv’'s home region, i.e. the region coveringtself, we will also denot&’;;, by C,,.

Range computation

R, will remain the same throughouts lifetime. Howeverp will inspect its home region to find out whether
future nodes inserted hyneed a range different from For thisv needs the Region protocol. Lét,(r)
denote that unique region of si2¢2" covering nodev, and lety > 0 be a fixed parameter (which is the
same for all nodes in the system). Then the protocol simplitksvas follows:

10

() (b)

Figure 2. The left picture shows a nodewith three fingers in the original Chord network, and the tigh
picture shows the region decompositionuafogether with the regions to whiehhas pointers.

Selectr so that|C,(r)| is as close as possible 4¢r — log).

The next lemma bounds the deviation of the range values athengpdes in an ideal situation.

Lemma 4.1 If v (as specified above) is a sufficiently large constant, theteuthe assumption that each
nodev has a randoniD(v) and that each node knows the location of every other node in its regien
the ranges of the nodes are by at most 1 apart with high prdibpabi

Proof. Let N be the current number of nodes in the system. Suppose fordheent that we use the rule
that ideally~r (instead ofy(r — log)) nodes should be in a region of siz£2" (instead ofl /2"). Consider
some regiom? of sizer /2" in which the number of nodes {8 + ¢)V - r/2". Then it holds that

(14 €N -r (1+¢N
yr o= o & r=log——.
This implies that there are
(I14+¢N-r (1+¢)N
= vlog ———
27’
nodes in a region of size
L B ~ ‘ log((l-i::)N)
2r 14e N

For any constand < § < 1, one can choose a constanso that according to the Chernoff bounds, for
outside of[—d, 0] such a region will not exist with high probability. Hence thvhigh probability,

re s S P

which is an interval of size at most 1dfis sufficiently small. Substituting nowby log(2" /r), we get our
original rule that we want to have(r — log r) honest nodes in a range of siz£", and also for this;, the
deviation among the nodes is at most 1 with high probabilityis completes the proof. O

11

Notice that Lemma 4.1 still holds if the honest nodes havierift views but every honest node knows
(almost) every other honest node and the fraction of adsuatsaodes is sufficiently small in a region,
because then the views of the honest nodes only differ by # sorestant factor. Keeping the join/leave
rate of honest nodes limited tg log N for some sufficiently smal, a deviation by an additive 1 can even
be ensured ovek steps, wherd. is the maximum lifetime of a node. This simplifies the protodesign.
However, with slightly more complex protocols one can alderate larger deviations, thereby allowing
higher join/leave rates. More details are in the appendix.

4.4 The Lifetime protocol

The lifetime L,, of a nodev is determined at the point when it is integrated into theesysiusing the formula
L,=X-7,

for some constant that is the same for all nodes, is v's range when joins the system. From our remarks
in the previous subsection we can conclude thatvill deviate by at most among the honest nodes,,
represents the maximum possible lifetime)ofr he peep owningv will use the following rule for assigning
a lifetime tov bounded by,:

p maintains a queu@,, containing all of its current nodes. The node in slstill lives for i time steps
before it has to leave the system’s aim will be to continuously generate new nodes with randDs,
but only if it can find an empty slatin @), for some prospective nodewith maximum lifetimeL, where
1 < L,. If so, p will go ahead with a random ID generation foand, if successful, will assignto sloti.
Thenp will integratew into the system.

The ID generation and integration will be done with the hdlthe Rejoin protocol.p will start suffi-
ciently many rejoin operations so that the lifetime of a nesdew will always be sufficiently close td.,,
i.e. @, will always contain sufficiently many nodes.

The lifetime rule and Lemma 4.1 make sure thatill have ©(log V) nodes in the system at any time
and the remaining lifetimes of the honest nodes are unifodistributed. Both are important prerequisites
for the overlay network operations to be executed correanly efficiently. In each time unip takes the
node in front of the queue and executes the Leave operation fo

Besides its own lifetime, an honest nodevill also keep track of the lifetime of its connections, ifet
every link to some node, v will keep a time stamf’, which approximates the time point whanjoined
the system. Once the current time stegxceedsl, + (1 + 7)L,,, v will cut its connection taw, where
(14 7) is the maximum factor by which the clocks of two honest nodasate.

4.5 The Rejoin protocol

Besides queu€),, peerp also maintains a queus,. For every node thatp has newly integrated into the
systemp will check whethelS,| < L,,/3. If so, p will assignv to the lowest available slot ifi,. In each
time unit, p will remove the lowest slot front,, and initiates the Rejoin protocol in the nodg,stored in
that slot. Based on the available space&) u will execute (up to) three times in parallel the following
three stages, which represent the Rejoin protocol:

1. Random ID generation Nodewu contacts all nodes in its home regidd),. (Recall that the set of
these nodes is denoted by,.) Each honest node € C,, that has sulfficient lifetime left to complete
the Rejoin operation chooses a random valyes [0, 1) and send%(x,) to all nodes inC,,, whereh
is the result of a bit commitment scheme. This allant® commit to a value without revealing it
then waits forL,, /3 steps, and during these stepaccepts commitments from other nodes. Once this
is over, andu requests to reveal its key (because there is roonjp), v will send z,, to all nodes

12

in C,,. Oncew has received alt,,’s of the h(x,,)’s it has received earlier, it computes= @,, z.,
and sends: back tou. If u has received at leagf', |/5 times the same, « adds a new node with 1D
x and maximum lifetimeL(r) = ¢ - r to the slot reserved for that node,, wherer is thecurrent
range view ofu.

2. Authorization : Afterwards,u sends an authaorization request to all nodeg€'jrthat sentc to u. The
nodes will then send a message to the unique region oflgiZe owning z. Once the region has
replied with an acknowledgement containing its set of npdagC', the nodes irC,, forwardC to «
so thatp knows whom to contact in order to integrate a new nedeith ID(v') = x into the system.
(There may be discrepancies in the viewCgfbut we will address them in Section A.)

3. Integration: Finally, p will contactC to obtain information about the connections of the nodes in
so that it can establish all connections necessary/faiNotice that the authorization makes sure that
C knowsu' andu’ knowsC. Furthermore, the integration will ensure that the neighlmd C' know
u" andu’ knows the neighbors daf' so thatu’ can be fully integrated.)

Once a node completes the integration stage, it is callature An honest node will only partici-
pate in other overlay network operations once it is matufe.make sure that the rejoin rate is limited to
O(1/log N), each node (except for the gateway nodes) is allowed to exdice Rejoin protocol at most
once during its lifetime. Rejoin requests beyond that numabkénot be accepted by the other nodes. Notice
that each rejoin request nee@slog V) steps to be processed, requiring an adversarial node tanstag
system forQ2(log N) steps if it wants its request to succeed.

4.6 The Join protocol

Peers may not know anyone in the peer-to-peer system whgmtngt to join it. Hence, we assume that
a limited number of so-calledateway peersre available that are searchable over the Internet and/slwa
part of the system. Gateway peers are like normal peers,thdttonly difference that they can initiate a
potentially infinite number of rejoin operations.

Each new peep contacts one of these gateway peers,saythen executes the Rejoin operation at each
of its nodes to gep integrated into the system. (To make sure that this can nabbseed by adversarial
nodes, i.e. the arrival rate of adversarial nodes is boyretzh peep that wants to join may have to solve
a computational challenge or a Turing test before being tediby the honest nodes.)

4.7 The Leave protocol

The Leave protocol is fairly simple. Once a peedecides to leave, no new nodes will be inserted into the
network byp andp waits until the lifetime of all of its nodes currently in thetwork has expired.

4.8 The Insert protocol

To be able to explain the Insert protocol, we first describe twselect a path in our framework.

Consider an operatiolmsert(z) from nodev in the original Chord system for some keye [0, 1). Let
0, be the origin ofv as defined in Section 4.3, and let ties of the virtual locations traversed Ihysert in
Chord form the path

p(’U,Z) = ('1'0 = Oy, L1y« 5 Y1, L = Z)

Since this path narrows down arin an exponential way, paths in Chord have a lengttv@bg n), w.h.p.,
which is important for our strategies to work. In the Groupeguling framework, this path translates into
a sequence of regionsy, Ry, ..., Ry whereR;, i < ¢, is the unique region of size/2" that containst;

13

and Ry is the unique region containing This is also called the,-path of (v, z). Correspondingly, the
Lookup protocol for some system nodeand name (resp. hash value of the namaind IP addressworks
as follows:

1. Search for the region owning v first sends the insert request to all nodeginwho will then send
it further along an-,-path till the requests reach the regiBrresponsible fok.

2. Insert(z,4) in R: all honest nodes iRk keep the entryz, i) stored till they leave (i.e. their lifetime

expires).

Nodes will not pass their data on to other nodes when theylddgnce, information has to be refreshed to
prevent it from being washed out. Therefore, every honest pas to initiate the Insert protocol evety3
steps. Though this creates extra overhead, it has the adjpattiat adversarial nodes cannot accumulate
an unbounded number of name entries in the system, prajeittinrom getting overloaded. Also, this
mechanism makes a Delete protocol obsolete.

4.9 The Lookup protocol

The Lookup protocol for some system nodeand keyz works in two stages:

1. Search for the region owning v first sends the lookup request to all nodeginwho will then send
it further along an-,-path till the requests reach the region responsible for

2. Delivery of IP address: The nodes in the region owningll send the IP address associated with
back tov, using again am,-path.

4.10 Basic invariants

Among other aspects, the following invariants have to begmesd for the Group Spreading protocol to be
survivable. We call a nodelagal membeif at least one honest node in the system has a pointer to it.

1. Every legal member has a random ID, and this random ID waergied at mosP (log V) steps
before the node became a legal member.

2. For every legal member, all honest nodes that have pointersitbave the same view ¢b(v) and
the age ofv (up to minor deviations), and this view has not changed sirjoed the system.

3. For every mature honest noddt holds thatv is connected to all other mature honest nodes in its
regions.

More details can be found in the appendix.

References

[1] B. Awerbuch and C. Scheideler. Chord++: Low-congestiomting in chord. Technical report, See
http://www.cs.jhu.edutscheideler, 2003.

[2] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Prgacecurity: Long-term protection against break-ins.
RSA CryptoBytes(1):1-8, 1997.

[3] Castro and Liskov. Practical byzantine fault toleraneOSDI: Symposium on Operating Systems Design and
ImplementationUSENIX Association, Co-sponsored by IEEE TCOS and ACM SR&01999.

[4] S. Crosby and D. Wallach. Denial of service via algoritbiwomplexity attacks. ItJsenix SecurityAug 2003.

14

[5]
[6]

[7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

J. R. Douceur. The sybil attack. In Proc. of the IPTPS02 Workshop, Cambridge, MA (USAP2.

A. Fiat and J. Saia. Censorship resistant peer-to-paeteat addressable networks. AGM-SIAM Symposium
on Discrete Algorithms (SODA2002.

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. @l resilience proactive public-key cryptosystems.
In IEEE Symposium on Foundations of Computer Scigpages 384—393, 1997.

T. Hagerup and C. Rub. A guided tour of Chernoff boundaformation Processing Letters83:305-308,
1989/90.

S. Halevi and S. Micali. Practical and provably-secunenmitment schemes from collision-free hashing. In
CRYPTO 96pages 201-215, 1996.

A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, Bhdung. Proactive public key and signature systems.
In ACM Conference on Computer and Communications Sec¢patyes 100-110, 1997.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Piibacsecret sharing or: How to cope with perpetual
leakage Lecture Notes in Computer Scien&€3:339-?7?, 1995.

L. Lamport. The weak Byzantine generals probleimurnal of the ACM30(3):669—-676, 1983.

L. Lamport and N. Lynch. Distributed computing. Chapté Handbook on Theoretical Computer Science.
Also, to be published as Technical Memo MIT/LCS/TM-384, bedtory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1989.

M. Naor. Bit commitment using pseudorandomnelssirnal of Cryptology4(2):151-158, 1991.

M. Naor and U. Wieder. Novel architectures for p2p aggiions: the continuous-discrete approachSRAA
Proceedings2003.

R. Ostrovsky and M. Yung. How to withstand mobile virugaaks. Inin Proceedings of the 10th Annual ACM
Symposium on Principles of Distributed Computipgges 51-59, 1991.

R. D. Prisco, B. W. Lampson, and N. A. Lynch. Reuvisititgtpaxos algorithm. IWorkshop on Distributed
Algorithms pages 111-125, 1997.

A. Rowstron and P. Druschel. Pastry: Scalable, distetl object location and routing for large-scale peerderp

systems. INFIP/ACM International Conference on Distributed Systdptatforms (Middleware)Heidelberg,
Germany, 11 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hldaishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. BIGCOMM '0], San Diego, CA, 8 2001.

B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: Aindstructure for fault-tolerant wide-area location and
routing. INUCB Technical Report UCB/CSD-01-11,42D01.

15

A Details of the Group Spreading Protocol

In the following, we concentrate on a formal presentatiothote protocols that are crucial for the Group Spreading
approach, which are the Insert, Lookup, and Rejoin proto€hls is followed by an analysis of the survivability of
the system.

A.1 Protocol notation

Since our protocols are highly interactive, we found it moo@venient to extend the notation in the cryptography
literature rather than using abstract protocol notatiochsas Estelle, Esterel, or Promela. Our notation is rather
simple. If nodev wants to send messag#$, ..., M;, to w, we write “send tow : (M, ..., M})". The execution

of a process on nodeis specified by [(conditions] : (action). The conditions specify the events that trigger the
execution of the action. A label of the forff) in the conditions specifies that a correct message of [@petust have
been received. By “correct” we mean that the form, conteartd, signatures in the message are correct (as far as this
can be verified by the node).

A.2 The Insert and Lookup protocol

The protocols fotnsert andLookup can be found in Figure 3.

A.3 The Rejoin protocol
The different stages of the Rejoin protocol can be found gufés 4, 5, and 6.

A.4 Analysis

We start with some notation. A node is calledalif at least one honest node in the system has a pointer to ibd& n

is calledmatureonce it completes the (re)join operation. Notice that a modyg be legal before it is mature. Thge

of a node is the time that has passed by since it initiatedeS2agf the Rejoin protocol. A view of regioR is called
legalif it contains only legal nodes i and it contains all mature honest nodesinFor any time point, we define

¢y = min, L, andL; = max, L, where thenin andmax is taken over all mature honest nodes that are in the system
at timet. If ¢ is clear from the context, we will omit it. A system is calledfeat timet if in every regionR with

|R| > (vlog N)/N for some sufficiently large constamt

1. the number of honest nodes that are legal membe&Rssrat leas{2/3)~log NV and at most4/3)~log N,

2. forany intervall in [0, L] of size¢/2, the number of mature honest nodediithat have an age ifiis at least
(1/3)vlog N, and

3. the number of adversarial nodes that are legal membétssrat most(1/30)~log N.

The main theorem of this paper is:

Theorem A.1 The Group Spreading protocol makes Chord survivable.

A.5 Proof of Theorem A.1
For this we first need to show:
Lemma A.2 For anyjoin/rejoin/leave sequence of honest and adversarial saner a number of time steps polyno-
mial in n in which
e the number of honest nodes is at leagtt any time,
¢ the join/rejoin/leave behavior of honest nodes satisfiegtiotocol conditions,
¢ the gateway nodes are honest,

o the rate of join/leave requests of honest nodes is at aydsi IV,

16

o the rate of join requests of adversarial nodes is at mg$bg” N, and
¢ the adversarial nodes never represent more thas/dng N fraction of the honest nodes in the overlay network,

the peer-to-peer system constructed by the Group Spreadigcol will be safe, with high probability.

Suppose that this is true. Then we can show that all overlayark operations initiated by honest peers are
executed successfully, which would imply Theorem A.1. k@ wve first have to define what we mean by “successful”.

e A join request by some peeris calledsuccessfuif p manages to integrate at ledshodes into the system
within O(log N) steps that satisfy the Invariants in Section A.6.

e Aninsertrequest by some peeis calledsuccessfuf the nodeu of p initiating that operation manages to store
p's namez in O(log N) steps in every honest node in the regi®of sizel /2" containingz that was mature
whenu initiated the operation.

e A lookup request by some pegifor some name: is calledsuccessfuilf p receives the IP address of the peer
with namez within O(log N) steps.

We prove these properties in several claims and lemmatataftersth two statements that we cannot show here since
we first have to introduce some invariants for these. Theiofsrcan be found in Section A.6.

Lemma A.3 As long as the system is safe, any join request by some haersssuccessful.
The next statement gives a bound on the deviatioN pfhe number of nodes in the system.

Claim A.4 For any constant) < p < 1 there is a constan < ¢ < 1 so that the number of nodes in the system
changes by a factor of at mo&t + p) in L steps, wherd. is the maximum over all; during these steps.

Hence, to simplify the statement of the claims below, we asume in the following that as long as we just look
at time intervals of size at modt (whereL is the maximum over alL, during these steps)y is fixed. However,
whenever the exact value 8f matters in the proofs, we will consider the deviations, aseda the following claim.

Claim A.5 Aslong as the system is safe it holds that for any regi@f size at leasty log N)/N and any node with
a legal view ofR, the number of honest nodes ithat were mature < L/2 steps ago is at leastC}%|/5 and the
number of adversarial nodes R is at mos{C%|/20.

Proof. From the safeness condition we know that the number of métomest nodes iR that were already iR
t < L/2 steps ago is at least/3)vlog N for the numberV that was true steps ago. According to Claim A.4, this
number is still at least/(3(1 + p)) - vlog N after at most < L/2 steps, compared to the currelit Because at
the current time the number of honest nodes is at fipst)~ log NV and the number of adversarial nodes is at most
(1/30)~log N, it follows that if p is sufficiently small, the number of honest nodegiithat were mature steps ago
is still at leas{C%|/5.

The upper bound on the adversarial nodes follows from thetfat the number of honest nodes is at least
(2/3)v1log N and the number of adversarial nodes is at njog30)~y log N. O

Claim A.6 The adversarial nodes cannot forge an insert or lookup retjifrem an honest node.

Proof. Suppose that the adversarial nodes make some honest agdept a request! from some other honest node
u. Further suppose thatis the first honest node acceptiffand it is in a regior?;, representing th&th region along
the path of the request from If £ > 1, thenv must have received/ from at least d /5 fraction of the nodes in its
view of Ry_1(r) wherer € {r,,r, + 1}. However, due to the safeness of the system, there must eanesn honest
nodev’ in Ri_1(r) that has already acceptdd beforewv, creating a contradiction. Hence, assume that 1. In
this casep would have accepted a messdgefrom « although it did not come from. But according to our model,
which assumes that the source of a message cannot be fdrgathrinot happen, also creating a contradictionO

17

Claim A.7 As long as the system is safe and the distahite request has to travel to reach some regidis at most
L/3, it takes at most steps for an insert or lookup request initiated by a matumedst node to reach all (remaining)
honest nodes iR that were mature when the request was initiated, and theasjarrives at these nodes in an
unchanged form.

Proof. We prove the lemma by induction over the number of hops. Ifestionest node initiates some request
M, then it follows from our delay assumptions that it takes astrl step until all honest nodes i, receivel.
So suppose that it has already been shown that it takes atinstasps until all mature honest nodeshn, the kth
region along the path of the request, received the origifidrom all honest nodes ifi®;_; that were mature when
the request was initiated.

Suppose that the request was initiated at s&pd lety be chosen so thay2™ = (ylog N)/N. From Claim A.5
we know that the number of mature honest nodeBjin, and any sufficiently large subregion of it that were in the
system at time is at least a fraction of /5 of all the nodes in any legal view of that region. Hence, astedl /5
fraction forwards the originad/ in at mostk time steps to all the mature honest node®jn Since the adversarial
nodes represent at mast20 of the nodes iRy, and any of its sufficiently large subregions at any time, liofes
that when an honest nodevaits until it has received the same request from at leagbdraction of nodes its view of
the previous region of the request (which includgs; or one of its subregions), every honest nod&jnthat was
already mature at timewill accept the original messagé in at mostk steps. Therefore, it takes at mast 1 steps
until all mature honest nodes iRy, receive and accept the original requé$t This completes the induction and
therefore the proof. O

Two remarks are in order for this claim. First, notice th&t ieally sufficient to just guarantee at mgst30)~ log N
adversarial nodes at any time since honest nodeswlijiconsider messages in any threshold rule that are from nodes
that are still legal members of the system. Second, one nigly ttnat for every region along the path the honest nodes
will accept a messagk/ at basically the same time. However, since we do not assuim&ex bound on the trans-
mission delay of messages, in the worst case the adversadak can cause time differences between the messages
from honest nodes that grow linearly with the distance,if@yas to resort to honest nodes that were mature when the
request was initiated.

Lemma A.8 As long as the system is safe, any insert operation execyteth honest node is successful within
O(log N) steps.

Proof. Suppose that some honest nadmitiates an insert operation for name From Claim A.7 it follows that
an insert request only také¥log N) time to reach its destination in its original form. Therewill be stored in all
honest nodes that were mature when the request was injta@tddence the insert request is successful. O

Lemma A.9 As long as the system is safe, any lookup operation execyted honest node is successful within
O(log N) steps.

Proof. Recall that at latest everly/3 steps a peep will refresh its namer. Since refreshing the name via an insert
operation only take® (log V) steps, it follows from Claim A.5 that for the nekt/3 time steps the fraction of mature
honest nodes storing compared to the total number of nodes in any view of an hora# f the region of: is at
leastl/5. Hence, it follows from Claim A.7 that any lookup requestdome name: will successfully reach the name
of = and its answer will successfully travel backwardgiflog N) steps. O

A.6 Proof of Lemma A.2

We prove the lemma by induction on the time the system hasadars We assume that the system initially consists
only of honest nodes, and the number of these nodes is atletist parameter for our probability bounds. In this
case, it is easy to show that the system has been safe so fave $an proceed with the induction step. For the
induction step to work, we want to show apart from safenessthte following invariants are fulfilled:

1. Every legal member has a random ID, and this random ID wasrgéed at mosb(log N) steps before the
node became a legal member.

18

2. For every legal member, all honest nodes that have pointersthave the same view ¢b(v) and the age of
v (up to minor deviations), and this view has not changed sirjoeed the system.

3. For every mature honest nodé holds thatv is connected to all other mature honest nodes in its regions.

Our strategy is to show that if the system has been safe andwheants have been true so far, the invariants also
hold for subsequent (re)join/leave operations, which ttembe used to show that the system remains safe, with high
probability.

We need a couple of claims to prove the invariants, which asedth on the assumption that the system has been
safe so far.

Claim A.10 For every honest node accepting an 1Dz (by executing step (6b)) in an ID generation stage of some
nodeu it holds thatz must be random and the generation took at I€ast 7)L,, /3 steps and at mostl + 7)L,, /3 +
O(1) steps fromy’s point of view.

Proof. Accordingto the ID generation protocelmust have contributed a random keyto =, and once» revealedr,
it did not accept any further commitments from other nodemndéx = &, x., (Where® denotes the bit-wise XOR)
must be random. Sincewaits for at leastl — 7)L,,/3 steps before revealing, and at most1 + 7)L,,/3 + O(1)
steps before it does not execute (6b) any more, the claimovisl| O

Claim A.11 For every honest node adding an entry(x, u,r, j, T, 1) to J, it holds that there must have been an
honest nodev acceptinge in the ID generation stage at moSt(log V) steps before.

Proof. Suppose there is such a node and suppose that is part of regionR;. Review stage 2 of the Rejoin
protocol. Thenw must have added an entty, u, r, j, T.,, 0) to J,, before. Continuing with this backwards in time,
we distinguish between two cases.

If ¢ =0 (i.e. the new IDz is in R, (r)), thenw must have received messageduth,(s, t), z, C,(r), u, r, j) from
at least3|C,,(r,)|/20 nodes inC,, (r,). Hence, there must have been an honest nodeceptingz in stage 1.

So assume that> 0. In this casew received message,(auth,(s, t), z, A,, u, r, j) fromatleastCy._ (r+1)|/5
nodesinC% (r+1). (w can really check this because due to our discrepancy asgumapt the rates; > r,, —1.)

In this case, there must have been an honestnau&;” , (r+1) that successfully received an authentication message
from a previous region. Continuing with this argument byuation, we end up with some honest nadén region

R, that must have received messageduth, (s, t), z, C,(r), u,r, j) from at least3|C\,(r.,)|/20 nodes inCy, (7).
Hence, again there must have been an honestaazeptinge in stage 1.

It remains to bound the runtime of this process. For this vat fiave to show that for any node honest R;,
the setd,, computed in (3) is always a legal view &, (r). This can be done by induction énFori = 0, w received
A, from at leas8|C,, (r,)|/20 nodesv in C,(r,,). If w includes a node’ in A,,, thenw’ must be inA, for at least
|Cw(r2,)]/10 of thesev's, and thereforey’ must be part of a view af’, (r) of some honest node Thus,w’ must be a
legal member. On the other hand, every mature honest nadg(in will be included inA,, because an honest node
in Cy, (r,) sends an authentication messagevtonly if it is mature, and these mature honest nodes know hérot
mature honest nodes iR, (r).

Now, w only changesz, u,r, j, T.,0) in Jy, to (z,u,r, j, T, 1) if it has received messages, @ccept,(u, 5))
from at leasB|A,,|/20 nodes in4,,. SinceA,, is a legal view ofR,, (1), this means it has received an accept message
from at least one honest node i), (r). But an honest node iR, (r) only sends an accept message if the time that
passed by till it executed (2) in stage 2 is at mbisig V. Furthermore, an honest node only executes (2) if it acdepte
the new ID (in (6b) of stage 1) at ma$steps before. Hence, the time between the point wihesceived the message
from the honest node and the point where an honest node aacepthe ID generation is at mosd(log N). Since
w also uses the rulé — T, < 6 log N to convert(z, u,r, j, T, 0) into (z, u,r, j, T, 1) and there must have been an
honest node sending an accept messagedtier T, the claim follows. O

Claim A.12 For every honest node establishing a connection to some new nadeith ID z and lifetimet in its
region it holds thaty must have added an entty, u, r, j, T, 1) for w in J, at mostO(log N) steps before.

Proof. Follows immediately from the condition in step (2) of stage 3 O

19

Claim A.13 For every mature honest nodesstablishing a connection to some new nadhat did not add an entry
for w in J, it holds thatv must have received a message from an honest tlothat added an entryz, u,r, j, T, 1)
for u to J,, at mostO(log N) steps before.

Proof. Honest nodes only establish connections to new nodes in(4}ey stage 3. Hence, consider some honest
nodev doing this. Then it must have received messagesnewnode,u’, z, r, j) from at leasB|C}, | (r + 1)[/20
nodesw in C}J%u, (r + 1) for somer < r, + 1. In this case, at least one of the nodesnust be hbnest, and this
node must have executed step (2) in stage 3, i.e. it has an(entr, r, j, T, 1) for v in J,,. Also, there must be an
honest node whose message arrived aftter 7, and therefore the delay between some honestecuting (2) and
executing (4) is at most. Furthermorew only sends messages,(newnode,v’, z, r, j) if the time since it added
(x,u,r,j,T,,1) foruto J, is at most log N. Hence, the time bound of the claim holds. O

Claim A.14 For every new honest nodeestablishing a connection to some nadeith ID x and aget it holds that
there is a mature honest node that established a connedtioiint (2) of stage 3 at leastl —)t — O(1) steps before
and there is a mature honest node that established a commetttic in (2) of stage 3 at mostl + 7)t + O(1) time

steps before.

Proof. Recall that honest nodes take the generation of other hopdss into account when accepting an ID and an
age (see step (6) in stage 3). An honest nodd! always pick the minimum generation for which it can reeefrom

at leastl /5 of the nodes of its view ofi’s region the same for u. Using the safeness propertynever has to go
beyond a generation of 3, where the generation 0 are the tiwodssw that added: to J,,. v is of generation if it
considered &/5 fraction for generation— 1. So suppose thatis of generation. Because of the safeness condition it
follows that there must have been an honest nodégeneration — 1 reporting an age belows median foru and an
honest nodey’ of generatiori — 1 reporting an age abowes median. Let us ignore for the moment deviations in the
time clocks and message delays. In this case, continuidgtiwt argument above for earlier generations, there must
have been an honest nodeof generation 0 reporting an age belots median and an honest nodé of generation 0
reporting an age abowés median. Hence, when taking deviations in the time cloclkbraessage delays into account,
w must have established a connectiorutat most(1 + 7)t + O(1) steps before and’ must have established a
connection ta: at least(1 — 7)t — O(1) time steps before, which completes the proof. O

This claim yields the following claim.

Claim A.15 For every nodeu, all honest nodes that established a connection tohave views of the age afthat
arein[(1 —7)t — O(log N), (1 + 7)t + O(log N)] for somet. If w is honest, then all honest nodethat established
a connection ta: have views of the age efthatare in[(1 — 7)t — O(1), (1 + 7)t + O(1)] wheret is u’s own view of
its age, i.ew initiated the integration stagésteps ago.

Proof. We start with the first statement. Certainly, an honest noolely accepts an integration request by some node
w in (2) of stage 3 ifv added an entry fox into J,, at mostO(log N) steps before. It did this, then we know from
Claim A.11 that there must have been an honest notleat accepted the IR for « at mostO(log V) steps before.

w only accepts the ID (i.e. it executes (6b) in stage 1) if it Almsady executed (3a) in stage 1, which it only does
once|K, ;| > |Cy(ry)|/5. In this casew must have received commitments from3|C,, (r.,)|/20 mature honest
nodes inC,, (r,,) in a time interval of size at mo&t = (1 + 7)L,,/3 + O(1). Thus, due to the safeness of the system,
every mature honest nodehat was already arourifl steps ago will have received at le&5t,(r,,)| /10 commitments
from other mature honest nodes befarexecutes (3a). This means that every one of these matursthordes will
seti,, = 1 at most) steps aftew executes (3a). There are at legs}: (r,,)|/5 of these nodes from the view of every
mature honest nodé. Hence, every honest nodéthat was not maturé steps before will either receiig = 1 from

at leastC, (r,,)|/10 honest nodes in step (7) of stage 3 or (5a)-messages fromsatde (r,,)|/10 honest nodes in
stage 1. In either case, setsi, = 1. Hence, no honest node will accept another rejoin request fr O(1) steps
afterw executes (3a). Furthermore, any honest node can only aaedptafterw revealed its key, and honest nodes
wait for at least(1 — 7)L,,/3 steps before revealing their keys and at mast- 7)(L, /3 + &) before aborting the
protocol. Hence, the time deviation among the honest nddesitcept IDx can be at mosd(§), which together with
Claim A.14 finishes the proof of the first statement.

20

The second statement follows from the fact that an honestmagdnds an integration message to all honest nodes
v with an entry about; in J,, within one time unit. Hence, all of these nodes start theimters with a difference of
at most one time step. O

As a result of the claims above, we get that the invariantsiiZaare fulfilled. Thus, it remains to prove invariant
3.

Claim A.16 For every honest node that successfully completes the ID generation stage foed@nx it holds that
at least3|C,|/20 mature honest nodes capable of completing the rejoin ojmeratccepted:, and the ID genera-
tion stage took at mogP(log N) steps. Furthermore, iR, only contains legal members that are honest, thaa
guaranteed to succeed with the ID generation.

Proof. Recall the safeness condition and Claim A.5. Suppose thabaest node: has initiated an ID generation.
Since invariant 3 was fulfilled for when it did this,u contacted mature honest nodes that can participate initne jo
operation that represent at legst, | /5 of the nodes ofi’s view of R,, throughout the execution of the rejoin operation.
Hence, ifu’s region only contains honest nodesis guaranteed to succeed. In general; uccessfully completes
the ID generation stage, then it has received answers wétlsame 1Dz from at leastC,,|/5 nodes inR,, within
O(log N) steps. Thus, according to the safeness condition, at3&@st/20 mature honest nodes R,, accepted:,
completing the proof. O

Claim A.17 If an honest node, successfully completes the ID generation, then it alsoessfally completes the
authorization stage i®(log N) steps.

Proof. From the previous claim we know thatifsuccessfully completes the ID generation stage for some tben
at least3|C,,| /20 mature honest nodes capable of completing the rejoin ppbémrepted:. Hence, once starts the
authorization stage, at lea§jt’, | /20 honest nodes will execute (2).

Thus, all mature honest nodesin C, 1(r) andC, 2(r) (see the protocol) will receive at lea3iC,|/20 >
|Cw(r,)]/10 authentication messages of the correct formuf@nd therefore forward the authentication message to
CEg, (r+1). Since there are at Iedﬁ’}gi (r +1)|/5 honest nodes forwarding the message further, all honesisagd

in Ry will receive at IeastC’g; (r+1)|/5 authentication messages of the correct formifoFhus, they will accept the
message and send it further. Hence, by induction, at |€ast(r + 1)|/5 mature honest nodesin both subregions
of 2’s region R, of size1/2"+! capable of completing the rejoin operation will add an efdryu in J,,.

Now, all of these honest nodes will report their viewsRf(r + 1) backwards. Consider any mature honest
nodew in R} (r + 1). First of all, w will receive views of (its relevant subregio®, (r + 1) (of R,) from at least
|Cr, (r 4+ 1)|/5 honest nodes i, (r + 1). Hencew will produce a viewC' and send it further to all mature honest
nodes inR,(r + 1). C'is guaranteed to be legal because every nddean only be added t6' if it occurs in at least
3|Cr, (r + 1)|/20 views, and therefore in a view of an honest nod&ijf(r + 1). On the other hand, every mature
honest node’ will be in C' becausev will consider views from at least|Cr, (r + 1)|/20 mature honest nodes iR,
and all of these, by invariant 3, know all other mature honesltes inR,(r + 1). Hence,C is legal and contains all
honest nodes’ in R, (r + 1) that added an entry farinto J,,-. By induction, this can be shown for all honest nodes
on the path backwards te. Hence, every honest nodehat sent(2a) will compute setsd,, ; and A, » for the two
subregions of?,, that are legal.

Because there are at le8s, | /20 > |A,,|/10 nodesv that sen{2a) from the viewpoint of every honest node
in R, (note thatA4,, is a legal view ofC,), and according to Claim A.7 it only tak&3(log V) steps for the routing
part to succeed, every honest nadé¢hat added an entry far to J,, will execute(6a). Since there must be at least
3|A4,,1]/20 and at leas8| A, 2|/20 such nodes from the viewpoint of every honest nod&ijn all the honest nodes
that executed5a) will also executg7a). Henceu will execute(8) and will compute legal views!,, ; and A,, o of
the two subregions ak,, i.e. they contain allv in R, that added an entry farinto J,,. O

Claim A.18 For every new honest nodewith a successful authorization stage it takes at nidst) steps untiks has
a pointer to every mature honest node in its region.

Proof. If the authorization stage is successful, thecontacts all nodes in its view @, to integrateu’. Since these
contain at leastCr, |/5 mature nodes having an entry fow in .J,,, and all of these are id,,, each of these nodes

21

will acceptw’, and all mature honest nodes in the regions relevant/fovill acceptu’. On the other handy’ will
receive back views of its relevant regions from at I18a6tz . | /20 honest nodes i®,, and will establish pointers to all
mature honest nodes in its regions. Up to this point, theymatéon only tookO(1) steps, and at its end, every mature
honest node im’’s region has a pointer to’. Thus,u’ will be accepted by every new honest node entering the system
afterwards.

Now, v’ waits forO(1) time steps (see step (3)). The reason for this isdhfitst wants to make sure that every
new honest node entering the system will now establish aexiion tow’ andw” will also establish a connection to
this node. Hencey’ only has to worry about honest nodes that came into the systéone that time point, including
honest nodes that joined the system at the same timé d® solve this problemy’ sends a request for views to all
nodes in its regions once it is sure that it passed the firgestathe integration. Sinc& will receive back views of
at least3|Cr|/20 mature honest nodes of each of its relevant reginis will establish pointers to all mature honest
nodes inR and those that have already passed the first stage of thedfitegi.e.u’ fulfills the conditions in invariant
3 of being mature. Also this part of the integration stage ordeds0O(1) steps. O

Combining these claims yields invariant 3. Thus, the irasats are fulfilled. So given that the invariants are true,
it remains to show that the system is safe. For this we alsd a@®uple of claims.

Claim A.19 Every adversarial node can only initiate one successfainepperation during its lifetime.

Proof. If a nodeu wants a rejoin operation to be successful, then at least onesh nodev must add an entry
for w in J,, because otherwise the integration stage will not be exddueany honest node. However, if there is
such a nodev, then by induction backwards on the routing path it follolattthere must have been an honest node
v in R, executing step (3) in the authorization stage. But this aady bappen if at least one honest nodin R,
executed step (6a) in the ID generation stage, which canh@gpen ifv executed step (3a) in the ID generation stage
before. Thus, at lea$t’, (r,,)|/5 nodes committed to some key, and all honest among these hasrectal their keys

in approximately the same time for an honest node to exe6aje KHence, their initiations of step (2) must have been
more than(1 — 7)L/3 steps before reaches its time limit of1 + 7)(L/3 + ¢). It follows from the arguments in
Claim A.15 that then any honest node will only accept a rejeiuest fromu up to (1 — 7)L/3 — ¢ steps before

v reaches its time limit. However, in this case all key comneitrts of these nodes will count for the current rejoin
execution, i.ex cannot enforce another successful rejoin operation, cetinglthe proof. O

Claim A.20 Given that the system has been safe and the invariants h@daumber of adversarial nodes in any
region R of size(log N)/N for a sufficiently largey is at most(1/30)~log N.
Proof. We need to combine several arguments:

1. According to Claim A.15, the lifetime of every legal membeust be bounded by log N for some constant
X close to) in the lifetime bound.

2. According to Claim A.19, every node can only initiate oe@in operation during its lifetime that will be
accepted by sufficiently many honest nodes in its region,aargjoin operation is only successful if that node
stays in the system for at legstlog N)/3 steps (up to some minor deviations).

3. There can be at moslN/ log N adversarial nodes in the system at any time.
4. AtmosteN/log® N new adversarial nodes can join the system in a time step.

Hence, the maximum number of join and rejoin requests thabedssued by adversarial nodes withinog N time
steps is at most

li /
(VlogN) - (eN eN/logN 3) _ Ne(L+9/N)N _ N

log? N = (MlogN)/3 . log N ~ log N

if € is sufficiently small compared td. Hence, at any time, there can be at moat/ log N many IDs the adversarial
nodes can choose from. On expectation, at rfosbf these fall into an rang® of size(ylog N)/N. According to
invariant 1, every legal member must have an chosen indepéigdat random. Hence, it follows from the Chernoff

bounds that there can be at m@$y30)~log N adversarial IDs inR with high probability and therefore at most
(1/30)log N adversarial nodes iR at any time. O

22

Claim A.21 As long as the system has been safe and the invariants hdid|ds for any honest peer and any
constanty > 0 that there is anL = Alog N for a sufficiently large constant so thatp needs at mosfl + §)L
attempts to integraté nodes into the system, with high probability.

Proof. Notice that in the ID generation stage an honest peer wiit ask the nodes to reveal their random keys if the
new node fop to be integrated into the system has an available sl@t,inSince in each step a node is removed from
Qp. p needs to integraté new nodes withirl steps. We want to bound the attempts necessary for integriese
nodes. Since every attempt is started in an honestnedth a random ID and adversarial nodes can generate at most
¢’ N/log N IDs within L steps, the probability that for a region size(9flog V) /N there is an adversarial node in the
region ofu is at most2e’ - . If ¢ > 0 is sufficiently small, this can be reduced to somg 6/(6(1 + 4)). Suppose
now thatp uses(1 + §) L attempts. Then the expected number of attempts that failrsoat(1 + §)L - ¢ < §L/6,
and therefore the expected number of different honest nibdéfail is at most L /6. The different honest nodes have
independent, random IDs, it follows from the Chernoff bositttat with high probability at mostZ /3 nodes will fail

if A is sufficiently large. Now, each failure of an honest node meayse up to 3 failed attempts. Hence, at nddst
attempts with fail, with high probability, which means thateeds at mostl + §) L attempts to integraté new nodes,
with high probability. O

Claim A.22 For any regionR of size(ylog N)/N for a sufficiently large constant, the number of honest nodes in
Ris atmost(4/3)ylog N w.h.p.

Proof. The tricky aspect in the proof is that although the IDs of reodlee random, the adversarial nodes can create a
bias by determining which of the rejoin attempts by honestpshould succeed and which not. Fortunately, one can
show that this influence is relatively small.

From Claim A.21 we know that for every pegrcurrently havingZ,, nodes in the system at mogt +)L,
attempts for some small constant> 0 were necessary for this, w.h.p.. Hence, given that all cfetettempts were
successful, there would be at m¢st+ §) NV peers in the system instead§t Hence, the maximum expected number
of honest nodes in a regidR of size (ylog N)/N is at most(1 + §)ylog N. If § < 1/6 and~ is sufficiently large,
then it follows from the Chernoff bounds that at mst3)~ log N honest nodes can be Riwith high probability.0

Claim A.23 For any regionR of size(ylog N)/N for a sufficiently large constant, the number of honest nodes in
Ris atleast(2/3)ylog N w.h.p.

Proof. From the proof of Claim A.21 we can conclude that for everyrpeeurrently havingL, nodes in the system
atleast1—4)L, of these are based on attempts in some completely honeshyegh.p. Hence, the expected number
of honest nodes in a regiaR of size(ylog N)/N is at least1 — §)ylog N. If § < 1/6 and~ is sufficiently large,
then it follows from the Chernoff bounds that at leést3)~log N honest nodes must be R with high probability.

O

Claim A.24 For any regionR of size(ylog N)/N for a sufficiently large constant, it holds: The number of honest
nodes inR with a lifetime of atleasL /2 (with L being an upper bound on the lifetime) is at le@ist3)y log N, w.h.p.

Proof. First, suppose that none of the attempts of the honest peéregrate new nodes has failed. Because every
peer has a node departure for every time step and the nodesdralom IDs, it would follow in this case that for any
interval of sizeL/2 in the lifetime interval0, /] (wherel is a lower bound on the lifetime) there are on expectation at
least(1/2)~log N honest nodes ik. However, the adversarial nodes can create a bias on thienkfe of nodes that
we need to bound.

Again, from Claim A.21 we know that for every pegecurrently havingL,, nodes in the system at mdst+J) L,
attempts for some small constant- 0 were necessary for this. Hence, the lifetime of a node rieguitom an attempt
can deviate by at mostL steps. Thus, for any interval of siZe/2 there are on expectation only at least

L/2—25L
L

honest nodes iR that will surely end up in the desired interval. This is dfiitle for our lower bound ip < 1/12.
In this case, ify is a sufficiently large constant, then it follows from the @iwff bounds that at leagt/3)~ylog N
honest nodes with a lifetime in an interval of siz¢2 are in R, with high probability, which completes the proof

vlog N > (1/2 — 26)ylog N

Finally, we can also prove Claim A.4 stated above.

23

Claim A.25 For any constant < p < 1 there is a constan® < ¢ < 1 so that the number of honest nodes in the
system changes by a factor of at m@istt p) in L steps, wherd. is the maximum over all; during these steps.

Proof. Several factors can influenéé:
1. new peers may not yet have at ledabdes in the system,
2. peers that want to leave may have less thaodes in the system
3. adversarial peers may select their number of nodes freelpng as it does not exceed thdog N bound, and
4

. honest peers that are mature (i.e. their join operatisrchanpleted) and that are not in the process of leaving
may have a variable number of nodes in the system, dependitiged success.

For our consideration of these items, we will slightly abtieenotation by assuming thiak; V is a fixed value though
it is not. We can do this since it turns out that the deviatioViis actually small, and therefore insignificant when
consideringog N.

We start with the first two items. Due to our bounds on the atand departure rate of peers and our time bounds
for performing a join or leave operation, we know that at ametthere can be at most dn- ¢/ log> N = €'/ log N
fraction of honest peers that are leaving or entering theerysSince each of these has between 0 ambdes, the
maximum deviation they can causdlise’/log N = ¢”, wheree” > 0 can be an arbitrarily small constant depending
One.

Next we consider item 3. According to our model, there cantbeast anc/ log N fraction of adversarial nodes
in the system at any time. Hence, the deviation they can iboiéd is bounded by/ log N.

It remains to consider item 4. For this we need to show thdt wiggh probability, every mature honest peer will
have at leasfl — ¢)¢ nodes in the system at any time. Since the maximum numberdg#sof an honest peer I5
L — ¢ <)\ and¢ > X log N for some constant’, it follows in this case that the maximum deviation causeddm
4disatmostéf + \)/¢ =6 + A/(N log N). This can be bounded by an arbitrarily small constéht> 0 depending
one and\. So we need to show:

Claim A.26 For any constant > 0 there is a constank > 0 (used for the lifetime) so that for any mature honest
peerp and any time step will have at leas{1 — ¢)¢ nodes in the system at that time, with high probability.

Proof. Suppose that for some pegland timet, p has less thafl — 4)¢, nodes in the system. Then we follgw
backwards in time till it had at leagt, nodes in the system, which it had because it successfuligjbihe system.
This means that in a time interval of siZe= t — t,, p has only been successful for at m¢st+ \/logn)T — ¢,
join attempts. However, ifi’ stepsp will initiate 37 join attempts. Sinc& > 4, it follows that

Use backwards argument in time, it follows from argumentsilar to Claim A.22 that this is not possible, with
high probability, if the constant is sufficiently large. O

Settingp = €’ 4+ €' + ¢/ log N gives the bound in Claim A.4. O

Combining the claims above yields the safeness of the system

24

Insert(z,1):
/I We assume:
II's = |1D(u) |1 /2r, the starting point ot:’s region
II't = |x], /9, the starting point ok’s region

(1) w: sendtoalb € Cyu: (u, insert,ID(u), v, (2,7))

(2 v [uponreceiving1) from a nodeu € C., () or (2a) from > |C%, _, (r)|/5 nodes inC%,_ (r), 7 € {rv,rv + 1}]:
ifr, —1<r, <r,+ 1then
if v [t,t+1/2™)then
(2a) sendtoally € Cg, (rv): (v, insert.z, ru, (2,14))
else
Il v stores(z, %) in its data baseD,
D, «— D, U{(z,4)}

Lookup(z):
(1) w: sendtoalb € Cy: (u, lookup,z, 7y, 2)

(2) v [upon receiving1) from a nodeu € Cy(ru) or (2a) from > |Cg, | (r)|/5 nodesinC%, (), € {rv,rv + 1}]:
if r, =1 <ry, <r,+1then
if vt t+1/2™)then

(2a) send to allv € CRis (rv): (v, lookup,z, ru, 2)
else
if (z,i) € D, then
(2b) sendto altv € [t,t + 1/27): (v, reply,z, ru, (z,1))

(3) w [upon receiving2b) or (3a) from atleas{C}y, (r)|/5 nodesinCy, (), r € {ry,r. + 1}]:
i—1 i—1
ifr, —1<r, <r,then
if w¢[s,s+1/2")then
(3a) sendtoally’ € R; ;(rw): (w, reply,z,ry, (z,1))
(3b) elsesend tou: (w, reply, (z, 7))

(4) w: [upon receiving3b) from > |C.|/5 nodes with the samg, ¢)]:
return

Figure 3:Thelnsert(z, i) andLookup(z) protocol initiated by node. (R;);>o is the sequence of regions traversed
towards the region of, and(R});>¢ is the sequence of regions traversed back to the regidBd(af) according to
the Chord routing strategy. Notice that the viewIdf may depend on the receiving and sending nodes. If a node
receives sufficiently many messages for the same redddsbm R; w.r.t. arange € {r, — 1,r,}, it will accept it
and forward)M to all nodes in its view of?; ;.

25

/l u: node that initiates Rejoin protocol
(1) w:sendtoalb € Cy: (u, join)
wait for L,, /3 steps
/I compute current range
r «— Regiong)
/I L(r): lifetime depending on current
if |Qp| < L(r) and (no nodev of p hasstate, = critical) then
/I start of critical section, only executed by one node at a time
/I but Rejoin operations are scheduled by peer, so no problem
for j =1toL(r) — |Qp| do
reserve slotQ,| + j in @, for jth join operation
(1a) sendto alb € Cy: (u, reveal,j)
/I give honest nodes time to computés
wait for § steps
release all reservations that have not entered (1) of stage 2

(2) v [upon receiving (1)
i, € {0, 1}: rejoin indicator for u, see also stage 3
/I N estimated by viar,
if ID(v) € R, and i, = 0 and (remaining life ofv is > (1 + 7)(L./3 + § log N)) then
iw =1 I/ u cannot rejoin again
foreachj € {1, 2, 3}:
To,j & [0,1) /I generate random key
K, ;=0 [linitialize set of other keys
I Cy(ry): v's view ofu’s region
Il h(-): result of bit commitment scheme
(2a) send to allv € Cy (ry): (v, commit,h(zy 5), (u, 7))
wait for (1 4+ 7)(L./3 + 0) steps
if (6b) has not been executed yhen abort protocol
/I some node iR, (includingu) must be adversarial

(3) v [upon receiving (1a) with parametgr
wait until at leas{(1 — 7) L., /3 steps are over since (2) started
if |[Ku,;] > |Cy(ra)|/5 then

(3a) send to allv € Cu(ry): (v, key,zv 5, (u, 7))

(4) v [upon receiving2a) from a nodew € Cy ()]
if ((2a) has been executedhd ((2a) from w received< ¢ steps before receiving)) and
((3) has not been executed yéten
store(w, h(xw,;)) in Ky ;

(5) v [upon receiving2a) from > |Cy (r.)|/10 or (5a) from > |C\(r.)|/10 nodes inCy, (7.,)]:
/I adversarialu may try to contact only subset of honest nodes
if i, = 0 then
wait for § steps /to givewu sufficient time to initiate (2)
iw =1 I/ no more rejoin requests accepted fram
(5a) send to allv € Cy(rv): (v, norejoin, u)

(6) v [upon receiving3a) from a nodew € C,(r.) and having execute@a)]:
if h(zw,;) matchew, h(zw,;)) in Ky, ; then
replace(w, h(zw,;)) by (w, Tw,j)
if no (w', h(z, ;)) leftin K, ; then
(6a) Tj = Ty, ® (EBW’%/’]‘)GKW Ty ;) I @ is the bit-wise XOR
(6b) send tas: (v, key, z;, j)

Figure 4. Stage 1 of the Rejoin protocol for nadé/Ne assume that the clocks of the nodes deviate in speed
by at most g1 + 7) factor for somé) < 7 << 1 and that > 0 is a sufficiently large constant.

26

I/l r: range computed by in stage 1
(1) w [upon receiving the same (6b) of stage 1 for sgnfilem > |C',|/5 node$:
if reservation not released fgthen
insertu’ into reserved slot i),
(1a) send to alb € C.(r): (u, authenticateg, r, 5)

(2) v [upon receivingla) and having senf6b) in stage 1 withz]:
if at most time since(6b) of stage Ithen
s« |ID(v)]1/2r+1 [/ starting point of source region
t « |x];,or+1 Ml starting point of destination region
Il Cy,1(r), Cv,2(r): node sets in two halves &, (r)
(2a) sendtoallv € Cy,1(r) U Cy 2(r): (v, auth,(s,t), z,u,r, j)

(38) w [upon receiving2a) from > |Cy,(7)|/10 nodesv in Cy () of (3a) from > |Cg, . (r 4 1)|/5 nodesv in
Cg,_,(r+1) for somer < 7y, + 1J:
if (2a)-messages receivéden A,, — Cy ()
else
Il Ay: cluster in message af, C' € {Cy(ru),Cr, ,(r+1)}
Aw —{v' €, Av: [{v] v/ € A} > |C]/10}
if w¢[t,t+1/27) then
(3a) sendtoally’ € CR, , (r +1): (w, auth,(s,t),z, Aw, u,r, j)
else
/I N: estimated byw via ry,
if remaining lifetime ofw > § log N then
// w may allowp to join its region and remembers its current tirfg
J’W — Jw U {(CC7 U, T7j7 Tw7 0)}
(3b) sendto altv’ € [t,t + 1/27): (w, reply, (s, t), z, Cw(r + 1), u, 1, 5)

~

(4) W' [upon receiving 3b) or (4a) from at IeasilCI“g;i1 (r+1)|/5 nodes inC]“.;/;i1 (r+ 1) withr < r,s +1]:
Il Ay cluster in message ab
Ay —{w" e, Aw: [{w|w" € A} > 3|C’}“€£71(r +1)|/20}
if w & [s,s+1/2") then

(4a) send to all” € Cg,’ (r+1): (W', reply, (s, t),z, Ay, u, 7, 5)
i+1
else
(4b) sendto alb € Cy (1): (W', reply, (s, t), x, Ay, u, 7,)

(5) v [upon receiving4b) from > |Cy,1(r)|/5 nodes inCy, 1 (r) and> |Cy 2(r)|/5 nodes inCl 2 (7)]:
if < dlog N time since execution of (Zhen
A —{w' e, Aw: {weCor(r) |w' € Ay}| > 3|Cy,1(r)|/20}
Ay —{w' € Uw At [{fw € Cya(r) | w' € Aw}| > 3|Cy2(r)|/20}
(5a) sendto allv € A,,1 U Ay 2: (v, accept(u, 7))

(6) w [upon receiving5a) from > |A,|/10 nodes inA,,]:
T — median of arrival times of messages
if (x,u,7,4,Tw,0) € Jyand T, — T < dlog N then /I T,: current time ofw
change entry téx, u, 7, j, Tw, 1)

(6a) sendto alb € A,: (w, accept(u, j))

(7) v |upon receiving6a) from > 3|A,,1|/20 nodes in4, ;1 and> 3| A, 2|/20 nodes inA, >
and having sent5a)]:

(7a) send ta: (v, join, =, Ay 1, Ay 2, 7)

(8) w [upon receiving7a) from > 3|C.|/20 nodes inv € C,, with the samex]:
Avi —{wely,Avr: {v|we Aya}] > |Cul/10}
Auz —{wel, Advz: {v|w e Ao} > |Cul/10}

Figure 5: Stage 2 of the Rejoin protocol. In this authentication stdd).>, represents the sequence of regions
traversed towards the region of and (R});>o is the sequence of regions traversed back to the regidd (@f)

according to the Chord routing strategy. Notice that thenoé R; may depend on the receiving and sending nodes.
27

(1) w: foreachie {1,2}:
sendtoalb € A, ;: (u, integratey’, , r, 7)
/I v new node to joind,,

(2) v [upon receiving1)]:
/I T,: current time ofv
/'S, set of data about all nodes in the view:wgfcontains tuple$w, z.,, ., Tw, Gws tw)
Il (T,: step whenw joined,g,, > 0: generation;.,, € {0, 1}: rejoin indicator for w)
/I v authorized and authorization not too old?
if (x,u,r,5,T,,1)€ J,andT, — T, <dlogN andr, —1 <r <r,+1then
Sy — Sy U{(v, 2,7, T,,0,0)}
/' R, (r + 1): set of all pointer regions of relevant foru’
(2a) sendto alv € Uper, (r41) Crt (v, newnodew', z, . j)
(2b) send ta:": (v, welcome(C%) rer, (r+1))

(3) «' [upon receiving2b) from > 3|A, 1]|/20 nodes ind,, 1 and> 3|4, 2|/20 nodes inA,, o]:
S =0
foreachR € R
Chy—{veU, Cx : {w € Ayr | v e O}l > 4,110}
Cho—{velU,CR: {we Auz | veCR}| > |Auzl/10}
Ch — Ch1UCH,
for eachw € C%
Sy = S U{(w,?,7,2,7,0)}
// wait until properly integrated into all honest nodes®y, by (2a) messages
wait for § steps
(3a) sendtoalh € UReRu, C}{: (', integratey, 1, 5)
ry «—randL, «—¥¢-r
wait for § steps
remove all entries ity,- that still have a “?” in them
/I v’ is now mature

(4) v [uponreceiving2a) from > 3|C} | (r+1)|/20 nodesw € C, | (r + 1) with the samew’, z, 7, j)
for somer <r, + 1]:
T «— median of arrival time of messages
if T, — T < é then
Sy — Sy U{(v, 2,7, T,,1,0)}

(5) v [uponreceiving3a)l:
e, =T, —T,: ws age fromuv’s view
(5a) send ta/": (v, welcome,(w, Tu, 7w, ty,, Guws T wec, ()

(6) «' [uponreceiving5a) from somev € R € R, and(5a) from > |O}{|/5 nodesw € R with the
same(v, ., 1,) andg, < g for the minimum safe generatigy:
Il g =t /(L. /3) is safe because |C% |/5 mature honest nodes for this
tv" = median, {t*}
Sw — Sw U{(v, 24,7, T — t}jl,g +1,4)}

(7) «' [upon receiving5a) from > |C%'|/10 nodesw € R with 7% = 1]:
Iy =1

Figure 6:Stage 3 of the Rejoin protocol for new node A, is the new cluster for/, i.e. the cluster: computed in
stage 2. Againg is a sufficiently large constant.

28

