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ABSTRACT

We consider the model of unreliable network links, where
at each time unit a link might be either up or down. We
consider two related problems. The first, establishing end
to end communication between two given nodes, where the
performance measure is the average number of times the
chosen path was disconnected. The second, is to build a
spanning tree rooted at a given source node, where the per-
formance measure is the average number of nodes that are
the disconnected from the source. For both problems we
design competitive algorithms.

1. INTRODUCTION

To motivate our setting consider a Quality of Service (QoS)
network, such as ATM. When a source would like to build
a communication to a given receiver it establishes a Virtual
Path (VP) to that receiver. In order to support the desired
QoS all the switches on the path have committed to allo-
cated the required resources to support the establishment of
the given VP and its QoS. Assume that after the establish-
ment of the VP, there is a rather long task that uses the path
(a long FTP, a conference call, a phone conversation, video
transmission, Kazaa session etc.). During this time the situ-
ation in the network might change. For example some links
might become inactive (due to malfunction). Alternatively,
some of the switches may become highly loaded and are un-
able to support the VP. In such cases the VP might be torn
down before completing the task. Clearly we would like to
minimize such events as much as possible.

We consider two natural problems, end to end path and
source broadcast tree. For the end to end path, we are given
a source and destination and we like to establish a path be-
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tween the two. (This abstracts the VP scenario.) For the
source broadcast tree, we are given a source and like to es-
tablish a spanning tree rooted at the source. (This abstracts
a broadcast from the source.)

Our model abstracts the link failures by assuming that at
every time step a link may be either up or down. A path
is disconnected if one of its links is down. A disconnected
path incurs a cost of one, while a connected path has zero
cost. When considering a tree, recall that each node in the
tree has a unique path to the source. A node in a tree is
disconnected if its path to the root is disconnected. The
cost of a tree is the number of disconnected nodes from the
source.

Our analysis is based on competitive analysis [11]. We com-
pare the performance of our online algorithms to the best
static offline. Namely the offline algorithm select either a
fixed path (or a fixed tree) and uses it during all times steps.
Our results bound the difference between the cost of the best
static offline and our online algorithms. This difference is
also called in the learning literature regret.

For both setting we derive competitive online algorithms,
where the regret is proportional to the diameter of the graph
and sub-linear in the number of steps. This implies that the
average regret, the regret per time step, vanishes for long
enough sequences. In such a case our dynamic polynomial-
time online algorithms almost match the performance of the
best static offline.

It is worth while to first examine the simple greedy algorithm
(which picks the best static path so far). First, computing
the optimal static offline is computationally hard, and there-
fore this intuitive algorithm does not run in polynomial time.
Second, we show that the ratio between the performance of
Greedy and the best static offline path can be as large as
the maximal cut between the source and destination.

Related work. Near optimal algorithms for finding a short-
est path or a minimum spanning tree in a graph, where at
each time a different cost is assigned to each edge, were
studied in [8, 12]. Those works (as does ours) are based
on results from computational learning theory for the “best
experts” and the “adversarial multi-arm bandit” problems.
The above results have an additive cost function, and find-
ing the optimal static offline can be done using any shortest
path or minimum spanning tree algorithm. In contrast, in



our setting the cost function is non-linear (it is a threshold
function). This non-linear behavior makes even computing
the best static offline solution NP-hard.

There has been many works on dynamic networks. Some of
the work applies to dynamically changing networks where
reliable path between sender and received cannot ever be
constructed [2], and thus packet switching model is used
instead of circuit switched model in the current paper. The
relevant measure is the number of packets lost. In contrast
we use an underlying model of circuit switching network
and as a complexity measure the number of disconnections.
There is also another body of work [1, 4, 7, 6] which assumes
that after some time the network stabilizes (no more faults
occur) and try to achieve both correctness and performance
(message and time complexity) starting at the end of the last
fault. In contrast we assume that the faults are continuous.

Structure of this paper. In the rest of this paper we
proceeds as follows. Model is presented in section 2. Greedy
solution are described in Sec. 3. Existing work on learning
framework and its derivatives are described in Sec. 4. Our
algorithms are presented in Section 5. Section 6 presents
the proofs.

2. MODEL
2.1 The network description

Network Structure. Consider a bi-directional communi-
cation network G(V, E). We allow parallel edges to exists
between nodes (which represent different possible direct con-
nections between the nodes). For simplicity we assume ex-
istence of a global clock. We assume that delay of each edge
is negligible compared to 1 time unit of that clock.

Fault model. For every time ¢ and for every edge e € E, we
have a Boolean variable f(e,t) indicating whether the edge
e failed in time ¢ (in which case f(e,t) = 1) or did not fail (in
which case f(e,t) = 0). For a path P, the value Bcost(P,t)
is zero if all the edges on the path P are active at time ¢,
and otherwise one. Formally, for a path P =< ej,...,ex >
we define Beost(P,t) =1 — Hle(l — flest)).

Path acks. Messages are communicated via source rout-
ing: a sender s chooses at each time ¢ a path P to use for
each receiver r. If all edges of P are up at this time, i.e.
Bcost(P,t) = 0, then message successfully arrives at the
receiver, and receiver sends back ack to the source which
arrives at the source prior to time ¢ 4+ 1. Otherwise, there
exists some edge e; € P that is down at time ¢. Let e* be
the edge with the minimal index in P that has failed. In
this case a megative ack arrives at the source prior to time
t 4+ 1, from ug where (ug,v0) = €*. Note that the negative
ack pinpoints the closest failed edge to the source.

Notations. The following definition, of an averaging oper-
ator, would be convenient.

DEFINITION 2.1. Let T be a set of times, and h any func-
tion defined for t € T. Let,

Ever W8] = 77 > ().
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2.2 Statement of Problem
The main problem that we would address in this paper is
the end to end problem.

End-to-end path selection: Consider a source s and a
destination 7. At each time ¢ the online algorithm at the
source node s selects a path P, =< e1,...,ex > from s to
r. The goal is to minimize ), Bcost(P;,t) based solely on
past experience, namely values Bcost(P;, T) for 7 < t.

In order to address the difficulty of the end to end problem
we define the following auxiliary problem, which is interest-
ing on its own right.

Broadcast Source tree: Consider a source s. At each
time ¢ the online algorithm selects a spanning tree W; =<
€i1,...,ex > rooted at s, which defines unique path Pw, (v)
to each node v from s. At each time ¢ a message is broadcast
along W;. In this case the ack mechanism return the number
of nodes the message reached, or alternatively, the number
of nodes that where disconnected at time ¢ in W.

Equivalently, the feedback that algorithm receives is a set
of edges Fi C W; that failed at time ¢, i.e. f(e,t) = 1.
The subset F; is the maximal subset such that no two edges
e1,es € Fy are such that e; is part of the path from ez to
s in W;. Namely, F; is the cut that separates the source s
from all the nodes which are not reachable from s at time
t using W;. Given F; we can decide for each node in W;
whether at time ¢ is was connected to the source s through
Wy. Again, the only information we will use is whether a
node v was connected to the source s at time ¢.

For both algorithms we assume that the total duration 7" is
known in advance to the algorithm. (In case this does not
hold, we will have a small constant multiplicative factor in
the performance of our algorithms.)

2.3 Our Results

Optimal static path: For every path P we define the
aggregate binary cost

Becost(P,{0,T}) = Eicqo,r}[Bcost(P,1)]

where {0, 7'} is the set of integers {0,...,T}. We would like
to match performance of our online algorithm to the cost of
the optimal static path, namely one minimizing aggregate
(binary) cost Bcost(P,{0,T}) over all paths P of length at
most H < n.

Finding an offline approximation such path is an NP-hard
problem [10]. In a nutshell, one can reduce set packing to
finding the best path. The set packing problem is as follows:
we have a collection of sets C' = S1, S2, ..., Sm on n nodes,
and we would like to find the maximum number of non-
intersecting sets. We also note that independent set is a
special case of set packing, and therefore the hardness of
approximation of independent set carries over to set packing.

In order to derive a polynomial approximations of our in-
approximable “binary fault cost”, for our proofs and per-
formance bounds we also use another measure for the path,
which is the sum of the faults, i.e., Acost(P,t) which is the
number edges on the path P which failed at time ¢. Formally,



Acost(P,t) = Y. | f(es,t). Note that for any path P of
length H and time ¢, we have H-Bcost(P,t) > Acost(P,t) >
Bcost(P,t) and if Becost(P,t) = 0 then Acost(P,t) = 0.
For this metric, we can also define aggregate “additive fault
cost”, defined as Acost(P,{0,T}) = Eicqo,r}[Acost(P,t)].
The optimal additive-cost static path is the path P of length
at most H < n that minimizes Acost(P,{0,7}). From the
above discussion it follows that the optimal additive-cost
static path is an H-approximation for real “binary-cost”
metric. Clearly, this would be interesting for short paths
(e.g., constant or logarithmic length) and would give a rea-
sonable approximation in such cases. In the following dis-
cussion, we will be evaluating our (polynomial-time) algo-
rithms in terms of their proximity to both optimal binary
and additive costs.

For the end to end path problem we derive an algorithm
E2F A, whose performance is stated in the following theo-
rem. Note that for large values of T' the dominating part
is Acost(P,{0,T}), since H < n. We derive the following
performance bound for our algorithm.

THEOREM 2.2. For any path P between s and r of length
H in graph G,

Becost(E2FEA) < Acost(P,{0,T}) +
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Note that the above bound on the regret is non-trivial for
T = Q(H®n?log® n), and as T increases the average regret
vanishes.

Optimal static source broadcast tree For every tree W
and node v we define the binary cost as

Beost(W, v,{0,T}) = E¢cqo,1}[Beost(P(W,v), )]

where P(W,v) is the path in W that connects s to v. The
optimal static source broadcast tree W is the tree that min-
imizes Bcost(W,{0,T}) = >_ o\ Bcost(W,v,{0,T}). Simi-
larly, for every source broadcast tree W we define the addi-
tive cost as

Acost(W,{0,T}) = Y Eicqo.ry[Acost(P(W,v),1)].
veV

THEOREM 2.3. Consider a directed leveled graph G with
H levels. Let W be the optimal static source broadcast tree
for s. Then, there exists a randomized online algorithm
SBTA, whose performance is

Becost(SBTA,{0,T}) < Acost(W,{0,T})+
0 (wtdegn (@)
H -Bcost(W,{0,T}) +

O <nH«/degm(G)/T) ,
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3. GREEDY SOLUTIONS FOR SOURCE
ROUTING PATH SELECTION

Before presenting our algorithms it would be worth while to
present a few alternative models and algorithms and discuss
their benefits and weaknesses.

The first alternative model would be the global information
model, where the algorithm at the end of each time step ¢
receives for each edge e the value of f(e,t). In this model
we can discuss both the online scenario (where the online
algorithm receives only information regarding previous time
steps) and the offline scenario (where the algorithm receives
all the information and need to compute an optimal static
solution).

The greedy solution GreedyBool is natural: select best per-
forming path so far. We remark that finding the path that is
best so far is computationally hard; but suppose we are even
allowed to use exponential resources. This exponential-time
greedy algorithm GreedyBool selects P; = argminE c(0.t—1}
[Bcost (P, 7)]. We can also consider a polynomial greedy ap-
proximation GreedyAdd, that selects best path so far in ad-
ditive cost, namely selects P; = argminE ¢ o ;—1}[Acost(P, 7)].

CrLamM 3.1. For every graph G = (V,E) any input se-
quence and any path P we have that

Acost(GreedyBool, {0,T}) < |E|-Bcost(P,{0,T})+ |E|
Acost(GreedyAdd, {0,T}) < |E|-Acost(P,{0,T}) + |E|

PROOF. Since after |E| time steps where (either) Greedy
fails to reach the destination the cost of the static optimal
path increases by at least one, the claim follows. [J

CLAM 3.2. For every graph G = (V, E), and any nodes
s,7 € V, let MazxCut(s,r) be the mazimum edge cut sep-
arating s from r. For any deterministic online algorithm
DET there exists an input sequence and a path P for which,

Becost(DET,{0,7}) > |MazCui(s,r)|-Bcost(P,{0,7})

PRrROOF. Let C' = MaxCut(s,r) be a maximum edge cut
between s and r. Since DET is a deterministic online al-
gorithm, the adversary can compute, for every time ¢, the
paths P, that DET will use. Given P, let e € P, C be
the edge in the cut that is being used by DET. At time
t adversary set f(e,t) = 1 while for any other edge ¢’ has
f(e',t) = 0. Clearly, Bcost(DET,{0,7}) =T + 1. In addi-
tion there exists a path P that fails only (7" + 1)/|C| times,
which completes the proof. []

The above claim shows that no deterministic algorithm can
not even guarantee a constant factor from the best static
path, let alone a vanishing average regret. (A similar lower
bound is known for deterministic multi-arm bandit algo-
rithms.)

4. RESULTS USING TRADITIONAL
LEARNING FRAMEWORK



In this section we will review a few basic concepts from
computational learning theory, and their known solutions.
This will not be by any means a comprehensive tutorial,
and we will mainly focused on the essentials required to
understand our work. We will also try and relate those
results to the setting of the paper.

The first problem is the “best expert” problem. In that
setting we have N experts. In each time step each expert
suggests an action. The online algorithm needs to decide
which action it will use. In parallel to the online algorithm
selection of an action the adversary selects a loss of each
expert. At the end of the step the online algorithm reveals
its action and the adversary reveals the loss of each expert.
The loss of the online algorithm at that time step is the loss
of the expert it selected. The aim of the online algorithm is
to minimize its total loss, i.e. the sum of the losses at each
time step. (For simplicity we assume that the loss is a real
number in [0, 1].)

From the definition of the best expert problem it should be
clear that in general we cannot hope to perform better than
the best expert. (For example, it might be the case that all
the experts are identical.) A surprising result is that there
is an online algorithm that achieves a near optimal loss, as
describe in the following theorem.

THEOREM 4.1 (]9, 5]). There exists a randomized al-
gorithm, BE, such that for any sequence of T' time steps,

Eicqo,my[Elcost(BE(t))]] <
miin{EtE{O,T} [COSt(Ai, t)}} + O(\/ N/ ),

where A; is the ith expert.

The basic idea for the BE algorithm is to use for each ex-
pert a weight that depends exponentially on the loss of each
expert. Let L(A;) be the loss of the ith expert up to time

t. The weight of A; would be bLt(Ai) for some constant
b € (0,1) (which depends on the total number of time steps,
T, but not on the input sequence). The algorithm BE simply
selects expert A; with probability proportional to its weight.

Another important problem is the adversarial “multi-arm
bandit” problem. The setting is essentially the same as in
the best expert setting. The only difference is that the online
algorithm does not receive from the adversary the loss of
all the experts, but rather it receives only the loss of the
expert it selected. The following theorem shows that the
MAB algorithm, presented in [3], can get an almost optimal
performance.

THEOREM 4.2
MAB, such that for any sequence of T time steps,

Ere (o1 Eleost(MAB(1))]] <

miin{EtE{O,T} [cost(As, t)]} + an/(Nlog N)/T,

for some constant o > 0.

([3])- There exists a randomized algorithm,

When we later use the MAB algorithm as a black-box, specif-
ically we intend the algorithm of [3], for which Theorem 4.2
holds.

The basic idea behind MAB is to use the BE algorithm. How-
ever, we need to overcome the difficulty of receiving only
partial feedback (namely only the loss of the action we se-
lected). One way to get around this problem is to keep for
each expert A; a loss estimate ¢i. When we select action A;
and receive a cost of ¢; we update ZZ’H to £f +ci/pi, where p;
is the a priori probability that we select A; at that time step.
While it is easy to see that the expectation are now main-
tained, i.e., E[f{] = L'(A;), still one needs to take special
care of the magnitude of the updates (and other resulting
complications) as was done in [3].

For one of our algorithms we will need the following variant.
Let MAB’ be an algorithm that uses the MAB algorithm as
a black box and works in phases. Each phase is of length
X. At the start of each phase MAB' uses the MAB to select
an action, and remains with that action during the entire
phase. At the end of the phase, MAB’ selects a random time
t distributed uniformly overall the time steps in the phase.
The MAB' return to the MAB, at the end of the phase, as a
feedback the cost incurred at time ¢, i.e., cost(MAB'(¢)). The
proof is that the number of effective time steps is T/\, and
in each one we decide on one action (used in A steps). The
offline is not changed, since it selects the same action in all
time steps.

THEOREM 4.3. For any sequence of T time steps, the MAB
expected cost 1is,

Eic 0,1y [E[cost(MAB' ())]] <
lein{Ete{o,T} [cost(As,t)]} + a(v/A(Nlog N)/T)

for T >k, and some constant a > 0.

The multi-arm bandit setting can be easily related to the
setting of this paper; there are a number of ways to accom-
plish it.

e source routing as multi-armed bandit problem w.r.t. all
paths: We can view each path (or tree, respectively) as
an expert. Theorems 4.2 and 4.3 would imply the re-
sulting performance bound. Unfortunately, the num-
ber of such experts, N, is exponential in the number
of nodes. This causes two problems: one is compu-
tational and the other is performance. The compu-
tational problem is that we need to compute an ex-
ponential number of weights. a trivial lower bound
for the multi-arm bandit problem is that we need to
use each expert at least once (otherwise there will be
some expert on which the algorithm does not receive
any information). This causes a performance problem,
namely we will need exponential number of trials be-
fore getting a meaningful bound.

e packet routing as multi-armed bandit problem w.r.t. lo-
cal outgoing ports: at each node (router), whenever
packet arrives at that node destined to a given re-
ceiver, router simply checks its outgoing ports, and



treats these ports as options for local multi-armed ban-
dit problem. In this case, number of options K is out-
degree degout < n of a router, which is small, so we
do not have a problem with exponential number of
options. However, the feedback we receive, namely
success of routing over this port, is completely garbled
by potentially wrong decisions of downstream routers.
It is easy to show that the number of errors in the
algorithms is still Q(2").

e relaxing the problem by assuming full information: this
would make it easier. Specifically, suppose source knows
about availability of every single edge at every single
time in the past (which is totally unrealistic in network
with many unreliable components). This becomes an
best experts problem with N = 2" options, and addi-
tive mistake of only O(y/log N/T) = O(y/n/T). Since
even the offline problem is computationally intractable,
it seems unreasonable to expect to be able to simulate
this in polynomial time.

e relazing changing the problem further by assuming full
information and considering additive cost: Now the
problem became much easier. Existing work by Taki-
moto and Warmuth [12] and subsequent work by Kalai
and Vempala [8] do provide solutions with polynomial
regret term of only O(y/log N/T) = O(y/n/T) and

polynomial computation.

5. OUR ALGORITHMS

In this work we intend to present polynomial performance
bounds as well polynomial computation for the original prob-
lem, using the basic bandit framework of [3]. The main idea
would is to use the special structure of our problem to re-
duce both the required computation and improve the per-
formance. Exploitation of specific structure was also used in
different context and for different purpose (just to achiever
poly-time computation bound) in [12, 8]. In our network
setting we will try to assign an expert to each node and
measure its performance.

5.1 Notations

Suppose that packet traversing the network carries a hop
count. When packet arrives to node v after traversing i
hops, we consider the packet as if it arrives at “virtual”
node (v,1).

Consider a directed leveled acyclic “virtual” graph G'(V’, E")
where

V' ={(v,i)|lv e V,i < H}
and
E' ={(,i) — (@,i+1D|(u,v) € E}
Furthermore, we can delete from the graph G’ all the nodes

that are not reachable from the source, and the edges out-
going from them.

We observe that directed leveled graph G’ of depth H sim-
ulated any communication where packet traverses bounded
number of hops H < |V|. Thus, for the rest of the paper, we
consider, without loss of generality, that our network graph
to be leveled, directed, acyclic, and every node is reachable
from the source.

For a node v we denote by degin(v) the in degree of node
v, i.e. degin(v) = |{(u,v) € E}|. For a graph G we denote
by degin(G) the maximum in degree of a node in G, i.e.
degin(G) = max{degin(v)}. A path P from s to r is a se-
quence of edges e1 = (s,v1),e2 = (v1,v2),...,ex = (Vk—1,T)

5.2 Source Broadcast Tree Algorithm (SBTA)

Recall that in the source broadcast tree problem we like to
create a tree that would maximize the number of nodes that
are connected to the source. One can motivate such a con-
struction as a subproblem in routing, where one like to create
the best tree to which packets be routed to a given destina-
tion. Although the statement of the problem would allow
to disconnect some node (for ever) our algorithm would try
to avoid such pit falls. For every node the number of times
its disconnected from the source is proportional to the num-
ber of times its disconnected from the source in the optimal
static path (up to a factor of H).

For the source broadcast tree problem we like to minimize
the number of average nodes that are disconnected from s.
Formally we like to minimize

Z Bcost (W, v, t)

veV

= FEicqo,r}[Becost(P(W,v),t)].

Bcost(W,{0,7T})

Note that this is equivalent to minimizing the average num-
ber of disconnected nodes. Another piece of notation. For
each node v, we denote by Bcost (W, v) the average number
of times it is disconnected from the source s using the tree
w.

In order to gain a better intuition of our algorithm, assume
we select some weights for the edges and like to build a
minimum weight spanning tree. Since we have a directed
acyclic graph G, and we know that all nodes are reachable
from the source, we can make the following observation. The
minimum spanning tree of G will include for each node the
incoming edge of minimum weight. Formally, the minimum
spanning tree includes for each node v € V the edge e =
(u,v) € E such that w(e) = ming »ep{w((w,v))}. (If
some other edge (u’,v) participates in the minimum weight
spanning tree, then we can replace it by e without increasing
the weight of the tree. We are using here the fact that G is
acyclic.)

The intuition for the source broadcast tree algorithm is to
“reduce” it to a multi arm bandit problem. The main prob-
lem is that the decisions of the nodes distant from the source
s are greatly influenced by the decisions of the nodes between
them and the source. This is a classical case of “credit as-
signment” where we need to decide at a node whether the
disconnection from the source is due to its decision (which
would implicitly imply that we like to change the decision)
or from the decision of the nodes between it and the source
(in which case we do not need to penalize the action). In
the source broadcast tree algorithm we take the approach
to penalize the action of the node, each time the node is
disconnected from the source. The correctness would follow
from the fact that we can show, by induction on the levels,
that nodes selects good edges, and thus define a good tree.

Formally, in the SBTA algorithm each node v runs an MAB,



algorithm on its incoming links. Namely, the available ac-
tions are the incoming edges to v, i.e., (u,v) € E. At each
time t, every node v, using its MAB,, selects an incoming link
e = (u,v). The collection of all the edges compose the tree
W:. (To see that W: is a tree, note that each node, except
s, has in-degree one, and the graph is acyclic. Therefore W;
is a tree that spans the entire network and is rooted in s.)
When receiving the feedback at time ¢, we return to the MAB,,
at v the value of Bcost(SBT A, v,t) = Bcost(P(Wy,v),t),
i.e., we return 1 if node v was disconnected and 0 if it was
connected.

Let the cost of the Source Broadcast Tree Algorithm (SBTA)
at time t be Bcost(SBTA,t) = 3 . Bcost(P(W;,v),t),
let Bcost(SBTA,v,7) = > ,.7Bcost(SBTA,v,t) and let
Beost(SBTA) = 3 ,c o,y Beost(SBT'A, t).

5.3 Endto End Algorithm

In the end to end problem we need to establish a reliable
connection from the source s to the receiver r. The reli-
ability of the connection is measured in how many times
the receiver was disconnected from the source. While in the
source broadcast tree problem all the nodes are involved in
every time step, in the end to end problem only a fraction
of the nodes is involved (namely the nodes on the selected
path from the source to the receiver).

The basic idea of the algorithm is to work in a similar way
to the source broadcast tree algorithm, in fact we will show
how to use the ideas of the SBT A to solve the end to end
problem. The main difference between the two settings is
that in the end to end problem we select a path from s to r
rather than a spanning tree. This implies that only some of
the nodes are involved (in contrast, in the source broadcast
tree all the nodes are involved). We receive feedback only
in some of the nodes, the nodes on the selected path, while
some nodes, those not on the selected path, do not receive
any feedback in that time step.

To overcome this problem we use two ideas. The first idea is
to use phases, and update the MABs at the nodes only at the
end of the phase This implies that during a phase we have a
single fixed tree. The second idea is to use exploration steps.
The aim of the exploration steps is to sample the nodes
that are not on the path in order to give them adequate
feedback. We will show that with high probability all nodes
get sampled during the phase, and thus we can run this
modified source broadcast tree algorithm.

The main idea behind our E2EA algorithm is to use the
SBT A algorithm. The idea is that the SBTA has a guaran-
tee for each node, not only the resulting spanning tree. This
implies that if we can use SBT A we can have a guaranteed
performance for each node. The obvious problem is that we
do not have a feedback at each node at each time unit. In
order to achieve a feedback for each node we will use explo-
ration steps. In the exploration steps we will sample all the
nodes in the graph, over time. This leads to the second idea,
rather than update after each time step the resulting tree,
as done in SBT A, we will update every phase. In addition
we would like the cost of the exploration steps to be negligi-
ble in the total cost, since we will not be able to guarantee
any real performance measure in those step. The only aim

of the exploration steps is to gather information regarding
the network behavior, and be able to return the appropriate
feedback at all the nodes.

E2EA Algorithm: The E2EA algorithm has a parameter
q € (0,1). We divide the time into phases, where the length
of each phase is A = O((n/q)logn). Let 71, m,...7r 5 be
the phases.

Beginning of a phase: Each node v has a MAB,, algorithm
that selects an incoming edge. Namely, the actions available
at node v are (u,v) € E, i.e., the edges incoming to node v.
Let W, be the set of edges selected in phase 7;. As before,
W, is a spanning tree rooted at s. Since W7, is a spanning
tree, each node v has in it a path from the root s, namely
P(W-,,v).

During a phase: In each time ¢ we flip a coin, and with
probability ¢ we perform an exploration step and with
probability 1 — ¢ we perform an exploitation step. This
implies that in a phase we have, with high probability, we
have ©(nlogn) exploration steps and the rest are exploita-
tion steps.

Ezploration step: In an exploration step we select a random
node v. (The size of a phase, J, is selected such that with
high probability each node is explored at least once in every
phase.) Given v we build the path from s to r as follows: We
start from s and reach v using P(W,,v). From v we select
any path to reach the destination r. Let Bcost(v,t) = 0
denote that P(W-,,v) was operating, and Bcost(v,t) = 1
denote that it was disconnected. (Note we are looking only
whether we reach the selected node v and not the destination
r.) Let 7 (7,v) be the time steps when we sampled v in
exploration steps.

Ezploitation step: In an exploitation step we simply select
the path from s to r in W, i.e. P, = P(W,,,r).

End of a phase: At the end of each phase, for each node v
we select a random t € T (7;,v) and returns MAB, the value
of Becost(v,t), denote this value by r(v,t).

6. ANALYSIS OF OUR ALGORITHMS
6.1 Analysisof Source-Tree Algorithm (SBTA)

For the analysis we will relate the number of times a node v
was disconnected from the source s to its distance from the
source. The proof would be by induction on the distance
from the source.

LEMMA 6.1. Let v be a node at distance H from s and W
an arbitrary spanning tree. Then,

Becost(SBTA,v,{0,T}) < Acost(W,v,{0,T})+
H[Oé V degln(G)/T]v

for some constant o > 0.

ProOOF. The proof is by induction on H. For H = 1
we are simply running the MAB algorithm and the bound is
directly from Theorem 4.2. Assume the claim hold for H —1
and show it for H. Let w1,...uxr be the neighbors of v in



level H — 1. By the induction hypothesis, we have that wu;
is disconnected from s at most

¢i = Acost(W,u;, {0,T}) + (H — 1)[a/degin(G) /T
Let u™ be the neighbor u; that minimizes,
FEicqo,ry Imax{f((ui,v),t),Bcost(SBT A, u;,t)}] = c*

This implies that at node v, the MAB has an action, namely
(u*,v), whose cost is ezactly c¢*. Note that since

max{f((u",v),t),Bcost(SBTA,u",t)} <
f((ui,v),t) +Becost(SBT A, u;, t)
we have
Eicqo,rymax{f((u",v),t),Bcost(SBTA,u",t)}] <
Eicro,m [f((u*,v),8)] + Ereqo,ry[Beost(SBT A, u™, t)]
It follows that for any wu,,

c" <ci+ Eegory [f((u",v),1)]

By Theorem 4.2 we have that the cost of the MAB in v is
bounded by

c" + [av/degin(v)/T] < Acost(W,v,{0,T}) +
Hlaw/degin(G)/T],

since
Acost(W,v,{0,T}) >
miin{ACOSt(VVv Ui, {07 T}) + EtE{O,T} [.f((ulv ’U), t)]}v

which completes the proof of the lemma. [

We relate the cost of the online algorithm to the cost of the
best additive cost tree (which is simply a minimum weight
spanning tree, where the weight of an edge is the frequency
that with which its fails). Also, the average regret is becom-
ing negligible as the number of time steps T increases. The
following theorem performance bound for SBTA.

THEOREM 6.2. Consider a directed leveled graph G with
H levels. Let W be the optimal static source broadcast tree
for s. Then,

Becost(SBTA,{0,T}) < Acost(W,{0,T})+

nHloan/degin(G)/T)

HBcost(W,{0,T}) +

nHav/degin(G)/T]

IA

for some constant o > 0.

For the End to End problem we will need the following vari-
ant of SBTA. Let SBT A’ use the SBT A, and have phases
of length \. At the start of each phase, SBT A’ uses SBT A
to select a spanning tree, which will remain unchanged dur-
ing the phase. At the end of the phase, SBT A’ gives SBT A
a feedback at each node as follows. At each node v, SBT A’
it selects a time t uniformly distributed over the time steps
in the phase. SBT A’ returns Bcost(v,t) as the feedback to
MAB, at v. Namely, SBT A’ uses MAB’ rather than MAB. (The

times of the selected feedbacks at different nodes may be
correlated, but when we consider each node separately, the
time of the feedback is distributed uniformly in the phase.)
Using Theorem 4.3 we derive,

COROLLARY 6.3. Let v be a node at distance H from s
and W an arbitrary spanning tree. Then,

Bcost(SBTA',v,{0,T}) < Acost(W,v,{0,T}) +

Hlan/Mdegin (G)/T],

for some constant o > 0.

6.2 Analysis of end-to-end
First we claim that with high probability each node is sam-
pled at least once in every phase.

CLAIM 6.4. For A = Q((n/q)log Tn/\o), with probability
1 — 6, during each phase, each node v is sampled at least
once.

For a given node v, a-priori, all time steps in a phase are
equally likely to be the one sampled. This implies that r(v, t)
is an unbiased sample of the feedbacks that v would receive
in the phase.

CLAIM 6.5. For each phase T; and each node v, assuming
node v was sampled in T;, we have

r(v,t) = Eicr, [Becost(v, )]

We have established that each node is sampled once in every
phase and the samples are unbiased. This implies that the
MAB’ that is in the node, would be updated in the same way
it would be updated in SBT A’. Therefore can use Corollary
6.3 and derive the following.

LEMMA 6.6. Let v be a node at distance H from s and P
an arbitrary path from s to v. Then,

Becost(E2FEA,v,{0,T}) < Acost(P,{0,T})+
H[O{ Adegzn(G)/T]v

for some constant o > 0.

The above lemma can be used to bound the cost when in
ever time step we build a path to node r. However, this
is not the case. We build the path to r in the exploitation
steps, while in the exploration steps we build very different
paths. Therefore, to establish the performance of the E2F A
we need to add the cost of the exploration steps (and in the
worse case they all might have cost 1). Adding the cost of
the exploration steps we can derive the following.

THEOREM 6.7. Let G be a graph with H levels and P any
path connecting s to r. Then,

Becost(E2EA) < Acost(P,{0,T}) +

Hlav/Mdegin(G)/T)] + ¢T,

for some constant o > 0.



The final step in the algorithm is to set the parameter g.
By setting ¢ = n/T?/%, and noting that degi,(G) < n, we
derive the following performance bound for the E2FE A.

THEOREM 6.8. Let G be a graph with H levels and P any
path connecting s to r. Then,

Becost(F2EA) < Acost(P,{0,T})+

0 (H. /nlog(Tn) /T1/3)

For the bound in the above theorem to be interesting we
will need that T = Q(Hn*log?n). Note that Lemma 6.6
derives that not only we compete with the best path to the
receiver r, but in fact we compete simultaneously with the
best path to any node v.
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