
The Online Set Cover Problem

(Extended Abstract)

Noga Alon∗ Baruch Awerbuch† Yossi Azar‡ Niv Buchbinder §

Joseph (Seffi) Naor ¶

Abstract

Let X = {1, 2, . . . , n} be a ground set of n elements, and let S be a family of subsets of X ,
|S| = m, with a positive cost cS associated with each S ∈ S.

Consider the following online version of the set cover problem, described as a game between
an algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one.
Once a new element is given, the algorithm has to cover it by some set of S containing it. We
assume that the elements of X and the members of S are known in advance to the algorithm,
however, the set X ′ ⊆ X of elements given by the adversary is not known in advance to the
algorithm. (In general, X ′ may be a strict subset of X .) The objective is to minimize the total
cost of the sets chosen by the algorithm. Let C denote the family of sets in S that the algorithm
chooses. At the end of the game the adversary also produces (off-line) a family of sets COPT

that covers X ′. The performance of the algorithm is the ratio between the cost of C and the
cost of COPT . The maximum ratio, taken over all input sequences, is the competitive ratio of the
algorithm.

We present an O(log m log n) competitive deterministic algorithm for the problem, and estab-

lish a nearly matching Ω
(

log n log m

log log m+log log n

)

lower bound for all interesting values of m and n. The

techniques used are motivated by similar techniques developed in computational learning theory
for online prediction (e.g., the WINNOW algorithm) together with a novel way of converting the
fractional solution they supply into a deterministic online algorithm.

∗Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv, Israel. Email: nogaa@post.tau.ac.il. Research supported in part by a US-Israel BSF grant, by
the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

†Johns Hopkins University, Baltimore, MD 21218. E-mail: baruch@blaze.cs.jhu.edu. Supported by Air Force
Contract TNDGAFOSR-86-0078, ARPA/Army contract DABT63-93-C-0038, ARO contract DAAL03-86-K-0171, NSF
contract 9114440-CCR, DARPA contract N00014-J-92-1799, and a special grant from IBM.

‡School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel
Aviv, Israel. Email: azar@post.tau.ac.il. Research supported in part by the Israel Science Foundation and by the IST
Program of the EU.

§Computer Science Dept., Technion, Haifa 32000, Israel. E-mail: nivb@cs.technion.ac.il.
¶Computer Science Dept., Technion, Haifa 32000, Israel. E-mail: naor@cs.technion.ac.il.

1 Introduction

The set cover problem is defined as follows. Let X = {1, 2, . . . , n} be a ground set of n elements,
and let S be a family of subsets of X, |S| = m. A cover is a collection of sets such that their union
is X. Each S ∈ S has a non-negative cost c(S) associated with it. The goal is to find a cover of
minimum cost. The set cover problem is a classic NP-hard problem that was studied extensively
in the literature, and the best approximation factor achievable for it in polynomial time (assuming
P 6= NP) is Θ(log n) [6, 7, 9, 10].

Consider the following online version of the set cover problem, described as a game between an
algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one. Once
a new element is given, the algorithm has to cover it by some set of S containing it. Denote by
X ′ ⊆ X the set of elements given by the adversary. Our assumption is that the set cover instance,
i.e. the elements of X and the members of S, is known in advance to the algorithm. The objective
is to minimize the total cost of the sets chosen by the algorithm. However, the algorithm does not
know in advance the set of elements given by the adversary, i.e., X ′ may be a strict subset of X in
general. Let C denote the family of sets in S that the algorithm chooses. At the end of the game
the adversary also produces (off-line) a family of sets COPT that covers all the elements belonging to
X ′. The performance of the algorithm is defined to be the ratio between the cost of C and the cost
of COPT . The maximum ratio, taken over all input sequences, is defined to be the competitive ratio
of the algorithm.

The online set cover problem captures many practical scenarios. Consider, for example, servers
in a network that provide a service. There is a set of potential clients that may need the service
and each server can provide the service to a subset of them. (E.g., the subset is determined by the
distance from the server.) There is a setup cost, or activation cost, associated with the operation of
a server. The clients arrive one-by-one. Upon arrival of a client, the network manager has to decide
which server to activate so that the client receives the service it requested. The network manager
knows in advance the set of potential clients and the set of servers, however, it does not know in
advance which clients will indeed request the service.

1.1 Results

Our main result is an O(log m log n) competitive algorithm for the online set cover problem. We first
present the algorithm for the unweighted case, i.e., when all sets have unit cost. Then, we generalize
the algorithm for the weighted case, achieving the same competitive factor. If each element appears
in at most d sets, and all sets have unit cost, then the competitive factor of our algorithm can be
improved to O(log d log n).

The algorithm associates a weight with each set, initially all weights are equal. In each iteration of
the algorithm, when the adversary gives a new element, all the sets containing the element multiply
their weight by a factor (which depends on the cost of the set, among other parameters). A set
chooses itself to the solution with probability roughly proportional to the increase in its weight. We
define a potential function that depends on the weight of the uncovered elements, the cost of the
sets already in the cover, and the cost and weight of the sets not belonging to the cover. The heart
of our analysis is the claim that there exists a choice of sets in each iteration for which the potential
function is non-increasing. This is proved by analyzing a suitable randomized choice of sets. We then
show that the randomized choice of the sets in each iteration can be derandomized, thus making the

1

online algorithm deterministic, while maintaining the same competitive factor.

A high level description of the design of the algorithm is as follows. It starts by producing online
a fractional solution to the problem, where the fractional solution (at least for the unweighted case)
is motivated by similar techniques developed in computational learning theory for online prediction
[11, 8] (e.g., the WINNOW algorithm). See also [5, 3, 4] for related techniques and additional
references. Fractional solutions can often be converted into randomized algorithms, but it is usually
impossible to perform this conversion online. In our case, however, this conversion is possible, because
of the way the fractional solution evolves in time. Finally, the randomized algorithm is converted
into a deterministic one by using an appropriate derandomization technique. This derandomization
is non-standard, as it has to apply to the online setting. The requirement to maintain the properties
of the online solution obtained leads to the potential function used.

Our result is nearly tight. We prove a lower bound of Ω
(

log n log m
log log m+log log n

)

on the competitiveness

of any deterministic algorithm for the online set cover problem for a wide range of the parameters
m and n, and observe that this range cannot be extended significantly. Thus, our upper and lower
bounds almost match for all interesting values of the parameters.

We note that the problem considered here is different from the online set cover problem discussed
in [2]. There, we are also given m sets and n elements that arrive one at a time. However, the goal
of the online algorithm is to pick k sets so as to maximize the number of elements that are covered.
The algorithm only gets credit for elements that are contained in a set that it selected before or
during the step in which the element arrived. The authors of [2] showed a randomized Θ(log m log n

k)
competitive algorithm for the problem, where the bound is optimal for many values of n, m, and
k. This problem is different from our problem here, as it deals with maximum benefit, whereas we
consider minimum cost. Indeed, it is easy to see that in contrast to our case, the problem in [2] does
not yield any non-trivial deterministic algorithm, and the algorithms and techniques for the two
problems seem to be totally unrelated, despite the similarity in the description of the two problems.

2 The Unweighted Case

We describe in this section an O(log m log n) competitive algorithm for the unweighted case, i.e.,
when all sets have unit cost.

The algorithm maintains a weight wS > 0 for each S ∈ S. The weights can only increase during
the run of the algorithm. Initially, wS = 1/(2m) for each S ∈ S. The weight of each element j ∈ X
is defined as wj =

∑

S∈Sj
wS, where Sj denotes the collection of sets containing element j. Initially,

the algorithm starts with the empty cover C = ∅. Define C to be the set of all elements covered
by the members of C. (Initially, C = ∅.) The following potential function is used throughout the
algorithm:

Φ =
∑

j 6∈C

n2wj

We now give a high level description of a single iteration of the algorithm in which the adversary
gives an element j and the algorithm chooses sets that cover it.

1. If wj ≥ 1, then do not add any new set to C and do not update the weights of the sets.

2. Else, (wj < 1), perform a weight augmentation:

2

(a) Let k be the minimal integer for which 2k · wj > 1. (Clearly, 2k · wj < 2.)

(b) For each set S ∈ Sj , wS ← 2k · wS .

(c) Choose from Sj at most 4 log n sets to C so that the value of the potential function Φ does
not exceed its value before the weight augmentation.

In the following we analyze the performance of the algorithm and explain which sets to add to
the cover C in the weight augmentation step.

Lemma 1 The total number of iterations in which a weight augmentation step is performed is at
most |COPT | · (log m + 2).

Proof: For each subset S, wS ≤ 2 always holds, since the algorithm maintains in all iterations
that wj ≤ 2 for all elements j. Consider an iteration in which the adversary gives element j. A
weight augmentation is performed in this iteration if and only if wj < 1. When doing a weight
augmentation, the weight of at least one set belonging to COPT is multiplied by a factor greater
than or equal to two. Since the weight of each set is initially 1/(2m) and at the end at most 2, it
follows that each set can participate in at most log(4m) iterations in which a weight augmentation
is performed. Hence, the desired result follows.

Lemma 2 Consider an iteration in which a weight augmentation is performed. Let Φs and Φe be
the values of the potential function Φ before and after the iteration, respectively. Then, there exist
at most 4 log n sets that can be added to C during the iteration such that Φe ≤ Φs.

Proof: The proof is probabilistic. Suppose that the adversary gives element j in the iteration. For
each set S ∈ Sj , let wS and wS +δS denote the weight of S before and after the iteration, respectively.
Define δj =

∑

S∈Sj
δS . The algorithm maintains that wj + δj =

∑

S∈Sj
(wS + δS) ≤ 2.

We now explain which sets from Sj are added to C. Repeat 4 log n times: choose at most one set
from Sj such that each set S ∈ Sj is chosen with probability δS/2. (This can be implemented by
choosing a number uniformly at random in [0, 1], since δj/2 ≤ 1.)

Consider an element j ′ ∈ X such that j ′ /∈ C. Let the weight of j ′ before the iteration be wj′

and let the weight after the iteration be wj′ + δj′ . Element j ′ contributes before the iteration to the
potential function the value n2wj′ . In each random choice, the probability that we do not choose

a set containing element j ′ is at most 1 − δj′

2 . The probability that this happens in all the 4 log n

random choices is therefore (1− δj′

2)4 log n ≤ n−2δj′ .

Therefore, the expected contribution of element j ′ to the potential function after the iteration is
at most n−2δj′n2(wj′+δj′) = n2wj′ . By linearity of expectation it follows that Exp[Φe] ≤ Φs. Hence,
there exists a choice of at most 4 log n sets such that Φe ≤ Φs.

Theorem 3 At the end of the algorithm, C is a feasible cover of X ′ and |C| is O(|COPT | log m log n).

Proof: Initially, the value of the potential function Φ is at most n · n1/2 < n2. It follows from
Lemma 2 that Φ is non-increasing throughout the iterations. Therefore, if wj ≥ 1 for an element
j during the algorithm, then j ∈ C, otherwise Φ ≥ n2wj ≥ n2. Hence, C is a feasible cover. It
follows from Lemma 1 that the number of iterations is at most |COPT | · (log m +2). By Lemma 2, in
each iteration we choose at most 4 log n sets to C. Therefore, the total number of sets chosen by the
algorithm is as claimed.

Remark: If every element appears in at most d sets, then the algorithm can be modified by starting

3

with the weights wS = 1/(2d) for each S ∈ S, and the competitive factor can be improved in this
case to O(log d log n).

3 The Weighted Case

We describe in this section an O(log m log n) competitive algorithm for the weighted case. For each
set S ∈ S, a positive cost cS is associated with the set. The cost of the optimal solution, c(COPT),
is denoted by α.

Note, first, that we may assume, by doubling, that the value of α is known up to a factor of 2.
Indeed, we can start guessing α = minS∈ScS , and run the algorithm with this value of the optimal
solution. If it turns out that the value of the optimal solution is already at least twice our current
guess for it, (that is, the cost of C exceeds Θ(α log m log n)), then we forget all sets chosen so far to
C, update the value of α by doubling it, and keep going. We thus assume that α is known. If so, we
can ignore all sets of cost exceeding α, and also choose all sets of cost at most α/m to C. Thus, we
assume that all costs are between α/m and α, and further normalize the costs so that the minimum
cost is 1 (and hence the maximum cost is at most m).

We now describe an online algorithm with competitive factor (6 + o(1)) log m log n, (assuming
that α is known), where the o(1) term tends to zero as n and m tend to infinity. It is worth noting
that the constant 6 + o(1) can be improved to 2 + o(1) by being somewhat more careful, but we
prefer to describe the algorithm with the inferior constant, to simplify the computation. From now
on, all o(1) terms denote terms that tend to zero as n and m tend to infinity. All logarithms are in
the natural basis e.

As in the unweighed case, the algorithm maintains a weight wS > 0 for each S ∈ S. The weights
can only increase during the run of the algorithm. Initially wS = 1/m2 for each S ∈ S. The weight of
each element j ∈ X is defined as wj =

∑

S∈Sj
wS , where Sj denotes the collection of sets containing

element j.

Initially, the algorithm starts with the empty cover C = ∅. Define C to be the set of all elements
covered by the members of C. The following potential function is used throughout the algorithm:

Φ =
∑

j 6∈C

n2wj + n · exp

(

1

2α

∑

S∈S

(cSχC(S)− 3wScS log n)

)

.

The function χC above is the characteristic function of C, that is, χC(S) = 1 if S ∈ C, and χC(S) = 0
otherwise.

We now give a high level description of a single iteration of the algorithm in which the adversary
gives an element j and the algorithm chooses sets that cover it.

1. If wj ≥ 1, then do not add any new set to C and do not update the weights of the sets.

2. Else, (wj < 1), perform a sequence of weight augmentation steps as long as wj < 1:

(a) For any S ∈ Sj , wS ← wS · (1 + 1
n·cS

)

(b) Choose from Sj sets to C so that the value of the potential function Φ does not exceed its
value before the weight augmentation.

4

In the following we analyze the performance of the algorithm and explain which sets to add to
the cover C in the weight augmentation step.

Lemma 4 The total number of weight augmentation steps performed during the algorithm is at most

∑

S∈COPT

(n · cS + 1) log

(

m2

(

1 +
1

n

))

≤ (2 + o(1))nα log m.

Proof: Obviously, for each subset S, wS ≤ 1+ 1
n·cS

always holds. Consider an iteration in which the
adversary gives element j. A weight augmentation is performed in this iteration as long as wj < 1.
When doing a weight augmentation, the weight of at least one set S ∈ COPT is multiplied by a factor
of (1 + 1

n·cS
). Since the weight of each set is initially 1/m2 and at the end at most (1 + 1/n), it

follows that each set S participates in at most (n · cS + 1) log
(

m2
(

1 + 1
n

))

steps in which a weight
augmentation is performed. Hence, the desired result follows.

Lemma 5 The following is maintained throughout the algorithm:

∑

S∈S

wScS ≤ (2 + o(1))α log m.

Proof: Consider an iteration in which the adversary gives element j. We start with weights
satisfying

∑

S∈Sj
wS ≤ 1, and increase the weight of each set S in Sj by wS/(n · cS) in each step.

Thus, the total increase of the quantity
∑

S∈S wScS in a step does not exceed

∑

S∈Sj

wS

ncS
cS =

∑

S∈Sj

wS

n
≤ 1

n
.

Initially,
∑

S∈S wScS ≤ m · 1
m2 ·m = 1, and the result thus follows from Lemma 4 that bounds the

number of weight augmentation steps.

Lemma 6 Consider a step in which a weight augmentation is performed. Let Φs and Φe be the
values of the potential function Φ before and after the step, respectively. Then, there exist sets that
can be added to C during the step such that Φe ≤ Φs.

Proof: The proof is probabilistic. Suppose that the adversary gives element j in the iteration. For
each set S ∈ Sj, let wS and wS + δS denote the weight of S before and after the step, respectively.
Define δj =

∑

S∈Sj
δS .

We now explain which sets from Sj are added to C. Independently, for each S ∈ Sj , set S is
added to C with probabilty 1 − n−2δS . (This is roughly the same as choosing S with probability
δS/2 and repeating this 4 log n times.) Let C ′ denote the cover obtained from C by adding to it the
randomly chosen sets.

We first bound the expected value of the first term of the potential function. This is similar to
the unweighted case. Consider an element j ′ ∈ X such that j ′ /∈ C. Let the weight of j ′ before the
step be wj′ and let the weight after the step be wj′ + δj′ . Element j ′ contributes before the step to
the first term of the potential function the value n2wj′ . The probability that we do not choose a set
containing element j ′ is n−2δj′ . Therefore, the expected contribution of element j ′ to the potential
function after the step is at most n−2δj′n2(wj′+δj′) = n2wj′ . By linearity of expectation it follows that
the expected value of

∑

j 6∈C n2wj after the step is precisely its value before the step.

5

It remains to bound the expected value of the second term of the potential function. Let

T = n · exp

(

1

2α

∑

S∈S

(cSχC(S)− 3wScS log n)

)

denote the value of the second term of the potential function before the step, and let T ′ denote the
same term with respect to the cover C ′. Since the choices of different sets are independent, and the
random variable T ′ can be viewed as a product of independent random variables, its expected value
is the product of the corresponding expected values. Therefore,

Exp[T ′] = n · exp

(

− 1

2α

∑

S∈S

3(wS + δS)cS log n

)

·
∏

S∈S

Exp

[

exp

(

1

2α
cSχC′(S)

)]

(1)

Fix an S ∈ S. If the weight of S has not been changed during the step, or if it has been changed
even though S ∈ C (i.e., j is covered, but wj < 1), then the expected value of exp(1

2α · cSχC′(S))
is precisely its value before the step. Therefore, if we let S ′ denote the family of all sets S ∈ S \ C
whose weights have been changed during the weight augmentation step, then the expected value in
(1) is precisely

Exp[T ′] = T · exp

(

− 1

2α

∑

S∈S

3δScS log n

)

∏

S∈S′

Exp

[

exp

(

1

2α
cSχC′(S)

)]

. (2)

Consider, now, an S ∈ S ′. S did not belong to C before the step, and after the step, the probability
that χC′(S) = 1 is 1− n−2δS . Thus,

Exp

[

exp

(

1

2α
cSχC′(S)

)]

= n−2δS + (1− n−2δS) · exp
(cS

2α

)

(3)

≤ 1− 2δS log n + 2δS log n exp
(cS

2α

)

(4)

= 1 + 2δS log n
(

exp
(cS

2α

)

− 1
)

(5)

≤ 1 + 2δS log n
3cS

4α
(6)

≤ exp

(

3δScS log n

2α

)

. (7)

Here, (4) follows since for all x ≥ 0 and z ≥ 1, e−x + (1 − e−x) · z ≤ 1 − x + x · z, (6) follows since
ey − 1 ≤ 3y/2 for all 0 ≤ y ≤ 1/2, and (7) follows since 1 + x ≤ ex for all x ≥ 0. Plugging in (2), we
conclude that the expected value of the second term after the step and random choices is at most

Exp[T ′] = T · exp

(

− 1

2α

∑

S∈S

3δScS log n

)

·
∏

S∈S′

exp

(

1

2α
3δScS log n

)

≤ T.

By linearity of expectation it now follows that Exp[Φe] ≤ Φs. Therefore, there exists a choice of sets
from Sj such that Φe ≤ Φs.

Theorem 7 Throughout the algorithm, the following properties hold.

(i)Every j ∈ X of weight wj ≥ 1 is covered, that is, j ∈ C.

(ii)
∑

S∈C cS ≤ (6 + o(1))α log m log n.

6

Proof: Initially, the value of the potential function Φ is at most n · n2/m + n < n2, and hence it
stays smaller than n2 during the whole algorithm. Therefore, if wj ≥ 1 for some j during the process,
then j ∈ C, since otherwise the contribution of the term n2wj itself would be at least n2. This proves
part (i). To prove part (ii), note that by the same argument, throughout the algorithm

n · exp

(

1

2α

∑

S∈S

cSχC(S)− 3wScS log n

)

< n2.

Therefore,
∑

S∈S

cSχC(S) ≤
∑

S∈S

3wScS log n + 2α log n,

and the desired result follows from Lemma 5.

4 Derandomization

The choices of the various sets S to be added to C after each iteration can be done deterministically
and efficiently, by the method of conditional probabilities, c.f., e.g., [1], chapter 15. In fact, this can
be done here in a very simple way. A close look at the proof in the last section shows that we can
simply decide, after each weight augmentation, for each set whose weight has been increased in its
turn, if we add it to C or not, making sure that the potential function will not increase after each
such choice. The details will appear in the full version of the paper.

5 The Lower Bound

In this section we show that for every fixed δ > 0 and every m and n satisfying

log n ≤ m ≤ en1/2−δ
, (8)

there is a family F of m subsets of X, |X| = n, so that the competitive ratio of any deterministic
online algorithm for the (unweighted) online set cover problem with X and F is at least

Ω

(

log n log m

log log m + log log n

)

. (9)

Before describing the proof, we note that the assumption (8) is essentially optimal. Let OPT denote
the value of the optimum (off-line) solution to the problem. Note, first, that the problem has a
trivial algorithm with competitive ratio m (that simply takes all sets after the first element appears),
showing that for m < (log n)1−ε the above lower bound (9) fails. (In fact, we may always assume
that m ≤ log2 n, since all the elements that lie in the same cell of the Venn diagram of the sets in F
can be replaced by a single element, without any change in the problem.) It is also easy to see that
the problem has a simple algorithm with competitive ratio O(

√
n); when the first element arrives,

we pick, repeatedly, all sets that cover at least
√

n members of X among those not covered so far.
Note that after this process terminates, there are at most OPT

√
n yet uncovered elements that can

appear, and hence even if from now on we pick an arbitrarily chosen set for each new element, the
algorithm will choose at most

√
n + OPT

√
n sets altogether. (By being a bit more careful we can

7

actually get an O(
√

n/OPT)-competitive algorithm this way. The details are left to the reader).

This discussion shows that for m > en1/2+δ
the lower bound (9) also fails. Therefore, both inequalities

in the assumption (8) are needed.

Proposition 8 Let X = {0, 1, 2, . . . , n− 1} be a set of n = 2k elements. For each 1 ≤ i ≤ k, let Fi

be the set of all elements j of X so that the ith bit in the binary representation of j is on, and let F
be the family of all k sets Fi. Then, the competitive ratio of the best deterministic algorithm for the
online set cover problem (X,F) is |F| = k = log2 n.

Proof: The adversary starts by giving the number n− 1 in which all bits are on. If the algorithm
covers it by Fi1 , then the adversary gives the number in which all bits are on besides the i1th bit.
The algorithm covers it by Fi2 and the adversary gives the number in which all bits are on besides
the i1th and i2th bits, and so on. Clearly, the algorithm will have to choose this way all k sets, while
the optimal solution consists of only one set: the last set chosen by the algorithm.

The above proposition and some obvious modification of the family F for bigger values of m
implies that the lower bound (9) holds for all m satisfying, say, log2 n ≤ m ≤ (log2 n)3. It thus

remains to establish the lower bound for pairs n,m satisfying (log n)3 ≤ m ≤ en1/2−δ
. This is done

in what follows.

Let k, r be positive integers. Suppose n ≥ 2kkr2, and let X1, X2, . . . , Xkr2 be kr2 pairwise disjoint
blocks of elements in X = {1, 2, . . . , n}, each of size 2k. For a block Xb and a bit location t, with
1 ≤ t ≤ k, let Xb(t) denote the set of all elements in Xb in which the tth bit is on. For each subset
R = {b1, b2, . . . , br} of size r of {1, 2, . . . , kr2}, with b1 < b2 . . . < br, and for each sequence of choices
of bit locations I = (i1, i2, . . . , ir), where 1 ≤ it ≤ k for all t, define

FR,I = ∪r
t=1Xbt(it).

Note that each such set contains elements from r blocks, and in each such block it contains half of

the elements. Let F denote the family of all sets FR,I as above. Therefore, m = |F| =
(kr2

r

)

kr.

We next show that given any deterministic algorithm, an adversary can choose kr elements in
X, forcing the algorithm to pick kr sets from F , while keeping the value of the optimum solution
to be 1. The adversary starts by picking a block, say the first one, and by following the strategy
described in the proof of Proposition 8 in this block. That is, the first chosen element is the member
of X1 in which all bits are on, when the algorithm covers it by a set in which the i1 is on in X1, the
adversary chooses the element of X1 in which all bits are on besides i1, and so on. After k such steps
the algorithm used already k sets. These sets contain elements in at most 1 + (r− 1)k < kr distinct
blocks. The adversary will not choose any elements of these blocks from now on, pick another block,
and repeat the same process of making k choices in this block. This can be repeated r times, while
still enabling the adversary to cover all elements picked by one set, implying the desired result.

By adding, if needed, some extra 2kkr2 elements and some of their subsets which we will not use,
this implies the following.

Proposition 9 For every positive integers k, r, and every n,m satisfying n ≥ 2k+1kr2 and 22kkr2 ≥
m ≥

(

kr2

r

)

kr, there is an example of an online set cover problem with n elements and m sets in which
the competitive ratio of any deterministic algorithm is at least kr.

Suppose, now, that n,m are large and satisfy (8). If m ≤ (log n)3, the required lower bound (9) fol-
lows from Proposition 8, as mentioned after its proof. Otherwise, one can define r = Θ(log m

log log m+log log n)

and k = Ω(log n) such that n ≥ 2k+1kr2 and 22kkr2 ≥ m ≥
(

kr2

r

)

kr. The required bound now follows

8

from Proposition 9.

6 Concluding remarks

• We described a deterministic, O(log m log n)-competitive algorithm for the online weighted set
cover problem for a set X, |X| = n and a family F , |F| = m, and showed that this is optimal,
up to a log log n + log log m factor. For some families of subsets F , one can obtain online
algorithms with better performance. It may be interesting to identify properties of the family
F that imply the existence of algorithms with better performance.

• In each weight augmentation step in the algorithm described in Section 3, the weight wS of
each set S is increased by a factor of (1 + 1

ncS
). The factor n appearing here is simply for the

sake of obtaining a better absolute constant in the analysis, and one can in fact augment the
weight of S by a factor of (1 + 1

cS
) without any real change in the performance. This is useful

when we care about the efficiency of our algorithm, as it decreases the number of steps in which
we have to add sets to the collection C. In fact, it is possible to describe a slightly modified
version of the algorithm where after the adversary presents an element j with wj < 1, the
weight of each set S containing j is increased from wS to wS · exp(x

cS
), where x > 0 is chosen

so that after the augmentation wj = 1. This, and the brief discussion in Section 4, enables the
algorithm to consider all the sets containing j only once after the adversary presents it.

• The technique of converting an online fractional solution into a randomized algorithm (and
later a deterministic one) used here can be applied when the fractional solution is monotone
increasing during the algorithm. We believe that this method is likely to be useful in future
applications as well.

Acknowledgements

The last author would like to thank Julia Chuzhoy, Eli Gafni, Sanjeev Khanna, Elias Koutsoupias,
and Baruch Schieber for many stimulating discussions on the problem.

References

[1] N. Alon and J. H. Spencer, The probabilistic method, Second Edition, Wiley, New York,
2000.

[2] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton, Making commitments in the face of uncertainty:
how to pick a winner almost every time, In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing, pp. 519-530, 1996.

[3] A. Blum, On-line algorithms in machine learning, In: A. Fiat and G. Woeginger, editors, Online
algorithms - the state of the art, Chapter 14, pp. 306–325, Springer, 1998.

[4] A. Blum, Online learning tools for online algorithms, Dagstuhl Workshop on Online Algorithms,
July 2002. (See http://www-2.cs.cmu.edu/ avrim/surveys.html.)

9

[5] S. Chawla, A. Kalai, and A. Blum. Static optimality and dynamic search-optimality in lists and
trees. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1-8, 2002.

[6] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Re-
search, 4(3):233–235, 1979.

[7] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652,
July 1998.

[8] Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In Proceedings of
the 9th Annual Conference on Computational Learning Theory, pp. 325-332, 1996.

[9] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci.,
9:256-278, 1974.

[10] L. Lovász. On the ratio of optimal and fractional covers. Discrete Mathematics, 13:383-390,
1975.

[11] N. Littlestone and M. K. Warmuth. The Weighted Majority Algorithm. Information and
Computation, 108:212–261, 1994.

10

