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Abstract

We investigate the problem of routing traffic through a congested network in an environment
of non-cooperative users. We use the worst-case coordination ratio suggested by Koutsoupias
and Papadimitriou to measure the performance degradation due to the lack of a centralized
traffic regulating authority. We provide a full characterization of the worst-case coordination
ratio in the restricted assignment and unrelated parallel links models. In particular, we quantify
the tradeoff between the “negligibility” of the traffic controlled by each user and the coordination
ratio. We analyze both pure and mixed strategies systems and identify the range where their
performance is similar.

1 Introduction

Overview: In most communication networks it is infeasible to maintain one centralized authority
to route traffic efficiently. As a result, users may decide individually how to route their traffic. Each
user behaves selfishly in the sense that he wishes to minimize his transmission cost while being aware
of the network congestion caused by other users. A system of users decisions is said to be in a
Nash equilibrium if no user can benefit from changing his decision. Simple examples in game
theory show that the performance of systems in Nash equilibrium, achieved by non-cooperative
users, can be far from the global optimum. Recently, the question of quantifying the decrease in
network performance caused by the lack of a centralized authority, received considerable attention
among researchers. Koutsoupias and Papadimitriou [5, 8] suggested to investigate the worst-case
coordination ratio, which is the ratio between the worst possible Nash equilibrium and the global
optimum, as a mean to understand the cost incurred due to the lack of a centralized regulating
authority.

Problems of this type have been studied lately by two approaches. The worst-case coordination
ratio in a network composed of m parallel related links was analyzed in [4, 5, 8], while making no
assumptions on the relative amount of traffic controlled by each user. On the other hand, [11, 12]
obtained improved bounds for general networks while assuming that each user controls only a
negligible fraction of the total traffic. We attempt to bridge between these two approaches, by
analyzing the worst-case coordination ratio as a function of the relative fraction of the total traffic
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controlled by each user. Specifically, we quantify the required “negligibility” of each user’s traffic,
needed to bound the worst-case coordination ratio by a constant.

We focus on two new models. First, we study the restricted assignment model (also called
the subset model) which is defined as follows. The network consists of m parallel links, there are
n users where user j has amount of traffic wj , that can be transmitted through any link from a
subset Sj of the m links. We consider both the pure strategies case where each user selects one
link to transmit his traffic, and the more general case of mixed strategies where each user decides
a probability distribution over his allowable links. In both cases each user is aware of the decisions
made by other users. Each user behaves selfishly and wishes to minimize his cost by assigning
his traffic to the least loaded link. The global objective however, is to minimize the load of the
most loaded link. We note that even though this model is a simplification of real communication
networks, it captures the essence of basic networking problems as pointed out by [5, 6, 8].

Additionally, we study the more general model of unrelated links in which a task j (j =
1, . . . , n) is associated with an m-vector ~wj specifying its weight on each link. We analyze the
worst-case coordination ratio as a function of the maximum stretch s in the system, where s =
maxj,i,l:wij<∞

wij

wlj
.

Our results: We provide a full characterization of the coordination ratio for both pure and
mixed strategies in the restricted assignment and unrelated links models. Specifically, we prove the
following results:

• We show the following tight bounds for the restricted assignment model, as a function of the
ratio r between the optimal assignment and the largest task:

– For 1 ≤ r ≤ log m we prove that the coordination ratio is bounded by Θ

(

log m

r·log(1+ log m
r

)

)

in the pure strategies case, and by Θ

(

log m

r·log log(1+ log m

r
)

)

in the mixed strategies case.

– For r = Ω( log m
ǫ2

) we show that the coordination ratio for both pure and mixed strategies
systems is bounded by 1 + ǫ.

Note that general bounds of Θ( log m
log log m) for pure strategies and Θ( log m

log log log m) for mixed strate-
gies are obtained when r = 1, i.e. when making no assumptions on the largest task in the
system. We also note that for r = Ω(log m) the coordination ratio is bounded by a constant,
for both pure and mixed strategies.

• In the unrelated links model we prove that the coordination ratio is bounded by Θ

(

s + log m

log(1+ log m
s

)

)

in pure strategies systems, and Θ

(

s + s·log m

log(1+s·log log m
s

)

)

when mixed strategies are allowed.

Some of our results are obtained by extending the techniques used in [4] to the restricted
assignment and unrelated links models.

Related work: Koutsoupias and Papadimitriou [5] initiated the study of worst-case coordination
ratio in networks composed of m-parallel related links with possibly different speeds. They first
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investigated the case of two links and proved a worst-case coordination ratio of 3/2 for the case of

identical links, and φ = 1+
√

5
2 for links with possibly different speeds. They also obtained non-tight

bounds for the general case. Mavronicolas and Spirakis [6] continued this line of research while
focusing on the special case of fully-mixed strategies in which the probability of assigning any task
to any link is non-zero. They proved that in this case the worst-case coordination ratio is bounded
by Θ( log m

log log m) for both the identical links model and the general related links model where all tasks

have equal weights and m ≤ n. Czumaj and Vöcking [4] proved tight bounds for the m-parallel
related links model, and showed that the worst-case coordination ratio is bounded by Θ( log m

log log m)

in the identical links model and by Θ( log m
log log log m) in the general related links model. Czumaj et

al. [3] continued to study this problem and characterized the coordination and bicriteria ratios for
different families of cost functions.

Roughgarden et al. [10, 12] also examined the degradation in network performance due to
unregulated traffic. Their model deals with general networks where users adopt pure strategies

only, and the amount of traffic of each user is assumed to be a negligible fraction of the total traffic.
The objective is to minimize the total latency. They proved that when the latency of each edge is a
linear function of the edge congestion, any flow at Nash equilibrium has total latency at most 4/3 of
the optimal flow. Although for general latency functions the coordination ratio is unbounded, the
following bicriteria result can be shown: for any network with continuous non-decreasing latency
functions, a flow at Nash equilibrium has total latency no more than that of an optimal flow forced
to route twice as much traffic. Roughgarden [11] also showed that the cost of unregulated traffic
does not depend on the complexity of the network topology. He also studied the impact of latency
functions belonging to specific classes. Roughgarden et al. [1, 2, 9] studied various ways to construct
and price networks such that the cost incurred in unregulated traffic is minimized.

Paper structure: The paper is organized as follows. Section 2 includes formal definitions and
notations. The restricted assignment model is studied in section 3. In section 4 we analyze the
unrelated links model.

2 Definitions and notations

The restricted assignment model is defined as follows: there are m parallel links and n users, where
user j (j = 1, . . . , n) has a task with weight wj, that can be assigned to any link from a subset
Sj of the m links. We denote the largest task in the system by wmax = max1≤j≤n wj. Given an
instance of the problem we define the global optimum (denote it by OPT ) to be the assignment of
tasks to links that minimizes the maximum load of a link. We denote the ratio between the value of
the optimal solution and the largest task by r = OPT

wmax

. The unrelated links model is more general.
Task j (j = 1, . . . , n) is associated with an m-vector ~wj , where wij indicates the weight of task j
on link i.

We assume that the users are non-cooperative and each one wishes to minimize his own cost
with no regard to the global optimum. We consider two types of users strategies systems:

1. Pure strategies: user j selects link lj ∈ Sj and assigns his task to it. Each user is aware of
the choices made by all other users when making his decision.
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2. Mixed strategies: user j selects a probability distribution {pij} (i ∈ Sj) over the allowable
set of links for task j. Each user is aware of the probability distributions selected by all other
users.

For the remainder of this section we regard pure strategies as a special case of mixed strategies,
and describe our definitions in terms of mixed strategies systems. Given a system S of mixed
strategies with probability distributions {pS

ij}, we define the following random variables:

• A set of indicator random variables {XS
ij}, where XS

ij indicates whether task j is assigned to

link i. By definition: Pr[XS
ij = 1] = pS

ij .

• For each link i (i = 1, . . . ,m) we define a random variable LS
i , indicating the total load on the

link: LS
i =

∑n
j=1 wj ·XS

ij . We denote the maximum expected load by µS = max1≤i≤m E[LS
i ].

• We define a random variable LS
max = max1≤i≤m LS

i to indicate the maximum link load, and
denote its expectancy by µS

max = E[LS
max ]. Clearly, µS

max ≥ µS.

For simplicity of notation, throughout the paper we omit the superscript S when meaning is
clear from context.

Definition 2.1 The expected cost of user j for assigning his task to link i in system S is defined

as: cS
ij = E[LS

i ] + (1 − pS
ij)wj .

Definition 2.2 A system S is said to be in Nash Equilibrium if and only if for every task j and

link i, pS
ij > 0 only if i = arg min1≤k≤m cS

kj.

Definition 2.3 The worst-case coordination ratio of an instance of the problem is defined as R =

maxS
µS
max

OPT
, where the maximum is taken over all strategies systems S in Nash equilibrium.

3 Worst-case equilibria in the restricted assignment model

In this section we provide tight bounds for worst-case equilibria in the restricted assignment model.
We investigate both pure and mixed strategies. We first show upper bounds for the problem, and
then provide matching lower bounds.

3.1 Upper bounds for restricted assignment

We begin by proving an upper bound on the maximum expected load in any system in Nash
equilibrium. Recall that r = OPT

wmax

, without loss of generality we assume that r is integral.

Lemma 3.1 Let S be any system in Nash equilibrium. Then µS ≤ (β + 1
r ) ·OPT, where β satisfies

the inequality: e(β
e )β ≤ m

1
r .
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Proof: We order the links by non-increasing order of their expected loads. For every k ≥ 1, define
mk to be the minimal integer such that E[Lmk+1] < k ·wmax (mk = m if there is no such integer).

We define l = ⌊ µS

wmax

⌋. Note that ml ≥ 1. The next claim states an important property regarding
the relation between mk and mk+1.

Claim 3.2 For every k ≥ 1, mk

mk+1
≥ k+1

r .

Proof: Denote by Jk+1 the set of tasks with positive probability to be assigned to any link from
[1, . . . ,mk+1], and denote the total weight of tasks from Jk+1 by W (Jk+1) =

∑

j∈Jk+1
wj . Consider

the way OPT schedules the tasks from Jk+1. OPT can not assign a task from Jk+1 to a link with
index larger than mk. Let us assume, for contradiction, that OPT assigns task j ∈ Jk+1 to link
t > mk. In addition, we assume that in our system pqj > 0 for some link q ≤ mk+1. There follows:

cqj = E[Lq] + (1 − pqj)wj ≥ (k + 1)wmax + (1 − pqj)wj ≥ (k + 1)wmax

≥ k · wmax + (1 − ptj)wj > ctj ,

where the first inequality follows from the definition of q and the third inequality results from
wj ≤ wmax (j = 1, . . . , n). This contradicts the fact that the system S is in Nash equilibrium.
Hence, OPT must assign all tasks from Jk+1 to links in the range [1, . . . ,mk]. Let LOPT

i denote
the load on link i in the optimal assignment. Recall that wmax = OPT

r . We conclude that

mk · OPT ≥
mk
∑

i=1

LOPT
i ≥ W (Jk+1) ≥

mk+1
∑

i=1

E[Li] ≥ (k + 1)

(

OPT

r

)

mk+1,

which yields the desired inequality.

We use Claim 3.2 iteratively together with the inequality (n!/k!) ≥ (n/e)n

(k/e)k to obtain the following:

m ≥ mr ≥ l(l − 1) · · · (r + 1)

rl−r
=

l!

r! · rl−r
≥ ( l

e)
l

( r
e)

r · rl−r
.

Substituting l = β · r we get: e(β
e )β ≤ m1/r and µS ≤ (l + 1)OPT

r = (β + 1
r )OPT .

3.1.1 Pure strategies

In the following theorem, derived from Lemma 3.1, we show an upper bound on the worst-case
coordination ratio as a function of the ratio r between the optimal solution and the largest task in
the system.

Theorem 3.3 For pure strategies, when 1 ≤ r ≤ log m, R = O

(

log m

r log(1+ log m
r

)

)

.

As a direct result from Theorem 3.3, we obtain the following general upper bounds for two
extreme cases. In the first case we make no assumptions regarding the amount of traffic controlled
by each user, i.e. r = 1. In the second case the tasks are relatively small, i.e. r = Θ(log m).
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Corollary 3.4 For pure strategies, R = O( log m
log log m).

Corollary 3.5 For pure strategies, when r = Θ(log m), we have R = O(1).

Next, we study the coordination ratio in networks where each user controls a small fraction of
the total traffic, i.e. r = Ω(log m). The next theorem shows that in such networks the coordination
ratio is close to 1.

Theorem 3.6 For any 0 < ǫ < 1, if r = Ω( log m
ǫ2

), then R ≤ 1 + ǫ.

Proof: ¿From Lemma 3.1 we know that R ≤ β + 1
r where β satisfies the inequality: e(β

e )β ≤ m1/r.

When taking r = Ω( log m
ǫ2 ) we obtain using Taylor expansion:

eO(ǫ2) ≥ m1/r ≥ e

(

β

e

)β

= e
1
2
(β−1)2−O((β−1)3),

and the inequality yields R ≤ β + 1
r ≤ 1 + ǫ.

3.1.2 Mixed strategies

The following theorem gives an upper bound on the coordination ratio for the mixed strategies
case.

Theorem 3.7 For mixed strategies, R = O

(

log m

r·log log(1+ log m
r

)

)

.

Proof: For convenience we scale the tasks weights such that wmax = 1. Consider an arbitrary link
i. Recall that Li =

∑n
j=1 wjXij , where wj ≤ wmax = 1 for j = 1, . . . , n, and µ = max1≤i≤m E[Li].

We apply Hoeffding inequality and obtain for every c > 1:

Pr[Li ≥ c · µ] ≤
(

e · E[Li]

c · µ

)c·µ
≤

(

e · µ
c · µ

)c·µ
=

(

e

c

)c·µ
.

We can now apply the union bound to obtain: Pr[Lmax ≥ c · µ] ≤ m(e/c)c·µ. For every integer
α > 1 we can upper bound the expected maximum load by

µmax ≤ α · µ + µ ·
∞
∑

k=α

Pr[Lmax ≥ k · µ] ≤ α · µ + m · µ
∞
∑

k=α

(e/k)k·µ ≤ α · µ + 2m · µ · (e/α)α·µ,

where the last inequality follows from the fact that the sequence is sub-geometric. We can substitute
α for Γ−1(m1/µ), where Γ−1 is the inverse Gamma function and Γ−1(x) = Θ( log x

log log x). We then

have: (e/α)α·µ ≤ 1/m, hence µmax ≤ (α + 2)µ. Since α = O

(

log m

µ·log log m

µ

)

there follows: µmax =

O

(

log m

log log m
µ

)

. Since OPT ≥ r, Theorem 3.3 implies that µ = O

(

log m

log(1+ log m
r

)

)

, substituting µ we

conclude that µmax = O

(

log m

log log(1+ log m

r
)

)

and therefore R = O

(

log m

r·log log(1+ log m

r
)

)

.
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The following upper bounds for two extreme cases are derived directly from Theorem 3.7.

Corollary 3.8 In the restricted assignment problem R = O( log m
log log log m).

Corollary 3.9 When r = Θ(log m) we have R = O(1).

The next theorem refers to networks where each user controls a small fraction of the total traffic.

Theorem 3.10 For any 0 < ǫ < 1, if r = Ω( log m
ǫ2

), then R ≤ 1 + ǫ.

Proof: For convenience we scale the tasks weights such that wmax = 1, hence OPT = r. By the
Chernoff bound, for every 1 ≤ i ≤ m, and 0 < ǫ < 1:

Pr[Li ≥ (1 + ǫ/3)µ] ≤ Pr[ Li + (µ − E[Li]) ≥ (1 + ǫ/3)µ ]

≤ e−
ǫ2µ

27 ≤ m−3,

where the first inequality follows since µ − E[Li] ≥ 0, the second inequality results from the fact
that E[Li + (µ − E[Li]) ] = µ, and the last inequality follows from µ ≥ OPT = r. By applying
the union bound, with high probability Lmax ≤ (1 + ǫ/3)µ and therefore µmax ≤ (1 + ǫ/3)µ. By
using Theorem 3.6 with ǫ/3 we conclude that µmax ≤ (1 + ǫ/3)(1 + ǫ/3)OPT ≤ (1 + ǫ)OPT and
the theorem follows.

3.2 Lower bounds for restricted assignment

We begin by proving a tight lower bound for the pure strategies case. We note that our lower
bounds are proved even for unit tasks.

Theorem 3.11 For pure strategies, R = Ω

(

log m

r·log(1+ log m
r

)

)

.

Proof: We construct the following problem instance:

links: we partition the m links into l + 1 groups (the value of l will be determined later) such that

in group k = 0, . . . , l there are
√

m
⌊

l!
rl · rk

k!

⌋

links. Denote the number of links in group k by nk.

tasks: we partition the tasks into l groups. In group k = 1, . . . , l there are k · nk unit tasks, each
can be assigned to any link from groups [k − 1, . . . , l].

Observe that OPT ≤ r + 1 for this problem instance. The optimal solution assigns the tasks
of group k (k = 1, . . . , l) to the links in group k − 1, at most r + 1 tasks per link. We define
the following system of pure strategies, denote it by S: all tasks from group k (k = 1, . . . , l) are
assigned to links from group k, k tasks per link.

Claim 3.12 The system S is in Nash equilibrium.
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Proof: Denote by Sk (k = 1, . . . , l) the set of links to which tasks from task group k can be assigned.
Let j be a task from group k and consider the assignment of j to link i from link group k. Clearly,
cij = k, and for each link t ∈ Sk we have ctj ≥ (k − 1) + 1 = k ≥ cij . Hence the system S is in
Nash equilibrium.

We now turn to bound the coordination ratio. Since the number of links is m we should satisfy:

m ≥
√

m · l!

rl

l
∑

k=1

rk

k!
=

√
m · l!

rl
· er,

using Stirling’s formula we bound the last expression from above by

√
m · (1 + o(1))

√
2πl · ( l

e)
l

rl
· er ≤ m,

and by taking l = βr, we conclude that R = Ω( l
r ) = Ω(β) = Ω

(

log m

r log(1+ log m
r

)

)

.

Using Theorem 3.11, we can derive a tight lower bound (for pure and mixed strategies) for the
case where each user controls a small fraction of the total traffic. The proof is omitted.

Theorem 3.13 For any 0 < ǫ < 1, if r = O( log m
ǫ2 ), then R ≥ 1 + ǫ.

We can modify our construction from Theorem 3.11 to obtain a tight lower bound for the mixed
strategies case.

Theorem 3.14 For mixed strategies, R = Ω

(

log m

r·log log(1+ log m
r

)

)

.

Proof: We slightly modify the problem instance constructed in the proof of Theorem 3.11. Every-
thing remains the same except tasks group l now contains (l − 1) · nl tasks. Clearly, OPT ≤ r + 1.
We introduce the following system of mixed strategies, denote it by S:

• All tasks from group k (k = 1, . . . , l − 1) are assigned to links from group k, k tasks per link
(the same as the construction in the proof of Theorem 3.11).

• Each task from group l has uniform distribution over the links from group l.

We first prove that the system S is in Nash equilibrium.

Claim 3.15 The system S is in Nash equilibrium.

Proof: The cost of task j from group l on any link i in group l is: cij = (l − 1) + (1 − 1/
√

m). On
the other hand, for any link t not in group l: ctj = (l − 1) + 1 > cij . The proof concerning tasks
from groups [1, . . . , l − 1] is identical to the proof given in Claim 3.12.
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In the following claim we determine a lower bound on µS
max .

Claim 3.16 µS
max = Ω

(

log m

log log(1+ log m
r

)

)

.

Proof: Consider the assignment of tasks to links in group l. There are (l− 1) · √m unit tasks each
with uniform distribution over the

√
m links. This corresponds to a model of throwing (l− 1) ·√m

balls uniformly to
√

m bins (see e.g. [7]). In this model the expected maximum occupancy is:

Ω
(

l + log m
log((log m)/l)

)

. In our case this lower bound corresponds to µS
max = Ω

(

log m

log log(1+ log m
r

)

)

.

Since OPT ≤ r + 1, our lower bound on the coordination ratio in the case of mixed strategies
follows directly from Claim 3.16.

4 Analysis of the unrelated links model

Recall that in the unrelated links model, a task j is associated with an m-vector ~wj = (w1j , . . . , wmj)
specifying its weight on each link. Clearly, this model generalizes the restricted assignment model.
We define the maximum stretch in the system as s = maxj,i,l:wij<∞

wij

wlj
. In the next sections we

show tight bounds for pure and mixed strategies as a function of s. Note that by increasing s the
coordination ratio becomes arbitrarily large.

4.1 Upper bounds for the unrelated link model

We begin by proving an upper bound on the maximum expected load in any system in Nash
equilibrium.

Lemma 4.1 Let S be a system in Nash equilibrium. Then µS = O

(

s + log m

log(1+ log m
s

)

)

· OPT.

Proof: We order the links by non-increasing order of their expected loads. For every k ≥ 1, define
mk to be the minimal integer such that E[Lmk+1] < k ·OPT (mk = m if there is no such integer).
Let h = ⌊µS/OPT⌋. The following claim shows a relation between mk and mk+1.

Claim 4.2 For every k ≥ 1, mk

mk+1
≥ k+1

s .

Proof: Denote by Jk+1 the set of tasks assigned by S with positive probability to a link from
[1, . . . ,mk+1], and W (Jk+1) is the total weight of the tasks from Jk+1 under the assignment of S.
Suppose that there is a task j ∈ Jk+1 which is assigned by OPT to a link t > mk, and let q ≤ mk+1

be a link to which j is assigned by S with positive probability. Then,

cqj ≥ (k + 1) · OPT ≥ k · OPT + (1 − ptj)wtj > ctj ,
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contradicting the assumption that S is in Nash equilibrium. Therefore, all the tasks in Jk+1 are
assigned by OPT to links from [1, . . . ,mk]. Hence,

mk · OPT ≥
mk
∑

i=1

LOPT
i ≥ W (Jk+1)

s
≥ (k + 1) · OPT

s
· mk+1,

and the claim follows.

Now, if h ≤ s then we are done. Otherwise, using Claim 4.2 we obtain that

m ≥ ms ≥
h(h − 1) · · · (s + 1)

sh−s
=

h!

s! · sh−s
≥

(

l

e1−s/hs

)h

.

It follows that h = O

(

log m

log(1+ log m

s
)

)

.

The next two theorems bound the worst-case coordination ratio for pure and mixed strategies.
Theorem 4.3 follows directly from Lemma 4.1. The proof of Theorem 4.4 is by a similar analysis
to the one used in the proof of Theorem 3.7, and is omitted.

Theorem 4.3 For pure strategies R = O

(

s + log m

log(1+ log m
s

)

)

.

Theorem 4.4 For mixed strategies R = O

(

s + s·log m

log(1+s·log log m
s

)

)

.

4.2 Lower bounds for the unrelated link model

In this section we show matching lower bounds.

Theorem 4.5 For pure strategies, R = Ω

(

s + log m

log(1+ log m
s

)

)

.

Proof: We prove the theorem by constructing two instances of the problem. Without loss of
generality we assume that s is integral.

We first assume that s ≤ log m. We give a construction similar to the one in Theorem 3.11: We

partition the links into Ks+1 groups, where K ≤ Γ−1(m
1
3s ). For k = 0, . . . ,K−1 and i = 1, . . . , s,

group number ks+i contains nks+i =
√

m · (K!)s

(k!)s(k+1)i links, and group 0 contains n0 = m−∑ks+1
l=1 nl

links. Note that

√
m · (K!)s +

ks+1
∑

l=1

nl ≤
√

m · (K!)s +
√

m ·
K−1
∑

k=0

s
(K!)s

(k!)s
≤

√
m · (K!)s (1 + es) ≤ m,

so n0 ≥ √
m · (K!)s.
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The tasks are partitioned into Ks groups. For k = 0, . . . ,K − 1 and i = 1, . . . , s, the (ks+ i)-th
group contains (k + 1) · nks+i tasks. Each task in that group has weight 1 on a link from group
ks + i− 1, weight s− (s− i)/(k + 1) on a link from group ks + i, and an infinite weight on all other
links.

The optimal assignment is to assign each task from the l-th group of tasks to a distinct link
in the (l − 1)-th group of links. Thus, OPT = 1. Now, consider the following system S of pure
strategies: Each task from the l-th group is assigned to a distinct link in the l-th group of links.
Clearly, the load on a link from the l-th group is exactly l for l ≥ 1, and in particular, the maximum
load is Ks.

The system S is in Nash equilibrium: For a task j from the l-th group that was assign to a link
i, we have that cij = l, and for any link k 6= i, ckj ≥ (l−1)+1 = l. Therefore, the coordination ratio

is Ω(Ks). Since we can take K = Ω

(

1 + log m

s·log(1+ log m
s

)

)

, it follows that R = Ω

(

s + log m

log(1+ log m
s

)

)

.

We now handle the case when s = Ω(log m). Consider the following problem instance: there
are m tasks, where task j has weight 1 on link j, weight s on link ((j + 1) mod m), and an infinite
weight on any other link (assume the links are numbered [0, . . . ,m − 1]).

Clearly, OPT = 1 by assigning task j to link j (j = 0, . . . ,m− 1). Consider the system of pure
strategies S where task j is assigned to link ((j + 1) mod m). Clearly, the system S is in Nash
equilibrium. Moreover, the load on each link is s. Hence, the coordination ratio is Ω(s).

We can modify the construction from Theorem 4.5 and obtain a tight lower bound for the mixed
strategies case. The proof relies on the same arguments used in the proof of Theorem 3.14 and is
omitted.

Theorem 4.6 For mixed strategies, R = Ω

(

s + s·log m

log(1+s·log log m
s

)

)

.
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