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Abstract

In this paper, we describe a very simple bounded-
queuesize local-control algorithm for routing multi-
commodity flows in a dynamically-changing dis-
tributed network. The algorithm is based on the
edge-balancing approach described in [AL93], but has
the added benefits of:

1. a much improved running time, and

2. working even in networks where edge capacities
can vary in an unpredictable and unknown fash-
ion.

In fact, the sequential running time of the algo-
rithm is now comparable to (and, in some cases,
better than) the time of the best previously known
approximation algorithms for the multi-commodity
flow problem in a fixed network [LMP*91]. The
fact that the new algorithm works well in dynami-
cally changing networks means that problems such
as end-to-end communication and load balancing

[AMS89, AGR92, AAMRY3] can now be solved in
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a throughput-competitive fashion, even for the more
complex case of multiple commodities.

1 Introduction

The multicommodity flow problem consists of shipping
several different commodities from their respective
sources to their sinks through a common network so
that the total low going through each edge does not
exceed its capacity. Associated with each commodity
is a demand, which is the amount of that commodity
that we wish to ship through the network. Given a
multicommodity flow problem, we would like to know
if there is a feasible flow, i.e. a way of shipping the
commodities that satisfies the demands as well as the
capacity constraints. More generally, we might also
like to know the maximum value z such that at least
z percent of each demand can be shipped without
exceeding the capacity constraints. The latter prob-
lem is known as the concurrent flow problem, and is
equivalent to the problem of determining the mini-
mum ratio by which the capacities must be increased
in order to satisfy 100% of all of the demands.

Multicommodity flow problems arise in a wide va-
riety of contexts and have been extensively studied
during the past several decades. For example, many
product distribution, traffic planning, and schedul-
ing problems can be expressed and solved as a mul-
ticommodity flow problem. In addition, it has re-
cently been discovered [LR88, KARRY0] that a wide
variety of N P-hard problems (such as graph parti-
tioning, minimum feedback arc set, minimum cut lin-
ear arrangement, minimum 2D area layout, via mini-
mization, and optimal matrix arrangement for nested
disection) can be approximately solved using mul-
ticommodity flow algorithms. Many packet routing
and communication problems can also be expressed
as multicommodity flow problems but in such appli-
cations, it is crucial that the flow algorithms work in
an online fashion with local control.
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Not surprisingly, the prior literature on flow prob-
lems is extensive. Much of the past work centers
on the much simpler problem of 1-commodity flow
(also known as the maz-flow problem). A survey
of the many l-commodity algorithms can be found
in [GT90]. Most of these algorithms rely on finding
augmenting paths to increase the flow from source to
sink. An exception is the recent algorithm of Gold-
berg and Tarjan [GT90] (which is based on an al-
gorithm of Karzanov [Kar74]). The latter algorithm
maintains a preflow on the network and pushes local
flow excess toward the sink along what is estimated to
be a shortest path. The best of these algorithms run
in é(NM) steps, where N is the number of nodes
in the network and M is the number of edges in the
network.

There has been much less progress on the multi-
commodity flow problem, perhaps because handling
K commodities seems to be much more difficult than
handling one commodity. All exact algorithms for
multicommodity flow are based on linear program-
ming, all have horrendous running times (even though
polynomial), and none are used for large networks in
practice.

The situation is somewhat better for approxima-
tion algorithms, however. In particular, Vaidya
[Vai89] developed a (1 4 €)-approximation algo-
rithm for the min-cost multicommodity flow prob-
lem based on linear programming that uses (roughly)
O(K3NM?% log(DUe™ 1)) steps where K is the num-
ber of commodities, N and M are as before, D is
the largest demand, and U is the largest edge ca-
pacity. Subsequently, Leighton et al [LMP*91] dis-
covered a purely combinatorial (14 €)-approximation
algorithm based on 1-commodity min-cost flows that
runs in O(K2NMe~?log K log® N) steps. (By using
randomization, the running time of the latter algo-
rithm can be improved by a factor of K).

Recently, Awerbuch and Leighton [AL93] proposed
a much simpler approach to multicommodity flow
that is based on a simple “edge balancing” technique
that attempts to send a commodity across an edge
e = (u,v) if there is more of the commodity queued
at u than there is queued at v. Contention for ca-
pacity is resolved by shipping the commodity which
has the largest disparity in queue size across e. No
attempt is made to find augmenting paths, shortest
paths, min-cost paths, or even any path from a node
to a sink. Commodities are simply entered at their re-
spective sources, according to their demands, emptied
from their sinks when present, and otherwise locally
balanced across each edge.

In [AL93], it is shown that the simple edge-
balancing approach to multicommodity flow leads

Proc. 26’th ACM Symposium on Theory Of Computing (STOC), May 1994

to a (1 4+ €)-approximation algorithm that runs in
O(M3K®/?Le=3log K) steps, where L is the length
of the longest flow path. In this paper, we describe
a closely related algorithm for multicommodity-flow
KL*M 1

that runs in O 3 (M/e)) steps. The im-

proved bound is competitive with (and in some
cases, superior to) the best previous bound of
O(K*NMe?log K log® N) for deterministic algo-
rithms [LMP*91]. Indeed, if L is small, then the al-
gorithm runs in nearly linear time (per commodity).
The improved bound is obtained with a more careful
amortized analysis of running time that is based on a
partition of the flow for each commodity into packets
of size equal to the demand for that commodity.

Perhaps more importantly, we also show that a
slightly slower version of the algorithm can be used to
route flow in an on-line local-control fashion through
a distributed network in which the edge capacities
are allowed to vary in an arbitrary and an unknown
fashion. As long as there exists sufficient capacity to
route the flow paths from the sources to the sinks at
each step, we show that the on-line local-control algo-
rithm will get the job done with bounded queue sizes
and with near-optimal average delay.

Previously, it was not known whether or not it was
possible to guarantee such performance even with
infinite computational power, and complete global
knowledge of the state of the system, such as link ca-
pacities and queue sizes. Indeed, it is not clear how
to guarantee that we can route a packet of flow from
its source to its destination in some bounded num-
ber of steps, if edge capacities near the packet can
be zeroed out at any time (thereby blocking the for-
ward progress of the packet and forcing it to choose
an alternative path, which then may be become the
blocked path). To reiterate, the success of our al-
gorithm only depends on the existence of sufficient
capacity for flow paths from the sources to the sinks.
The flow paths can vary at each step so that it need
not be the case that a particular flow paths exists for
the amount of time needed for a packet to traverse it.
Moreover, this “dynamic instantaneous” connectivity
assumption may be further relaxed to an “amortized
connectivity” assumption where the required connec-
tivity between sources and sinks is assumed to exist
if we amortize link capacity over some time window
(which means that at any specific instant, sources
and sinks may be completely disconnected). Never-
theless, we still show that our (nearly-trivial) algo-
rithm is powerful enough to guarantee that all but a
bounded number of packets reach their destinations
quickly.

As a consequence, our method significantly extends
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the previous work on end-to-end routing in communi-
cation networks with dynamic topology, by exhibiting
an (1 + €)-throughput-competitive end-to-end proto-
col for the case of multiple senders and receivers. For
the single-receiver case, this problem has been exten-
sively studied [AE83, AG88, AMS89, AG91, AGR92];
yet no upper bounds on throughput-competitiveness
in this setting were known.

The remainder of this paper is divided into sec-
tions as follows. In Section 2, we describe the general
form of the algorithm for directed networks with dy-
namically changing edge capacities. This algorithm
runs in O(LMe=2(K +In(Ke™1)) rounds where each
round takes O(KM In K) steps. Then in Section 3,
we show how to reduce the number of rounds to
O(LMe=?In(Ke™1) for undirected static networks.
In Section 4, we show to to decrease number of com-
putation steps per round, by using an amortized
“packet-based” analysis, and slightly modifying the
algorithm. Finally, in Section 5, we mention applica-
tions of this work to distributed computing and exten-
sions of the algorithm for total maximum throughput
(as opposed to maximum concurrent flow).

Due to space limitations, we will only sketch the
proofs of the most important results in this extended
abstract. The full details will appear in the final draft
of this paper.

2 Routing Flow through Dy-
namic Networks

2.1 The Flow Problem

In a typical instance of a multicommodity flow prob-
lem, we are given a network with N nodes, M edges,
and K commodities. Each edge e has a capacity ¢(e)
and each commodity ¢ has a demand d;. Without
much loss of generality, we can also assume that ev-
ery commodity ¢ has a single source and a single sink.
The goal of the algorithm is to find flow paths from
each source to each sink so that it is possible to con-
tinuously ship d; units of commodity ¢ from the i’th
source to the ¢’th sink for 1 < ¢ < K without violat-
ing capacity constraints of any edge. We will show
how to find such paths in what follows provided that
there exists feasible flow paths for the corresponding
problem with demands (1 4 3¢)d; for commodity %,
where € > 0 is a parameter of our choosing.

More importantly, however, we will show how to
route the flow (at at rate of (1 + €)d; units of flow
for commodity ¢ during each round) through the net-
work using local decision making when the capacities
in the network vary with time, provided that during

each step there exist flow paths with enough capacity
to satisfy demand (1 4 3¢)d; for commodity i. This
latter problem is made even more challenging by the
fact that a flow path need not last long enough for
the flow to traverse it. (Each unit of flow can only
traverse one edge during each round.) Hence, we can
always keep some amount of flow from ever reach-
ing its destination. Nevertheless, we show that the
amount of flow ever present in the system remains
bounded over time, no matter how capacities vary,
which means that all but a bounded amount of flow
reaches its destination in a bounded amount of time
after it entered the source. It is perhaps somewhat
surprising that this dynamic flow routing problem can
be solved at all, much less with a local-control, on-
line algorithm that has no knowledge of future edge
capacities (or even the existing edge capacities or the
queue sizes in other regions of the network).

2.2 Deriving a Sequential Algorithm
for
the Traditional Multi-commodity
Flow Problem in Static Networks

Any stable algorithm for a continuous flow problem
with demands {(1 + €)d;} can be easily used to find
a feasible solution to a static flow problem with de-
mands {d;}. We simply run the continuous algorithm
until the amount of each commodity residing in the

queues is at most an fraction of the total

€
(1+¢€
amount of that commodity that has been pumped
into the network. The number of rounds R needed to
reach this point depends on the upper bound on flow
residing in queues.

After R rounds, we will have input (1+¢)d; R units
of commodity ¢ into the network. At most ed; R units
of commodity ¢ remain in the network, and so d; R
units of commodity ¢ have been pumped through the
network. Since the flow has been pumped through in
R rounds, an average of d; units of commodity ¢ is
shipped per round. Hence, we can obtain a solution
to the static problem by taking the history of the
continuous solution and averaging (i.e., dividing by
R). The total time needed to find the static solution
will then be R times the time needed to implement
each round of the continuous algorithm.

2.3 The Dynamic Algorithm

In what follows, we will describe the algorithm for the
continuous version of the problem in which (1 + €)d;
units of commodity ¢ are pumped into the network at
each step. For simplicity, we will assume that there



is a queue for each commodity at the head and tail of
each directed edge. We will also assume that there is a
single edge leading from each source and a single edge
leading to each sink. We will also associate a potential
function with each queue. In particular, the potential
of a queue of size ¢ for commodity ¢ is defined to be
#i(q) = €% where «; will be defined to be a; =

8L;d’ where L is the length of the longest flow paths
for eZLny commodity in an optimal feasible solution.
(We will later show how to guess the value for L.)
Moreover, we will restrict the source queue for each
commodity ¢ to have size );, where the value of @Q;
will be specified later. (Up to a log factor, @Q; = a; *.)
Excess flow (beyond ;) at the source will be stored in
a special overflow buffer. The potential of an overflow
buffer of size b will be o;(b) = ¢;(Qi)~b =a;-b-e* Qi
The algorithm proceeds in rounds, where each round
consists of the following four phases.

Phase 1: Add new flow to the sources. In particular,
add (1 + €)d; units of flow to the overflow buffer
at the the 7’th source (1 < ¢ < K). Then move
as much flow as possible from the overflow buffer
to the source queue (subject to the maximum
height constraint of @; for the source queue).

Phase 2: Push flow across edges so as to minimize
the total potential of the queues in each edge, but
respecting the capacity constraint of the edge in
the current round.

Phase 3: Remove flow from the sinks. Zero out the
queue for commodity ¢ at the sink for i (1 <i<

K).

Phase 4: Rebalance at nodes. Reallocate each com-
modity within each node so that the queues
for commodity ¢ are all equal within each node
(1 <i<K).

2.4 The Analysis

The key to analyzing the performance of the algo-
rithm is to show that no overflow buffer ever gets too
large. Since no queue height for the #’th commod-
ity can ever exceed ; (the limit on the source queue
height), we will then be able to argue that the to-
tal amount of undelivered flow never gets too large.
As a consequence, we will also then be able to get
good bounds on the number of rounds that will be
needed to find flow paths for the off-line, static multi-
commodity flow problem.

We will show that the overflow buffers stay
bounded by showing that the overall potential of the

system stays bounded. We will show that the over-
all potential of the system stays bounded by showing
that

1. The potential increase during Phase 1 is not too
large, and

2. if the potential is high, then the potential de-
crease during Phases 2-4 more than compensates
for the potential increase during Phase 1.

Our analysis is similar to that in [AL93] except that
we use an exponential potential function and a more
careful argument that exploits the use of the overflow
buffers and queue height constraints (which were not
present in the [AL93] algorithm).

Our analysis will make use of the following simple
facts about functions that have positive derivatives
(such as our potential functions ¢; and o;):

Fact A: Ve and 6 > 0,¢(x + 6) < ¢(2) + 6(/>I(x +4)

Fact B: Vz and 6 > 0,¢(z+6) > (b(m)—i—éqSl(x—l—é)—
6" (x + 6)

Fact C: Yz and 6 > 0,é(z + 6) < ¢(x) + 6¢I(x) +
826" (x + 6)

2.4.1 Potential Increase in Phase 1

Let ¢; and b; denote the heights of the source queue
and the overflow buffer for commodity ¢ at the begin-
ning of the round. Then if ¢; + b; + (1 + €)d; < @,
the increase in the potential for commodity ¢ during
Phase 1 will be

Gi(qi +bi + (1 + €)d;) — ¢i(qi) — oi(bs)
(bi + (1+ )di)dy(gi + bs + (1 + )di) — bid(Qs)
(1+ €)didi(gi + bi + (1 + €)dy)
by Fact A and the fact that qﬁ; is an increasing func-
tion.

If ¢; + b; + (1 + €)d; > @, then the increase in
potential for commodity ¢ during Phase 1 is

<
<

6:(Qi) + oi(qi +bi + (L4 )ds — Q;) — di(q;) — 73(b;)
< (Qi — 40)6i(Qi) + (g + (1 + )ds — Qi) 8:(Qs)
= (14 ¢)did;(Qs)

by Fact A. In either case, the increase in potential for
commodity 7 during Phase 1 is at most

(14 €)dig;(si) (1)
where s; is the height of the i’th source queue after
Phase 1.



2.4.2 Potential Decrease in Phases 2 and 3

If we push g units of commodity i across an edge e in
Phase 2, then the resulting decrease in the potential

will be

®i(grai) — ¢i(grait — 9) + ¢i(qhead) — ®i(ghead + 9)

where ¢gaj 1s the initial height of the queue at the
tail of e and gpeaq 1s the initial height of the queue at
the head of e. Using Facts B and C, this quantity is
easily bounded below by

g¢§(‘]tail) - gij);l(qtail) - g¢;’(‘]head) - 92¢;’/(qhead + (g))

2
Note that this quantity can be negative. Also note
that when we sum Equation 2 across a sequence (or
path) of queues for which the queue at the head of one
edge is initially equal in height to the queue at the tail
of the next edge, then we get a cancellation of first
derivative terms. (i.e., the negative gé}(¢nead) term
from one edge will cancel the positive g¢}(gtail) term
from the next edge in the path.) This cancellation
will prove to be very useful in our analysis.

For example, let P denote a path of length L from
the source for commodity ¢ to the sink for commod-
ity ¢, and let ¢ denote the maximum height of a
queue for commodity ¢ along this path. (Note that
qf > s;.) Now consider what happens if wepush ¢
units of flow across each edge from the node with
queues of height ¢ to the sink during Phase 2, and
then we zero out the queue at the sink during phase 3.
Because we have balanced all the queues for each com-
modity within each node during the previous Phase 4,
we can use Equation 2 to conclude that the resulting
drop in potential will be at least

96i(q;) — 99i(0) — 2Lg* o7 (4f + 9). (3)

Next consider a feasible flow F for which we ship
fi = (1 + 2¢)d; units of commodity i for each i. Par-
tition the flow for each commodity i into elementary
flow paths P; ; so that the flow along path P; ; is g; ;.
Let g ; be the maximum queuesize for commodity ¢
along 77”' and let 77*] be that portion of P; ; from
the node with helght g7 ; to the sink for commodity
i. Also define ¢; = maxg;;

Now consider what happens if we push g;(e) units
of commodity ¢ across each edge e during phase 2

where
jle€P!;

Z 9ij-

By Equation 2, the resulting drop in potential during
phases 2 and 3 will then be at least

ZZgz

[¢ (Qtall )) - qj);(q}lead(e))]

— gi(€)* 187 (qait (€)) + 7 (qneaa(e) + gi(e))]
Z > 9i(e) [#(arain(€)) — & (aneaa(e))]

v

— gi(e )fi( ) (97 (grair(€)) + &7 (qneaa(€) + gi(e))]

j eE’P

= ZZ > asls

—9i;2fi97(q; ; + Fi)

Qtall )) - ¢;’(Qhead(6))]

K J
:Z 9ij [1(a7;) — 84(0) — 2L 6} (g5 ; + fi)]

(4)

We next set «; so that 2L f;¢{(¢; ; + fi) will be at

most a small fraction of ¢;(q; ;) for any i and ¢; ;. In
particular, we set

~ 8Ld; (5)
Since then
2LLd7 (655 + fi) = 2L(1 + 26)diafe (20 ot
= 2L(1 + 20)d;a e 1+ g7 )
€ *
S §¢;‘(qz’,j) (6)

as desired. Then the drop in potential from Equa-
tion 4 will be at least

ZZM[ — 2)6i(ai;) — 41(0)]

> ZZgi,j [(1 - %)452(52) - ai]
= Y n - sis) - a
= ) (1+2€)d; [(1 — =)9i(si) al]
= (1 + % — 62);di¢§(8i) - %72_26) (7)

Of course, we don’t actually know the feasible so-
lution F, but as long as we push flow across each
edge so as to maximize the potential drop locally for
each edge during Phase 2, we sill be guaranteed to
decrease the potential by at least as much as if we
push g;(e) units of flow ¢ for each i. Thus the poten-
tial drop during Phase 2 and 3 is at least as large as
the amount given in Equation 7



2.4.3 Overall Change in Potential

Since the potential does not increase during Phase 4,
we can combine Equations 1 and 7 to find that the
overall potential decrease during the round is at least

i (% - 62) diy(si) — 61&%7;26) (8)

i=1
If s; = @); for some ¢, then the decrease in potential
is at least

(5 — ) did}(Q:) — “FE
= (E _ 62) diaiea’Q’ _ K(ls-z2e)e

2
_ .0, K(+2
= 51— 2ggen - KR

This decrease is nonnegative if
Q0 = iln 2K (1 + 2¢) o Ld; In(K /¢)
o €(1 — 2¢) €

If s; < @; for all 7, then there is no potential in the
overflow buffers after Phase 1, which means that the
overall potential in the system at the end of the round
is at most

K K
MY ¢i(Qi) = 2M Y e
i=1

i=1

oMK <2K(1+25))

€(1 — 2¢)
AMK?(1 + 2¢)

€(1 — 2¢)
By induction on the number of rounds, this means

that the potential in the system at the end of every
MK?

€
As a consequence, we also know that the maximum
overflow buffer for commodity 7 never exceeds size
2MK  16Ld;MK

(67 €

round is at most 2M Ke® 9 = @

Hence, the total amount of commodity ¢ in the system
at the end of any round is at most

e(1—2¢)

2K%(142¢
oMK 2MIn (Q)
+
a; a;

32Ld;M (K+ln (ﬁw—ﬂ))

c(1—2¢)

€

-0 (dlLM(K-EHn(K/e)) )

Since (1 + €)d; units of commodity ¢ are entered into
the network during each round, this means that at

most ; <LM(K + ln(K/f)))

€

rounds worth of input flow for any commodity are
present in the network at any time. Thus the amount
of flow residing in the network will be at most an
e-fraction of the total amount of flow that has been
pumped into the network (for every commodity) once
we have run for a total of

R=0 (LM(K + ln(K/e))>

€2

rounds. Hence, if we are interested in finding a flow
in a static network, we can find the flow in R rounds,
where each round involves O(M K log K') work.

3 Improved Bounds for Static
Networks

In the special case when the edge capacities do not
vary with time and the edges are undirected, we can
improve upon the analysis in Section 2 by not plac-
ing any restriction on the queue height at the sources
(thereby eliminating the need for overflow buffers)
and by taking credit for pushing flow from a very large
queue to the appropriate sink. We must be careful to
first restrict the flow for each commodity ¢ so that it

only uses edges with capacity at least % (This can
reduce the resulting flow by at most an ¢ amount.)
Then, whenever there is a very large queue in the
network, we know that it is feasible to push 3\% of
the commodity from this queue to its sink. If the
max queue for commodity ¢ has size ()], this results

in a potential drop of at least

Gdi ' « Gdi ' €di 2 m " Gdi

i 6:(Q7) i ¢;(0) — 2N <M) b <Qi + M) ;
(9)

(where we have replaced L by N and g by EMﬂ from

Equation 3). By using the value of ; in Equation 5

and the analysis from Section 2, this bound can be

shown to be at least

i (1-5) si@n - stio)
=gz (-5 =)

We now consider two cases, depending on the
height of the source queues. First, if

K

€ , K(1+ 2¢)e
; (5 — 62) didi(si) > — R

then by Equation 8, we know that the potential does
not increase during the round. If; on the other hand,

K e K(1+ 2€)e
; (5 - 62) did;(si) < — 8L



then the increase in potential during Phase 1 is at
most

IL+e K(142)e
G- o
by Equation 1. Hence, we will not have an increase
in potential during the round if

(14 6)(1 420K
A(1-20L

2 .
¢ ((1 _ E) (i@ _ 1) > (1+e)(1+20)K |
8ML 2 21— 20)L
which will hold if
1 (cKM
Q; = —In <C x2 )
3 €

K3

where ¢ is a constant close to 2. Hence, the potential
will drop whenever a queue reaches height Q;.

This means that the maximum potential in the sys-
tem is at most

K .0 _ [(eKM 2eK2M?
> oM = 2KM =
i=1

€2 €2
Thus, the maximum amount of commodity ¢ in the
system at any time is 2M ¢ where ¢ is such that
2cK?M?
IMe™i < %
€

which is satisfied when

1 cK*M 8Ld; cK*M
g < —In < In .

o €2 € €2

Hence, the maximum amount of commodity ¢ in the
system at any time is

16 LM d; (cKzM)
In 5 .

€ €

This means that after

o (Un(2))

rounds, the flow residing in the system will be at
most an e-fraction of the flow that has been pumped
through the network for that commodity. This repre-
sents a factor of K improvement over the comparable
number of rounds for the directed dynamic network
algorithm described in Section 2.

4 Improving the Performance
by Partitioning Flow into
Packets

In Sections 2 and 3, we proved upper bounds on the
number of rounds R needed before the flow remain-
ing in the network for any commodity will be an e-
fraction of the flow that has been pumped through

the network for that commodity. At first glance, it
appears that O(M K log K) work is required to im-
plement each round. This is because we need to
push flow for up to K commodities for each edge in
a way that maximizes the potential decrease across
the edge. As a consequence, the algorithm requires a
total of ©(RM K log K) work before the leftover flow
is a small fraction of the total flow.

In what follows, we will briefly describe how to
modify the algorithm so that it is possible to sub-
stantially decrease the total work performed to reach
the same ratio of flow remaining to flow pushed. The
basic idea is to portion the flow for each commodity
i into packets of size (1 + €)d;. In addition, we will
approximate the queuesize 8 at the tail of each by an
integer number of packets p so that ¢ — 2(1 4 €)d; <
p(1 + €)d; < ¢, and we will approximate the queue-
size at the head of each edge by an integer number of
packets so that ¢ < p(1+¢€)d; < ¢+ 2(1 + €)d; for use
in deciding which packets to route across each edge.

During each round, we will add one packet at the
source for each commodity during Phase 1. During
Phase 2, we will route packets across edges according
to the following protocol. We first find the commodity
¢ for which

B3 (pitait(1 + €)di) — ¢4 (piheaa(l + €)ds)

is maximized and then we route a packet for this
commodity across the edge (assuming that p; 1451 >
Pi head+2). If there is still excess capacity remaining,
we update the queuesizes and select another packet
by the same measure.

In the case when the capacity of the edge is smaller
than the size of the packet, then we route as much
of the packet as capacity allows during this round
and we continue routing the same packet during the
next several rounds until it is delivered, or until it
becomes advantageous to interrupt the routing of the
packet because some other commodity has become
more desirable in the interim.

To keep computing costs to a minimum, we only
update the queuesizes at either end of an edge when
the final piece of each packet has been delivered or
when the delivery of the packet has been interrupted.
In the case that the delivery of a packet is interrupted
we update the true queuesizes at either end of the
edge but we do not update and approximate queue-
size unless the true queuesize has changed by more
than one packet’s worth since the last time we up-
dated the approximate queuesize. When the approx-
imate queuesize is updated, it is made as close as
possible to the true queuesize up to the constraints
mentioned earlier.



Note that a packet can only be interrupted when
the approximate queuesize at either end of the edge
changes and that this can only happen when the true
queuesize has changed by at least one packet’s worth.
hence we can change the cost of the interrupt to the
packet’s worth of flow that was moved into or out of
the true queue at either end of the edge. (A similar
argument is used to handle the balancing of packets
at each node during Phase 4.)

We can then argue that the total work is bounded
by the total number of times P that a full
packet moves forward in the network multiplied by
O(log K 4+ logN) = O(logM) (since we have K
queues at each edge and we will need to maintain
priorities among them, and since we have up to N
queues at each node). The value of P can be upper
bounded by the total number of packets that enter
the system in R rounds (this is easily seen to be K R)
multiplied by the maximum path length traveled by
any packet.

Since the “height” of a packet (in a queue) must
decrease whenever a packet traverses an edge by at
least one (when height is measured in terms of pack-
ets), it can be shown that no packet moves more than

— times, where ); is the maximum queuesize ever

enlcountered for commodity ¢. Since the maximum
potential in the system (for undirected static net-
works) is O(K2M?e=?), this means that the maxi-
mum queuesize for commodity 7 is at most ); where

e @ < O(K*M2%?).
Hence,
Qi=0 <ai ln(M/e)) =0 < ln(M/e)) :

Hence, no packet ever moves more than

o) <§ ln(M/e))

Ld;

€

times and
KRL

€

P§O< ln(M/e)) .

Plugging in the value of R from Section 3 this
means that we can find a feasible flow for an undi-
rected static network in a total of

o (KL?M 1n3(M/e))

€3

steps. When L is small, this represents a substantial
improvement over the deterministic

O (K*NMe *log K log® N)
step algorithm described in [LMP*91].

Accounting for the rounding error. The pre-
ceding analysis assumed that we can approximate
each queuesize for commodity ¢ with a nearby integer
multiple of d;(1 + ¢) without affecting the bound on
maximum potential. This is not quite true. In par-
ticular, whenever we introduce an error of ©(d;) in
the queuesize, we need to compensate by subtracting
an error term of

"

99:(q+ ©(di)) — 99:(q) < O9d;) - ¢; (4 + O(dy))

into Equation 2. This, in turn, introduces an error
term of

H

i

O(Lgd;) - ¢; (47 + 9)

in Equation 3 and an error term of
O(Sgd:) - 7 (@)

in Equation 9, where S is the length of the path from
the large queue to its sink. The first error term is
easily handled by decreasing «; by a small constant
factor, which does not seriously alter the analysis.

The second error term is more problematic, how-
ever, since S might be as large as N. In order for
Equation 10 to still hold, we will thus have to replace
L by N in the definition of «;, which will mean that
L is replaced by N throughout the remaining analy-
sis and that final running time will be 0 (KN2M),
instead of O (KL2M).

We can overcome this problem by artificially re-
stricting packet movement so that no packet ever
moves to a node that is more than distance L from
its sink (where distance is measured using only edges
with capacity at least ed;/M). This can be accom-
plished by first running a preprocessing phase in
which nodes are marked according to whether or not
they are distance at most L (using large-enough ca-
pacity edges) from the respective sinks. This prepro-
cessing requires O(K LM) steps. Of course, we do not
know the value of L ahead of time, but we can guess
L by successively increasing powers of 2, until a good
value is found. (The collective cost of guessing is at
most factor of 2 in running time.)

Once we have restricted packets in this way, we
know that S < L, and we can compensate for the
error terms by making «; to be smaller by a constant
factor, which does not significantly affect the analysis.

We do need to be careful to check that the restric-
tion that a packet cannot move to a node at distance
L 4+ 1 from the respective sink does not otherwise al-
ter the bound on the potential drop for Phases 2 and
3. This is easily checked, however, by observing that
in the feasible flow, no flow is ever pushed to a node



at distance L 4+ 1 from its sink. Hence, we can con-
strain our edge-balancing algorithm in the same way,
without affecting the lower bound on potential drop
due to edge-balancing.

This concludes the analysis of the 0 (KL2M)—step
algorithm for the multi-commodity flow problem. [

5 Final remarks

Implementing end-to-end routing in dynamic
distributed networks. It is pretty obvious how
to implement the algorithm in distributed networks.
This requires sending a message over an edge for every
flow packet that traverses an edge.

The specifications of the end-to-end communica-
tion problem require that every packet makes it to
the destination. Even though some packets may
be forever stuck in the network, standard error-
correcting codes [MS78] or Rabin’s information dis-
persal [Rab89] can be used to overcome this difficulty,
as first suggested in [AGR92], without deterioration
in amortized bit rate.

Applications to Min-cost flows. A modifica-
tion of the gravitational approach of [AL93] and the
current paper is considered in [KPP93], where the
balancing algorithm is applied to the derivatives of
queue heights rather than to the queue heights them-
selves. Incorporating edge costs into the potential
function differences across the edges leads to local-
control algorithms for the min-cost version of the
multi-commodity flow problem.

Running time in practice. We feel that the
“packet-based” algorithm in Section 4 will per-
form very well in practice. Indeed, the bottle-
neck of the previous implementations as well as in
[AL93] was the number of steps required to pre-
cisely optimize potential drop on every edge. In
the packet-based approach, exact optimization is
replaced by computationally-easier approximation.
Further, rounding queue size means that we do not
need to waste time with pushes of small amounts of
flow over edges.

Maximizing throughput. FExtensions of the algo-
rithm work for total maximum throughput problem
(as opposed to maximum concurrent flow). This leads
to somewhat less efficient algorithms. We are cur-
rently working on closing the gap between the two
versions of the problem.
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