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Abstract. In this paper we consider the problem of routing packets in dynamically chang-
ing networks, using the anycast mode. In anycasting, a packet may have a set of destinations
but only has to reach any one of them. This set of destinations may just be given implicitly
by some anycast address. For example, each service (such as DNS) may be given a specific
anycast address identifying it, and computers offering this service will associate themselves
with this address. This allows communication to be made transparent from node addresses,
which makes anycasting particularly interesting for dynamic networks, in which redundancy
and transparency are vital to cope with a dynamically changing set of nodes. However, so
far not much is known from a theoretical point of view about how to efficiently support
anycasting in dynamic networks. This paper formalizes the anycast routing and admission
control problem for arbitrary traffic in arbitrary dynamic networks, and provides first com-
petitive solutions. In particular, we show that a simple local load balancing approach allows
to achieve a near-optimal throughput if the available buffer space is sufficiently large com-
pared to an optimal algorithm. Furthermore, we show via lower bounds and instability results
that allowing admission control (i.e. dropping some of the injected packets) tremendously
helps in keeping the buffer resources necessary to compete with optimal algorithms low.

Keywords: Adversarial routing, anycasting, online algorithms, load balancing, dynamic networks

1 Introduction

This paper studies the problem of supporting anycasting in adversarial networks. The notion of
anycasting was first standardized in RFC 1546 [16]. In this RFC, IP anycast is defined as a network
service that allows a sender to access the nearest of a group of receivers that share the same anycast
address, where “nearest” is defined according to the routing system’s measure of distance. Usually,
the receivers in the anycast group are replicas, able to support the same service (e.g. mirrored web
servers). RFC 1546 proposes anycast as a means to discover a service location and provide host
auto-configuration. For example, by assigning the same anycast address to a set of replicated FTP
servers, a user downloading a file need not choose the best server manually from the list of mirrors.
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The user can simply use the anycast address to directly download the file from the nearest server.
In order to aid host auto-configuration, all DNS servers may be given the same anycast address.
In this case, a host that is moved to a new network need not be reconfigured with the local DNS
address. The host can simply use the global anycast address to access a local DNS server. Service
discovery and auto-configuration are seen as vital components of protocols for dynamic networks,
and therefore anycasting is seen as a crucial mechanism to ensure robust support for networking
services in mobile networks. Since its introduction, anycasting has received considerable attention
in the systems community and it has been adopted by all proposed successors of IPv4 (e.g. Pip,
SIPP, and IPv6). However, to our surprise, it seems that anycasting has not been investigated by
the theory community so far.

Since in highly dynamic networks it may be very hard to predict which may be the nearest
server belonging to some anycast address, it seems to be a formidable problem to efficiently support
anycasting in dynamic networks, especially for those that are under adversarial control. However,
we demonstrate in this paper that even if both the network and the packet injections are under
adversarial control, distributed routing strategies can be found for anycasting with a close to
optimal throughput. Thus, in principle, anycasting can even be supported in such networks as
mobile ad-hoc networks, where connections between users may change quickly and unpredictably.

1.1 Ouwur approach and related results

We measure the performance of our protocols by comparing them with a best possible strategy
that knows all actions of the adversary in advance. The performance is measured in terms of
communication throughput and space overhead. In order to ensure a high throughput efficiency in
dynamic networks, several challenging tasks have to be solved:

— Routing: What is the next edge to be traversed by a packet?

— Queueing: What is the next packet to be transmitted on an edge? In particular, which desti-
nation should be preferred?

— Admission control: What is the packet to be dropped if a buffer is full?

The study of adversarial models was initiated, in the context of queueing alone, by Borodin et
al. [12]. Other work on queueing includes [6,13-15,17,18]. In these papers it is assumed that the
adversary has to provide a path for every injected packet and reveals these paths to the system.
The paths have to be selected so that they do not overload the system. Hence, it remains to find
the right queueing discipline (such as furthest-to-go) to ensure that the number of packets in the
system (resp. the time needed by packets to reach their destination) is bounded. However, the
bounds on the buffer size given in these papers to avoid dropping any packet usually depend on
the network size and are sometimes unrealistically high. This motivated Aiello et al. [5] to study the
throughput performance of queueing disciplines under the assumption that the routing buffers have
a fixed size (i.e. that is independent of network parameters), using an adversary that can inject an
unbounded number of packets. In this case, of course, a queueing discipline cannot guarantee the
delivery of every injected packet. So the goal is rather to find a queueing strategy whose throughput
is as close as possible to a best possible throughput. Aiello et al. show among other results that
there are queueing disciplines that are guaranteed to achieve an £2(1/(d - m)) fraction of the best
possible throughput achievable with the same buffer size, where m is the number of edges and d
is the longest path injected by the adversary. This upper bound and their lower bound of O(y/m)
for the line that holds for arbitrary greedy protocols seem to indicate that online protocols cannot
compete well with best possible protocols when using the same buffer size.

The study of adversarial models was initiated, in the context of routing, by Awerbuch, Mansour
and Shavit [11] and further refined by [4,7,9,10,14]. In these papers the model is used that the



adversary does not reveal the paths to the system, and therefore the routing protocol has to figure
out paths for the packets by itself. Based on work by Awerbuch and Leighton [10], Aiello et al. [4]
show that there is a simple distributed routing protocol that keeps the number of packets in transit
bounded in a dynamic network if, roughly speaking, in each window of time the paths selected
for the injected packets require a capacity that is below what the available network capacities can
handle in the same window of time. Awerbuch et al. [7] generalize this to an adversarial model in
which the adversary is allowed to control the network topology and packet injections as it likes,
as long as for every injected packet it can provide a schedule to reach its destination. They show
that even for the case that the network capacity is fully exploited, if all packets have the same
destination, the number of packets in transit is bounded at any time.

With the exception of [5], the weakness of the adversarial models above is that they assume that
the adversary never overloads the system with packets. In static networks this may be a reasonable
restriction, since one can imagine that in principle it is possible to perform some kind of admission
control before injecting a packet into the system. However, in highly dynamic networks such as
mobile ad-hoc networks, this may not be possible without being too conservative and therefore
wasting too much of the already scarce bandwidth. Hence, for dynamic networks it would be
highly desirable to have protocols that can handle not only the routing and queueing part but also
packet-level admission control, i.e. dropping packets from either input or intermediate buffers.

Also, we note that all of the above work on adversarial queueing and routing only considered the
unicasting mode (every packet has a single destination). We consider the more general anycasting
mode, using a very general adversarial model that gets rid of somewhat artificial restrictions of
previously suggested models for dynamic networks. In fact, the only limiting assumptions left in
our model are that packets are of atomic nature (i.e. they cannot be split or compressed) and that
packets cannot be killed by the adversary. Thus, our upper bounds also apply to other adversarial
routing and queueing models suggested so far.

Finally, we note that all approaches in the adversarial routing area, including this current paper,
are based on simple load balancing schemes first pioneered by Awerbuch, Mansour and Shavit [11],
and refined in [1-4,7,9,10] for various routing purposes. Our achievement is to demonstrate that
balancing even works for anycasting. Also, we use a much more general adversarial network model
then was used in previous papers, and we consider the admission control problem.

In order to state our analytical results, we need some notation.

1.2 The anycast routing and admission control model

First, we describe the basics of our network model and injection model. We assume that V =
{1,...,n} represents the set of nodes in the system. The selection of the edges is under adversarial
control and can change from one time step to the next. We assume that all edges are directed. This
does not exclude the undirected edge case, since an undirected edge can be viewed as consisting of
two directed edges, one in each direction. Each edge can forward at most one packet in a time step.
Each node can have at most A incoming and at most A outgoing edges at any time. A can be seen
as the maximum number of active (logical or physical) connections a node can handle at the same
time (due to, for example, its hardware restrictions). Apart from this restriction, the adversary
can interconnect the nodes in an arbitrary way in each time step. This includes the possibility of
connecting the same pair of nodes via several edges.

The adversary does not only control the topology of the network but also the injection of
packets. Each anycast packet is given a fixed anycast group at the time of its injection. We allow
this group just to be specified implicitly (for example, by an anycast address). Note that for
implicitly specified groups, the nodes in the network may have no knowledge about their size. It
may even be possible that the group is empty. Thus, our anycast algorithm has to cope with this
situation.



The adversary can inject an arbitrary number of packets and can activate an arbitrary number
of edges in each time step as long as the number of incoming or outgoing edges at a node does not
exceed A. In this case, only some of the injected packets may be able to reach their destination, even
when using a best possible strategy. Each time an anycast packet reaches one of its destinations,
we count it as one delivery. The number of deliveries that is achieved by an algorithm is called
its throughput. We are interested in maximizing the throughput. Since the adversary is allowed to
inject an unbounded number of packets, we will allow routing algorithms to drop packets so that
a high throughput can be achieved with a buffer size that is as small as possible.

In order to compare the performance of a best possible strategy with our online strategies, we
will use competitive analysis. We assume that both the optimal and the online algorithm are allowed
to allocate one buffer in each node for each type of packet. Thus, if there are b different anycast
addresses, then a node can allocate up to b different buffers. This will simplify the comparison.
However, our competitive results also work if every node only has a single buffer (or a fixed number
of buffers). In this case, the buffer overhead for our online algorithm has to be multiplied by b.

Given any sequence of edge activations and packet injections o, let OPT (o) be the maximum
possible throughput (i.e. the maximum number of deliveries) when using a buffer size of B (i.e.
each buffer can store up to B packets), and let Ap/ (o) be the throughput achieved by some given
online algorithm A with buffer size B’. We call an online algorithm A (c, s)-competitive if for all o
and all B, A can guarantee that

As.p(o) > ¢-OPTg(o) — r

for any s’ > s, where r > 0 is some value that is independent of o (but may depend on s, B and
n). ¢ € [0, 1] denotes here the fraction of the best possible throughput that can be achieved by A
and s denotes the space overhead necessary to achieve this. If ¢ can be brought arbitrarily close
to 1, A is also called s(e€)-competitive (or simply competitive), where s(e) reflects the relationship
between s and € with ¢ = 1 — e. Obviously, it always holds that s(e) > 1, and the smaller s(¢), the
better is the algorithm A.

In the following, B will always mean the buffer size of an optimal routing algorithm.

1.3 New results

Our new results are arranged in two sections. In Section 2, we demonstrate that if it is allowed to
drop packets, a near-optimal throughput can be achieved with a low space overhead. In particular,
we present a simple algorithm for anycasting, called T'-balancing algorithm, that achieves the
following result:

For every T' > B+2(A— 1), the T-balancing algorithm is 1+ (14 (T 4+ A)/B) L/e-competitive,
where L is the average path length used by successful packets in an optimal solution. For B > A
and T' = O(B), this boils down to a competitive ratio of O(L/e). The result is sharp up to a
constant factor.

In Section 3, we demonstrate with the help of lower bounds and instability results that even if
the adversary is friendly (i.e. it only injects packets that can be delivered when using a buffer size
of B), routing without the ability to drop packets may have a poor performance both with respect
to throughput and space overhead.

Some of the proofs are only sketched due to space limitations. Please see [8] for details.

2 Adversarial Anycasting

Let hy,q,+ denote the amount of packets in the buffer for anycast address a in node v at the beginning
of time step t. hy o+ Will also be called the height of the corresponding buffer. The maximum height
a buffer can have is denoted by H.



We now present a simple balancing strategy that extends the balancing strategies used by
Aiello et al. [4] and Awerbuch et al. [7] by a rule for deleting packets. In every time step ¢ > 1 the
T-balancing algorithm performs the following operations.

1. For every edge (v, w), determine the anycast address a with maximum h,, ¢ 4 — huy o,r and check
whether hy gt — hy,ot > T If so, send a packet for a from v to w (otherwise do nothing).

2. Receive all incoming packets and absorb all packets that reached the destination. Afterwards,
receive all newly injected packets. If a packet cannot be stored in a buffer because its height is
already H, delete it.

Note that if T' is large enough compared to A, then packets are guaranteed never to be deleted
at intermediate buffers but only at the source. This provides the sources with a very easy rule to
perform admission control: if a packet cannot be stored because its buffer is already full, delete it.

Let L denote an upper bound on the (best possible) average path length used by the successful
packets in an optimal algorithm with buffer size B, and let A denote the maximum number of
edges leaving or leading to a node that can be active at any time. We do not demand that these
edges have to connect different pairs of nodes. Hence, the result below also extends to dynamic
networks with non-uniform edge capacities.

Theorem 1. For any € > 0 and any T > B+2(A—1), the T-balancing algorithm is 1+ (1 + (T +
A)/B)L/e-competitive.

Proof. To simplify the analysis, we prove the competitive ratio for a more general model than our
anycast model, called option set model.

In the option set model, we have a set of nodes V' with a single buffer each, and all injected
packets want to go to the same destination d € V’. The adversary can inject an arbitrary number
of packets in each time step. Also, it can activate an arbitrary collection of edge sets F1, ..., Ex C
V' x V', called option sets, in each step as long as every node v € V' \ {d} has an incoming or
outgoing edge in at most A many sets. For each option set F;, the algorithm is allowed to use only
one edge in F; for the transmission of a packet.

This model is indeed more general than our anycast model.

Lemma 1. Any algorithm that is c-competitive in the option set model is also c-competitive in the
anycast model.

Proof. For this it suffices to show how to transform the anycast model into the option set model.
Suppose that A is the set of all anycast addresses. Then we define V' =V x A, i.e. each buffer in
the original model represents a node in the option set model. Each edge e = (v, w) that is activated
in the anycast model can then be represented as option set E. = {((v,a), (w,a)) | a € A}. Since
all packets reaching their destination buffers in the anycast model are absorbed, we can view all
of these buffers as a single node in the option set model without affecting the throughput. a

Hence, in the following we only work with the option set model.

Let N be the number of non-destination nodes in the option set model, and let node 0 represent
the destination node. The height of node 0 is always 0, since any packet reaching 0 will be absorbed.
For each of the remaining nodes we assume that it has H slots to store packets. The slots are
numbered in a consecutive way starting from below with 1. Every slot can store at most one
packet. After every step of the balancing algorithm we assume that if a node holds h packets, then
its first h slots are occupied. The height of a packet is defined as the number of the slot in which it
is currently stored. If a new packet is injected, it will obtain the lowest slot that is available after
all packets that are moved to that node from another node have been placed.



For each successful packet in an optimal algorithm, a schedule can be identified. A schedule
S = (to, (e1,%1), ..., (ee, t¢)) consists of a sequence of movements by which the injected packet P is
sent from its source node to the destination. It has the property that P is injected at time tg, the
edges eq, ..., e, form a connected path, with the starting point of e; being the source of P and the
endpoint of e, being the destination of P, the time steps have the ordering tg < ¢t; < ... < ty, and
edge e; was available in some option set at time ¢; for all 1 < i < £. Certainly, no two schedules
are allowed to use the same option set at the same time. A schedule S = (to, (e1,t1),- .., (€r, tr))
is called active at time t if tg < t < ty. The position of a schedule at time ¢ is the node at which
its corresponding packet would be if it is moved according to S. An edge in an option set is called
a schedule edge if it belongs to a schedule of a packet. Suppose that we want to compare the
performance of the balancing algorithm with an optimal algorithm that uses a buffer size of B.
Then the following fact obviously holds.

Fact 1 At every time step, at most B schedules can have their current position at some node v.

Next we introduce some further notation. We will distinguish between three kinds of packets:
representatives, zombies, and losers. During their lifetime, the packets have to fulfill certain rules.
(These rules will be crucial for our analysis. The balancing algorithm, of course, cannot and does
not distinguish between these types of packets.) Every injected packet that has a schedule (i.e. that
will be delivered by the optimal algorithm) will initially be a representative. Every other injected
packet will initially be a zombie. The goal of a representative is to stay with its schedule, and the
goal of a zombie is to stay at a slot of height more than H — B. Whenever this cannot be fulfilled,
the packet is transformed into a loser. Together with Fact 1, this implies the following fact.

Fact 2 At any time, the number of zombies and representatives stored in a node is at most B.

If a packet is injected into a full node, then the highest available loser will be selected to take
over its role (Fact 2 implies that this is always possible if H > B).

Our goal for the analysis is to ensure that a representative always stays with its schedule as
long as this is possible. That is, each time the schedule moves, the representative tries to move with
it, and otherwise it tries to stay at the current position of the schedule. This implies the following
rules for a representative R when the adversary offers an option set containing one of its schedule
edges e = (v, w):

1. A packet is sent along e: Then we always select R to be moved along e.

2. No packet is sent along edge e: If w has a loser, then the representative exchanges its role
with the highest available loser in w. In this case we will also talk about a virtual movement.
Otherwise, the representative is simply transformed into a loser. In this case, we will disregard
the rest of the schedule (i.e. we will not select a representative for it afterwards and the rest
of the schedule edges will simply be treated as non-schedule edges).

Furthermore, if a packet is sent along a non-schedule edge e = (v, w), then we always make sure
that none of the representatives is moved out of v but only a loser (which always exists if T' is large
enough).

The three types of packets are stored in the slots in a particular order. The lowest slots are
always occupied by the losers, followed by the zombies and finally the representatives.

Let h,, be the height of node v (i.e. the number of packets stored in the buffer represented by
v) at the beginning of time step ¢, and let h;, , be its height when considering only the losers. The

h;,t . (h;’t+1

potential of node v at step ¢ is defined as ¢,; = > ;27 j = ("4

at step ¢ is defined as &, = >, ¢y .
First, we study how the potential can change in a single step. Since schedules are not allowed
to overlap, every option set contains either one or no schedule edge. To simplify the consideration

) and the potential of the system



of these two cases, we consider the option sets given in a time step one by one, starting with option
sets without a schedule edge and always assuming the worst case concerning previously considered
option sets. Also, when processing these option sets, we always use the (worst case) rule that if a
loser is moved to some node w, it will for the moment be put on top of all old packets in w. This
will simplify the consideration of option sets with a schedule edge. At the end, we then move all
losers down to fulfill the ordering condition for the representatives, zombies, and losers. This will
certainly only decrease the potential. Using this strategy, we can show the following result.

Lemma 2. If T > B+ 2(A — 1), then any option set that does not contain a schedule edge does
not increase the potential of the system.

Proof. Consider any fixed option set without a schedule edge. If no edge in the given option set is
used by a packet, the lemma is certainly true. Otherwise, let e = (v, w) be the edge along which a
packet is sent. Note that in this case, hyt — hy e > T. If T > B+ 2(A — 1), then even after A —1
removals of packets from v and the arrival of A — 1 packets at w, there are still losers left in v, and
the height of the highest of these is higher than the height of w. Hence, we can avoid moving any
representative away from the position of its schedule and instead move a loser from v to w without
increasing the potential. ad

For option sets with a schedule edge (i.e. an edge that still has a representative associated with
it), only a slight increase in the potential is caused.

Lemma 3. IfT > B+2(A—1), then every option set that contains a schedule edge increases the
potential of the system by at most T + B + A.

Proof. Consider some fixed option set with a schedule edge e = (v,w). If e is selected for the
transmission of a packet, then we can send the corresponding representative along e, which has no
effect on the potential.

Otherwise, it must be that either d, = hy+—hy ¢ < T or §. > T and another edge was preferred.
In both cases, the representative R for e has to be moved virtually or transformed into a loser.

First of all, note that our rule of placing new losers on top of the old packets makes sure that
the height of the representative in v does not increase. Furthermore, there are two ways for w to
lose losers before considering e: either an unused schedule edge to w forced a virtual movement of
a representative to w, or a used non-schedule edge from w forced to move a loser out of w. Let
s be the number of edges with the former property and ¢ be the number of edges with the latter
property. If w had r representatives (and zombies) at the beginning of ¢, then it must hold that
r+s—(A—£)+1 < B to ensure that at the end of step ¢, w has at most B representatives (the +1
is due to e). Thus, r+s+¢ < B+ A—1. Hence, if there is still a loser left in w when considering e,
the highest of these must have a height of at least hy,; — (B + A — 1). Therefore, if hy,; > B+ A,
then it is possible to exchange places between R and a loser in w so that the potential increases
by at most

hyt— (hwt— (B+A—-1)=8+B+A-1. (1)

If 6. < T, this is at most T+ B + A. If hy+ < B+ 4, then it may be necessary to convert R into
a loser. However, since h, ; — hy ¢+ < T, this increases the potential also by at most T'+ B + A.
Otherwise, J. might be quite big, but in this case there must be some other edge ¢/ = (v/,w’)
that won against e because dor > d.. Since d.r > T', v’ must have a loser even if A—1 losers already
left v and the maximum possible number of losers in v’ was converted into representatives. In
fact, similar to w above, the height of the highest of the remaining losers in v’ must be at least
hy 4 —(B+ A—1). On the other hand, w’ can receive at most A — 1 other packets before receiving



the packet sent by e’. So the potential drop due to moving the highest available loser in v’ to w’
is at least

(hyt—B—A+1) = (hwi+A) = (hyy —hus) —B—2A+1>6,—B—2A+1. (2)

Subtracting (2) from (1), the increase in potential due to the given option set is at most (§. + B +
A—1)—(.—B—-2A+1)=2B+3A—-2.U{T>B+2(A—-1), thisisat most T+ B+ A. O

In addition to option sets, also injection events and the transformation of a zombie into a loser
can influence the potential. This will be considered in the next two lemmata.

Lemma 4. FEvery deletion of a newly injected packet decreases the potential by at least H — B.

Proof. According to Fact 2, the highest available loser in a full node must have a height of at least
H — B. Since the deletion of a newly injected packet causes this loser to be transformed into a
representative or zombie, this decreases the potential by at least H — B. (Note that in case of a
zombie, it might be directly afterwards converted back into a loser, but this will be considered in
the next lemma.) O

If an injected packet is not deleted, this will initially not affect the potential, since it will either
become a representative or a zombie. However, a zombie may be converted into a loser.

Lemma 5. Every zombie can increase the potential by at most H — B.

Proof. Note that zombies do not count for the potential. Hence, the only time when a zombie
influences the potential is the time when it is transformed into a loser. Since we allow this only to
happen if the height of a zombie is at most H — B, the lemma follows.

Now we are ready to prove an upper bound on the number of packets that are deleted by the
balancing algorithm.

Lemma 6. Let o be an arbitrary sequence of edge activations and packet injections. Suppose that
in an optimal strategy, s of the injected packets have schedules and the other z packets do not. Let
L be the average length of the schedules. If H > B+ 2(A —1), then the number of packets that are
deleted by the balancing algorithm is at most

L(T+ B+ A)
H-B
Proof. First of all, note that only newly injected packets get deleted. Let p denote the number

of option sets with a schedule edge and d denote the number of packets that are deleted by the
balancing algorithm. Since

+ z

— due to Lemma 2 option sets without a schedule edge do not increase the potential,

— due to Lemma 3 every option set with a schedule edge increases the potential by at most
T+ B+ A,

— due to Lemma 4 every deletion of a newly injected packet decreases the potential by at least
H — B, and

— due to Lemma 5 every zombie increases the potential by at most H — B,

it holds for the potential ¢ after executing o that & <p-(T'+ B+ A)+z-(H — B) —d-(H — B).
Since on the other hand @ > 0, it follows that

d<p-(T+B—|—A)
- H-B

Using in this inequality the fact that the average number of edges used by successful packets is
at most L, and therefore the number of injected packets with a schedule, s, satisfies s > p/L,
concludes the proof of the lemma. a



From Lemma 6 it follows that the number of packets that are successfully delivered to their
destination by the balancing algorithm must be at least

L(T+ B+ A) B L(T+ B+ A)

where N is the number of (virtual) non-destination nodes. For H > L(T 4+ B+ A)/e+ B this is at
least (1 — €)s — r for some value r independent of the number of packets successful in an optimal
schedule. a

Next we demonstrate that the analysis of the T-balancing algorithm is essentially tight, even
when using just a single destination.

Theorem 2. For any e >0, T > 0, and L > 1, the T-balancing algorithm requires a buffer size
of at least T - (L — 1)/e to achieve a more than 1 — € fraction of the best possible throughput.

Proof. Consider a source node s that is connected to a destination d via two paths: one of length 1
and one of length (L — 1)/e. Further suppose packets are injected at s so that 1 — e of the injected
packets have a schedule along the short path and e of the packets have a schedule along the long
path. Then the average path length is 1(1 —€) + ((L — 1)/€) - € < L. Since each time a packet is
moved forward along a node its height (i.e. slot number) must decrease by at least T, a packet can
only reach the destination along the long path if s has a buffer of size H > T - (L — 1)/e. Hence,
such a buffer size is necessary to achieve a throughput of more than 1 — e. a

3 Unicasting without Admission Control

In this section we demonstrate that routing without admission control mechanisms seems to be
very difficult if not impossible, even in the adversarial unicast setting, and even if an unbounded
(or extremely high) amount of resources for the buffering is available.

We will start by defining some properties of online routing algorithms which intuitively seem
to be necessary for the successful online delivery of packets. A priority function f : INg x INg — INg
gets as arguments two buffer heights and outputs a number determining the priority with which a
packet should be sent from one to the other buffer. In a balancing algorithm that uses a priority
function f, the pair with the highest priority wins. We call f monotonic if for all hqy, hy € INg,
f(h1+1,h2) > f(hi,he) and f(h1 +1,ho +1) = f(h1, ha).

Consider a routing algorithm that uses a monotonic priority function to determine a winning
buffer pair (hq, ha) for each activated edge in the unicast model. If hy < hg, no packet is allowed to
be sent. Otherwise, a packet for that pair (or none) may be sent, but if the buffer corresponding to
ho is a destination buffer, a packet has to be sent for that pair. Intuitively, these rules seem to be
reasonable to ensure a high throughput, and we will therefore call this class of routing algorithms
natural algorithms.

We start with an observation demonstrating that for adversaries that are unbounded in their
injections it is necessary to drop packets in a natural routing algorithm in order to make sure that
any of the injected packets can be delivered, even if only two different destinations are used. Note
that when we speak about algorithms that do not drop packets, this implies that they must have
sufficient space to accommodate all injected packets.

Claim. For every natural algorithm that does not drop packets, there is an adversary for unicast
injections using just two different destinations that can force the algorithm never to deliver a
packet, no matter how high the throughput of an optimal strategy can be.



Proof. The adversary will simply pick one destination as the so-called dead destination and will
inject so many packets into the system that whenever an edge is offered, a packet will be sent for
the dead destination. Hence, the adversary can prevent packets from reaching the good destination,
although there may be plenty of opportunities, had the good packets been chosen. On the other
side, the adversary will never offer an edge directly to the dead destination. Hence, no packet will
ever get delivered. a

Thus, unbounded adversaries seem to be difficult to handle without allowing packets to get
dropped. However, what about “friendly” adversaries, i.e. adversaries that only inject packets so
that when using an optimal algorithm, only a bounded number of packets are in transit at any
time without deleting any? We show that also in this case some natural algorithms have severe
problems if packets cannot be dropped.

Theorem 3. If the adversary is allowed to inject packets for more than one destination, then the
adversary can force the T-balancing algorithm to store by a factor of ©(2™*) more packets in a
buffer than for an optimal algorithm.

Proof. (Sketch) For the proof it is sufficient to use two destinations, a and b, and to set B = 1.
Given a node v, the height of its a-buffer is denoted by hq(v) and the height of its b-buffer is
denoted by hp(v).

We show the theorem by complete induction. Suppose that we can construct a scheme using
2(5+42i) nodes with two nodes v\* and v!”) so that he(v{") > H; and hy(v{") = 0, and b (v”) = 0
and hy(v\") > H;, where H; = 20 max{4T,3} — (2 — 1)(2T + 1). Then we can show that 4 more
nodes suffice to identify nodes so that the h}Ep)othesis above also holds for i 4+ 1. The basic idea
b

is to create “copies” u, and wup of Ufa) and v; ~ and then to inject schedules for a-packets (resp.

b-packets) with path (Ufi)l, Up, Uqg, @) (TESD. (vgi)l,ua,ub, b)). O

The theorem implies together with the results in [7] that only for the case that we have a
single destination, the T-balancing algorithm without a dropping rule can be space-efficient under
friendly adversaries.

What about other natural algorithms studied in the literature such as algorithms based on
exponential priority functions (e.g. [10])? A routing algorithm is called stable if the number of
packets in transit does not grow unboundedly with time. In order to investigate the stability of
natural algorithms, we start with an important property of natural algorithms that allows us to
study instability in the option set model (suggested in the proof of Theorem 1) instead of the
original unicast model, which is much more difficult to handle.

Theorem 4. For any natural deterministic algorithm it holds: If it is not stable in the option set
model, it is also not stable in the adversarial unicast model.

Proof. (Sketch) We only show how to get from the anycast to the unicast model. See [8] for details.

Consider any natural deterministic algorithm A that is instable in the anycast setting. Let V'
be the set of nodes and let D = (D1, ..., Dy) be the set of anycast sets. To prove instability for A
in the unicast model, we extend V to V U {ds,...,dn}, where d; is the new and only destination
node for packets originally having destination set D;. Let S be the strategy that caused instability
for A in the anycast model. We simulate .S until a packet of type i is supposed to reach one of its
destination nodes D;. Instead, we will offer now an edge to d;. If this edge is taken by a packet of
type i, we continue with the simulation.

Otherwise, it follows from the definition of a natural algorithm that another packet must have
been sent to d;. This causes the total number of packets stored in the buffers in {d;,...,dny}



to increase by one. Then, we remove all packets from V by offering again and again edges to
destinations d; and start from the beginning with the simulation of S.

Thus, either we obtain a perfect simulation of S for the unicast case, in which case A will
be instable, or we increase the number of packets in the buffers in {di,...,dn} in every failed
simulation attempt, which will also cause A to become instable. This completes the proof. O

The theorem allows us to show the following result.

Theorem 5. Natural routing algorithms which are based on exponential priority functions are not
stable.

Proof. By algorithms with exponential priority function we mean algorithms using the potential
drop f(h1,h2) = (¢(h1) + ¢(h2)) — (d(h1 — 1)) + ¢(he + 1)) with ¢(h) = Zle e for some o > 0
to determine the priority of a packet movement.

We will show that this rule can cause packets not to be delivered under certain circumstances,
and that these situations can be generated arbitrarily often. We assume that the nodes are sorted
according to their heights with hy_1 > hy_2 > ... > h1 > hg and that node 0 is the destination
node.

Lemma 7. If the height difference between node (N — 1) and node 1 is hy—1 — hy > w, a
new packet can be injected without any packet leaving the system.

Proof. We assume that the adversary injects a new packet into node 1, which stores the lowest
number of packets and has height h; before the injection of the packet. Then the adversary offers
an option set with the two links {(N —1, 1), (1,0)}. This option set is a valid schedule for the newly
injected packet. The algorithm, however, will choose link (N—1,1) if e* "~ -1 —e(h1+1) > gahi _pa
which is true if hy_1 — h1 > In(e4l) a

[e3

The important observation from the previous lemma is that the necessary height difference
between the two nodes does not depend on the actual height of these nodes. If it is always possible
to create this fixed height difference for a given algorithm and a given number of packets in the
system, then the algorithm is not stable. In the next lemma we will show that this is the case.

Lemma 8. Given a network with at least A+1 nodes it is possible to achieve a difference in height
of at least A packets between the node with the highest number of packets and the non-destination
node with the lowest number of packets without reducing the number of packets, or the algorithm
is instable.

Proof. Pick a set S of A non-destination nodes, and consider the following strategy: Suppose that
there are two nodes in .S of equal height, say v and w. Then we inject a packet in v and offer the
option set {(v,w)}. If the algorithm sends a packet, we offer the option set {(v,0)} and otherwise
the option set {(w,0)}. This ensures that the injected packet will have a schedule in any case
and that the number of packets in S does not change. Furthermore, using the potential function
Oy = Z?;l 1, one can show that this operation increases the potential in S.

Hence, either the number of packets in S goes to infinity or there cannot be two nodes in S
of the same height any more. In the latter case, this means that the highest and lowest node in S

must have a difference of at least A. O
We now assume that we have a network with at least @ + 1 nodes. From Lemma 8 we
know that in this case a height difference of at least In(e+D) can be created.

[e3
After this, the adversary repeats the strategies in Lemma 7 and Lemma 8 again and again.

With every iteration, the number of packets in the system will increase by one, which proves the
theorem. ad



The proof of the theorem immediately implies the following result.

Corollary 1. Natural routing algorithms which always prefer the buffer with the largest number
of packets are not stable.

We conjecture that any (natural) online algorithm is either instable or requires an exponential
buffer size to be stable under friendly adversaries, which would imply together with Theorem 1
that the ability to drop packets can tremendously improve the performance of routing algorithms.

4 Conclusions and Open Problems

In this paper we presented a simple balancing algorithm for anycasting in adversarial systems.
Many open questions remain. Although our space overhead is already reasonably low (essentially,
O(L/e)), the question is whether it can still be reduced. For example, could knowledge about the
location of a destination or structural properties of the network (for instance, it has to form a
planar graph) help to get better bounds? Or are there other protocols that can achieve a lower
space overhead in general?
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