
Throughput-Competitive On-Line Routing

Baruch Awerbuch∗

Lab. for Computer Science

MIT

Yossi Azar†

Tel-Aviv University

and DEC SRC

Serge Plotkin‡

Dept. of Computer Science

Stanford University

Abstract

We develop a framework that allows us to address the issues of admission control and
routing in high-speed networks under the restriction that once a call is admitted and routed,
it has to proceed to completion and no reroutings are allowed. The “no rerouting” restriction
appears in all the proposals for future high-speed networks and stems from current hardware
limitations, in particular the fact that the bandwidth-delay product of the newly developed
optical communication links far exceeds the buffer capacity of the network.

In case the goal is to maximize the throughput, our framework yields an on-line O(log nT)-
competitive strategy, where n is the number of nodes in the network and T is the maximum
call duration. In other words, our strategy results in throughput that is within O(log nT)
factor of the highest possible throughput achievable by an omniscient algorithm that knows
all of the requests in advance. Moreover, we show that no on-line strategy can achieve a
better competitive ratio.

Our framework leads to competitive strategies applicable in several more general settings.
Extensions include assigning each connection an associated “profit” that represents the
importance of this connection, and addressing the issue of call-establishment costs.

1 Introduction

Motivation. High-speed integrated com-
munication networks are going to be the most
important communication platform of the fu-
ture. The technological advances in this area are
quickly offset by increase in consumption, due
to a wide spectrum of new applications (tele-
conferencing, cable-TV, tele-shopping, etc.). It is
thus important to address the fundamental prob-

∗Lab. for Computer Science, MIT. Supported by Air

Force Contract TNDGAFOSR-86-0078, ARO contract

DAAL03-86-K-0171, NSF contract 9114440-CCR, DARPA

contract N00014-J-92-1799, and a special grant from IBM.

†DEC System Research Center, 130 Lytton, Palo Alto,

CA 94301. Department of Computer Science, Tel-Aviv

University, Israel.
‡Department of Computer Science, Stanford University.

Research supported by U.S. Army Research Office Grant

DAAL-03-91-G-0102, and by a grant from Mitsubishi Elec-

tric Laboratories.

lem of efficient allocation of network resources.

One of the main network resources is the avail-
able bandwidth of the communication channels.
In order to use the network (say, transmit video
signal from one point to another) the user re-
quests a (virtual) connection to be established
between these points. Although the rate of infor-
mation flowing through such a connection might
vary in time, the network has to guarantee that
the connection will support at least the bit rate
that was agreed upon during the connection es-
tablishment negotiations. This guarantee is im-
perative for correct operation of many of the ser-
vices, including constant bit-rate video and voice
transmission. In other words, establishing a con-
nection corresponds to reserving the requested
bandwidth along some path connecting the end
points specified by the user.

In the context of low-speed networks (e.g. In-

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

ternet), where buffer requirements are less of
an issue, the difficulties associated with on-line
circuit-switching may be alleviated by delaying
the transmission, slowing down its rate, or by
rerouting the connection after it has been estab-
lished. However, these approaches are usually in-
appropriate in the context of Gigabit rate net-
works (e.g. atm [2], paris/planet [4, 8]). This is
mostly due to the fact that the product of trans-
mission rates and network latency well exceeds
the available nodal buffer space, in other words
because of the high bandwidth-delay product.

In this paper we describe an on-line framework
that allows us to address both the admission con-
trol (i.e. which requests to satisfy and which ones
to reject), and bandwidth reservation issues. Our
techniques are applicable in the context of real
time high-speed networking environments with
strict performance guarantees: transmission must
start at a specific time, end at a specific time, use
a specific amount of bandwidth, and is guaran-

teed to be successfully accomplished, once admit-

ted into the network. We assume that requests
for establishment of connections arrive on-line;
each request specifies the source and destination
nodes, the requested bandwidth, and the dura-
tion. The algorithm either rejects the request,
or establishes a connection by allocating the re-
quired bandwidth along some path between the
source and the destination nodes for the specified
duration.

A natural performance measure is the amor-
tized throughput, which is defined as the average
over time of the number of bits transmitted by
the accepted connections.1 In fact, our frame-
work can be described in terms of a generaliza-
tion of the throughput. We assume that each
request for connection has an associated profit,
which is received only if the request is satisfied.
The goal is to maximize the profit. In the sim-
plest case, where the profit is proportional to the

1To simplify the definitions, we assume that the cus-

tomer will use as much bandwidth as he has requested.

bandwidth-duration product, maximizing the to-
tal profit corresponds to maximizing the through-
put. Roughly speaking, the profit abstraction is
useful if the connections differ in importance; in
this case one can assign higher profit per bit for
the more important connection.

Since the admission control and routing algo-
rithm has to make decisions without knowledge
of the future requests, it is natural to evaluate
its performance in terms of the competitive ra-

tio [15], which in this case is the supremum, over
all possible input sequences, of the ratio of the
profit achieved by the on-line algorithm to the
profit achieved by the optimal off-line algorithm.
Note that several natural approaches do not lead
to algorithms with good competitive ratio. On
one hand, a greedy admission strategy that al-
ways accepts a connection as long as there exists
a path from source to sink with sufficient residual
bandwidth may, in some cases, work very poorly
since certain admitted connection may end up
“blocking” many future, perhaps more profitable,
connections. On the other hand, a conservative
policy of waiting for most “profitable” connec-
tions may clearly lead to very poor performance
in cases where only low-profit connections show
up.

Our results versus existing work. In
this paper we describe an admission and routing
strategy that achieves an O(log nT) competitive
ratio if the profit of a call is proportional to the
bandwidth-duration product, where T is maxi-
mum duration of a call. We also prove that the
above bound is tight. We prove similar results for
several generalizations of this problem; discussion
of these generalizations is deferred to the end of
this section.

The algorithm employs techniques similar to
ones previously used in the setting of multi-
commodity network flow [14, 12], approximate
fractional packing [13] and on-line load balanc-
ing [1, 6]. In particular, we make extensive use
of the idea of assigning each edge a cost function

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

that is exponential in its current load, and the
idea of concurrently working with multiple copies
of the graph, one copy per each time instance.

The first competitive solutions for on-line
throughput maximization have been pioneered
by Garay and Gopal for the case of a single
link [10], and by Garay, Gopal, Kutten, Man-
sour and Yung [9] for a line network; the latter
work achieved logarithmic competitive ratio. The
problem we are concerned with, namely competi-
tively maximizing network throughput, has been
open for general network topologies. Other pre-
vious work on throughput concentrated on proba-

bilistic models, and was based on various assump-
tions on the distributions of call arrivals times and
source-destination pairs (see e.g. [11]).

Instead of throughput, one can measure “rela-
tive load” which is defined as the maximum (over
all links and over all moments in time) of the
link capacity utilization by the currently routed
circuits.2 Roughly speaking, when we say that
the competitive ratio of an on-line algorithm is
λ with respect to load means that, given any se-
quence of requests that can be satisfied by the
off-line algorithm without overflowing the capac-
ities, we can satisfy all of these requests on-line if
we reduce the rate of each request by a factor of
λ. Alternatively, the on-line algorithm can satisfy
all of these requests if we increase the capacity of
each edge by a factor of λ.

The problem of minimizing the relative load in
the context of machine scheduling was considered
in [7, 5]. On-line algorithms that are O(log n)
competitive with respect to load for the case of
permanent virtual circuit routing were presented
in [1]. Extension of these techniques to the case
of virtual circuits with known duration appeared
in [6]. Recent results in [3] address the case where
the duration of each virtual circuit is a priori un-

2Note that using relative load as a performance measure

makes sense only if we implicitly assume that the off-line

algorithm does not need to reject any requests and disallow

rejections by the on-line algorithm as well.

known. They show that in this case, in order to be
competitive, one has to allow to reroute circuits,
and present an algorithm that reroutes each cir-
cuit at most O(log n) times while maintaining a
competitive ratio of O(log n) with respect to load.

Generalizations and extensions. The
framework presented in this paper leads to on-
line algorithms with polylogarithmic competitive
ratio in several more general settings. In particu-
lar, we show that our algorithm can easily handle
the situation where the required bandwidth does
not remain constant for the duration of the call,
as long as the required bandwidth vs. time func-
tion is known during the call negotiation phase.
Similarly, the presented algorithm can handle the
case where the ratio of profit to the bandwidth-
duration product varies from call to call.

An interesting generalization of the model is to
incorporate the notion of call-establishment costs.
Here, the profit accrued by the system is com-
puted as the difference between the profit asso-
ciated with the request, and a cost which might
depend both on the request and on the path used
to route the connection. A straightforward mod-
ification of the presented algorithm leads to loga-
rithmic competitive ratio in this model. It is also
possible to adapt the algorithm to allow negoti-
ation between the network and the customers on
the amount of the requested bandwidth. In that
case the profit depends, of course, on the amount
of bandwidth that the algorithm agrees to reserve
for the customer.

An important issue that arises in the context of
this work is the question of how to define compet-
itiveness in a very long (or even non-terminating)
execution. The disadvantage of the competi-
tive factor as described above is that it provides
an amortized measure of performance where the
amortization is over all of the time interval in
which the system was active. Roughly speaking,
by measuring the total profit accrued since time
zero, we allow on-line algorithm to grossly misbe-
have locally in certain epochs of the execution’s

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

history. Intuitively, this is unsatisfactory in the
considered context, since the fact that the rout-
ing algorithm accrued a lot of profit “last year”
should not allow it to reject all the connections
during the “next year”, if the duration of the re-
quests is measured in days. A natural approach
is to compare the performance of the on-line vs.
off-line algorithm on any sufficiently long (with
respect to the maximum call duration) interval
of time, not necessarily starting at time zero.

As it turns out, our algorithm can be proved
competitive with respect to this modified mea-
sure as well. For example, one of the properties
of the presented algorithm is that the profit ac-
crued by the off-line algorithm during any given
interval [τ1, τ2], is within a logarithmic factor of
the profit accrued by the on-line algorithm in a
slightly larger interval [τ1−T, τ2 + T], where T is
the maximum duration of a connection. A natu-
ral question is why are we not comparing on-line
vs. off-line on the same given interval. To address
this question, in the full paper we show that for
any on-line algorithm and for any time interval,
one can always find a sequence of requests where
the off-line to on-line profit ratio is unbounded.

2 Preliminaries and Definitions

The network is represented by a capacitated (di-
rected or undirected) graph G(V, E, u). The ca-
pacity u(e) assigned to each edge e ∈ E represents
the bandwidth available on this edge. The in-
put sequence consists of a collection of connection

requests: β1, β2, . . . , βk, where the ith request is
represented by the tuple:

βi =
(

si, ti, ri(τ), T s(i), T f (i), ρ(i)
)

.

Node si is the origin of the connection βi, node ti

is its destination, ri(τ) is the function that defines
the traffic rate at time τ required by the connec-
tion, and ρ(i) is the “revenue” that the algorithm
receives if it commits to routing this connection.

T s(i) and T f (i) are the starting time and comple-
tion time, respectively, for the connection. For
simplicity, we assume that these times are inte-
ger. Upon receiving a connection request βi, the
algorithm either routes it by assigning it a path
Pi from si to ti, or rejects it. In the later case,
we set Pi = ∅. To simplify notation, we assume
that ri(τ) is defined for any τ , but that ri(τ) = 0
for t 6∈

[

T s(i), T f (i)
)

. The relative load on edge e
just before considering the kth request is defined
by:

λe(τ, k) =
∑

e∈Pi,i<k

ri(τ)

u(e)
.

We require that the capacity constraints will
be enforced, i.e. ∀τ, e ∈ E, k : λe(τ, k) ≤ 1.
The goal of the algorithm is to route maximum

number of connections weighted by their profits,
i.e. maximize

∑

Pi 6=∅ ρ(i).

Another constraint on the algorithm is that
it must be on-line, in the sense that the deci-
sion about routing or rejecting a connection βi is
made at its start point T s(i), without any knowl-
edge about future connections. Once a connec-
tion is made, it cannot be interrupted nor can it
be rerouted.

Let T (j) = T f (j) − T s(j) be the duration of
connection j, and T = maxj{T (j)} be the maxi-
mum duration of a connection. As mentioned in
the introduction, we consider the case where the
profit of each request is proportional to the rate
and to the duration of this request. In fact, we
allow some variation in the profit for a unit of
rate for a unit of time, as long as this variation
is not very large. More precisely, we normalize
the profit such that for any connection βj and
rj(τ) 6= 0 we have:

1 ≤
1

n
·

ρ(j)

rj(τ)T (j)
≤ F.(1)

Note that 1/n factor in above inequalities is
used only for convenience of normalization. One
interesting special case is when the requested rate

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

is constant per connection, and when the profit
is exactly proportional to the rate-duration prod-
uct, i.e. to the number of bits that can be sent us-
ing this connection. For this case, we have F = 1.

Denote µ = 2nTF +1. We assume that for any
j and τ ,

rj(τ) ≤
mine{u(e)}

log µ
.(2)

Informally, this means that the requested rates
are significantly smaller than the minimum avail-
able capacity in the network. Although, at first
glance, this restriction seems somewhat artificial,
in Section 4 we show that without this restriction
it is impossible to design on-line algorithms with
polylogarithmic competitive ratio.

3 The Admission Control and

Routing Algorithm

The admission control and routing algorithm
Route or Block is shown in Figure 1. Consider
T s(j), the start time of request βj. With each
edge e and time instance τ , we associate a “cost”
of this edge, defined by ce(τ, j) = u(e)(µλe(τ,j) −
1). The algorithm routes βj on a path that is
small with respect to a weighted average of these
costs. More precisely, if e ∈ Pj, then e’s contri-
bution to the cost of the path is computed as:
∑

τ
rj(τ)

u(e)
ce(τ, j). If there exists a path which cost

is bounded by the profit ρ(j), then this path is
used to route the connection βj. Otherwise, the
connection is rejected.

The analysis of the algorithm is divided into
two parts. First, we prove that the algorithm does
not violate the capacity constraints, and then we
show that the profit accrued by the algorithm is
within a logarithmic factor of the profit accrued
by the optimal off-line algorithm.

Informally, the reason that the capacity con-
straints are always satisfied, is that when an edge

New Connection(s, t, T s, T f , r(τ), ρ):

∀τ, e ∈ E : ce(τ, j)← u(e)(µλe(τ,j) − 1);

if ∃ path P in G(V, E) from s to t s.t.
∑

τ

r(τ)

u(e)
ce(τ, j) ≤ ρ

then route the connection on P , and set:
∀e ∈ P, T s ≤ τ ≤ T f ,

λe(τ, j + 1)← λe(τ, j) + r(τ)

u(e)

else block the connection

Figure 1: The Route or Block Algorithm.

that is close to being saturated, its cost is high
enough that it will never be used for routing. Let
A denote the set of indices of requests that were
satisfied by Route or Block, i.e. A = {i : Pi 6=
∅}.

Lemma 3.1 For all edges e ∈ E and all times τ ,
∑

i∈A,e∈Pi
ri(τ) ≤ u(e).

Proof: Let βj be the first connection that was as-
signed to an edge e and that caused relative load
to exceed 1. In other words, e has available ca-
pacity less than rj(τ) at some instance τ where
T s(j) ≤ τ ≤ T f (j). By the definition of rela-
tive load, we have λe(τ, j) > 1− rj(τ)

u(e)
. Using the

assumption that rj(τ) ≤ u(e)

log µ
, we get:

ce(τ, j)/u(e) = µλe(τ,j) − 1

≥ µ1− 1
log µ − 1

= µ/2− 1 = TFn

Therefore, using Assumption (1):

rj(τ)

u(e)
ce(τ, j) ≥ TFn · rj(τ) ≥ ρ(j).

Hence, connection j could not have used link e.

The next lemma shows that we can use sum of

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

link costs to lower-bound the total profit accrued
by our algorithm.

Lemma 3.2 Let A be the set of indices of connec-

tions routed by Route or Block algorithm, and

let k be the index of the last connection. Then

2 log µ
∑

j∈A

ρ(j) ≥
∑

τ

∑

e

ce(τ, k + 1).

Proof: By induction on k. For k = 0 the inequal-
ity is trivially true since both sides are 0. Con-
nections that were refused do not change either
side of the inequality. Thus, it is enough to show
that, for any j, if we admit connection βj, we get:

∑

τ

∑

e

[ce(τ, j + 1)− ce(τ, j)] ≤ 2ρ(j) log µ.

Consider link e ∈ Pj. Using the definition of
the link cost, we get:

ce(τ, j + 1)− ce(τ, j) =

u(e)(µλe(τ,j)+
rj(τ)

u(e) − µλe(τ,j))

= u(e)

(

µλe(τ,j)(µ
rj(τ)

u(e) − 1)

)

= u(e)

(

µλe(τ,j)(2log µ
rj(τ)

u(e) − 1)

)

By Assumption (2), we have rj(τ) ≤ u(e)

log µ
. Since

2x − 1 ≤ x for 0 ≤ x ≤ 1, we conclude

ce(τ, j + 1)− ce(τ, j) ≤ µλe(τ,j)rj(τ) log µ

=

(

ce(τ, j)
rj(τ)

u(e)
+ rj(τ)

)

log µ.

The above upper bound on the change in costs,
the fact that the connection βj was admitted, and
Assumption (1) imply:

∑

τ

∑

e

[ce(τ, j + 1)− ce(τ, j)]

≤ log µ
∑

τ

∑

e∈Pj

(

ce(τ, j)
rj(τ)

u(e)
+ rj(τ)

)

≤ log µ

(

ρ(j) +
∑

τ

|Pj| · rj(τ)

)

≤ 2ρ(j) log µ.

Next we show that sum of the link costs is an
upper bound on the maximum profit that can be
obtained by the optimal off-line algorithm.

Lemma 3.3 Let Q be the set of indices of the

connections that were admitted by the off-line algo-

rithm but not by the on-line algorithm, and denote

ℓ = max{Q}. Then
∑

j∈Q ρ(j) ≤
∑

τ

∑

e ce(τ, ℓ).

Proof: Let P ′
j be the path used by the off-line

algorithm to route βj, for j ∈ Q. The fact that
βj was not admitted and monotonicity in j of the
costs ce(τ, j) imply

ρ(j) ≤
∑

τ

∑

e∈P ′

j

rj(τ)ce(τ, j)/u(e)

≤
∑

τ

∑

e∈P ′

j

rj(τ)ce(τ, ℓ)/u(e).

Summing over all j ∈ Q, we get:

∑

j∈Q

ρ(j) ≤
∑

j∈Q

∑

τ

∑

e∈P ′

j

rj(τ)

u(e)
ce(τ, ℓ)

≤
∑

τ

∑

e

ce(τ, ℓ)
∑

j∈Q,e∈P ′

j

rj(τ)

u(e)

≤
∑

τ

∑

e

ce(τ, ℓ).

The last inequality follows from the fact that
the off-line algorithm cannot exceed unit relative
load at any instance in time.

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

Theorem 3.4 The Route or Block Algorithm,

shown in Figure 1, never violates the capacity con-

straints and accrues at least 1
2 log(2µ)

-fraction of the

profit accrued by the optimal off-line algorithm.

Proof: The profit accrued by the off-line algo-
rithm can be bounded from above by:

∑

i∈Q

ρ(i) +
∑

i∈A

ρ(i)

Using Lemma 3.3, this profit is upper-bounded
by:

∑

τ

∑

e

ce(τ, ℓ) +
∑

i∈A

ρ(i).

Since ce(τ, k+1) is the final cost of the edge e, we
know that ∀e ∈ E, ce(τ, k+1) ≥ ce(τ, ℓ). Together
with Lemma 3.2, this implies that the profit of the
off-line is bounded by

2 log µ
∑

i∈A

ρ(i) +
∑

i∈A

ρ(i)

≤ (2 log µ + 1)
∑

i∈A

ρ(i)

≤ 2 log(2µ)
∑

i∈A

ρ(i).

The above bound on the accrued profit, together
with Lemma 3.1, complete the proof of the claim.

Remark: As we have mentioned in the Introduc-
tion, it is interesting to compare the off-line and
on-line profits performance over an arbitrary in-
terval in time that does not start at time zero.
More precisely, let [τ1, τ2] be some interval in time
and consider the profit ρoff[τ1, τ2] obtained by the
off-line algorithm due to requests {βj : T s(j) ∈
[τ1, τ2]}, and let ρon[τ1, τ2] be the corresponding
profit of the on-line algorithm. In the full paper
we show that ρon[τ1 − T, τ2 + T] is within a log-
arithmic factor of the ρoff[τ1, τ2]. Roughly speak-
ing, this implies that the off-line profit on a given
interval is not much higher than the correspond-
ing on-line profit on a slightly larger interval. We

also show that for any on-line algorithm and for
any time interval, one can always find a sequence
of requests where the ratio of ρoff[τ1, τ2]/ρon[τ1, τ2]
is unbounded.

4 The Lower Bounds

In this section we show that our algorithm is opti-
mal with respect to the achieved competitive ra-
tio. We also justify our assumption of bounding
the rates of the requests. First we show that even
if all the requested rates are very small, the profit
accrued by the off-line algorithm can exceed the
best possible on-line profit by at least an Ω(log µ)
factor. In all of the subsequent proof we assume
that all the capacities are 1, and that all requests
appear at the beginning. Moreover, we assume
that all the requests have some fixed rate α. In
the end of this section, we show much stronger
bounds for the case where α is allowed to be large
relative to the capacities in the network.

Let G(n) be a graph which is a line of n edges
(n+1 vertices). Denote the vertices by v0, . . . , vn,
and let n be a power of 2.

Lemma 4.1 Any on-line algorithm for G(n) has

competitive ratio of Ω(log n).

Proof: Let all requests have unit duration. Con-
sider sequence of requests that consists of log n+1
phases. Each phase i, for 0 ≤ i ≤ log n, consists
of 2i groups of requests, 0 ≤ j ≤ 2i − 1. A re-
quest in phase i, group j has vjn/2i as its starting
node and v(j+1)n/2i as its destination. For each
i, j there are 1/α identical requests, each request-
ing capacity α and providing the same profit, say
α.

Let xi be the amount of profit that the on-line
algorithm accrues due to the requests in phase i.
A unit of profit due to requests in phase i can be
achieved only by using up n/2i units of capacity.
Since there are only n units of capacity overall, we

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

get:
∑log n

i=0 2−inxi ≤ n. Define Sj = 2−j
∑j

i=0 xi.
Then,

log n
∑

j=0

Sj =
∑

0≤i≤j≤log n

2−jxi ≤
log n
∑

i=0

2 · 2−ixi ≤ 2

Hence, there exists k such that Sk ≤ 2/ log n.
Now consider a prefix consisting of the first k
phases of the request sequence. The benefit of
the on-line algorithm in this case is

∑k
i=0 xi =

2kSk ≤ 2k · (2/ log n). The off-line algorithm can
reject all the requests except the ones in phase k,
accruing benefit of 2k.

Consider a case where the graph consists of
a single link. By constructing a sequence of re-
quests that have exponentially growing duration
from phase to phase and another sequence of re-
quests where the profit per transmitted bit in-
creases exponentially with the phase number, it
is relatively easy to show the following claim:

Lemma 4.2 Any on-line algorithm has competi-

tive ratio of Ω(log(TF)).

By combining the Lemmas 4.2 and 4.1, we get the
following theorem.

Theorem 4.3 Any on-line algorithm has through-

put competitive ratio of Ω(log nFT)

Next we show that if some connections request
rates in excess of 1/k-factor of the capacity, then
the competitive ratio of any on-line algorithm is
bounded by Ω(T 1/k+F 1/k+n1/k). In other words,
in order to achieve polylogarithmic competitive
ratio, we need to bound the maximal rate of a
connection to be below log(TFn)/ log log(TFn)
fraction of the minimum capacity. This bound
is close to the log(TFn)-fraction bound that, as
shown in Section 3, implies logarithmic competi-
tive ratio of the Route or Block algorithm.

Lemma 4.4 If we allow requests of rate as large

as 1/k-fraction of the minimum capacity, then the

competitive ratio is at least Ω(T 1/k + F 1/k) for any

algorithm.

Proof: Omitted.

For the next lower bound we use G(n) which
is a line of n unit-capacity edges, where n be a
power of 2. All requests have unit duration.

Lemma 4.5 If we allow requests of rate 1/k then

the competitive ratio is Ω(n1/k) for any algorithm

for G(n).

Proof: The sequence of requests consists of k + 1
phases. In phase 0 there is a request from v0 to
vn. The first request must be accepted since it
might be the only request. Thus before phase 1
the utilization of each edge is 1/k and the benefit
of the on-line is 1/k. For phases 1 ≤ i ≤ k we
maintain the following invariant. Either the lower
bound was already proved or before phase i the
utilization of each edge in the range li to li +
n1−(i−1)/k is i/k and the total benefit of the on-
line for all previous requests is only i/k.

Let l1 = 0. The invariant clearly holds for i =
1. We assume by induction that the invariant is
true for i and some li and we prove it for i+1 and
some li+1. We make k requests between vli+jn1−i/k

to vli+(j+1)n1−i/k for each 0 ≤ j < n1/k. If the
on-line algorithm reject all of these request we
are done, since the off-line algorithm can accept
all the request in the phase and get benefit n1/k.
The benefit of the on-line algorithm in this case
is bounded by i/k ≤ 1 which implies the lower
bound.

On the other hand if some request was ac-
cepted, then we stop phase i after that first such
request. That request is between vli+jn1−i/k to
vli+(j+1)n1−i/k . Define li+1 = li+jn1−i/k. We claim
that the invariant holds for i + 1. The total ben-
efit of the on-line algorithm before phase i + 1 is
i/k +1/k = (i+1)/k; the utilization of the edges
from li+1 to li+1 +n1−i/k is i/k +1/k = (i+1)/k.

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

This completes the proof of the invariant.

The invariant implies that at the start of phase
k, all the edges from lk to lk + n1/k are fully
utilized. Thus, the the on-line algorithm has
to reject all the requests from vlk+j to vlk+j+1

0 ≤ j < n1/k. In contrast to this, the off-line
algorithm accepts all of these requests, and gets
benefit n1/k. The claim follows since the on-line
benefit is bounded by 1.

By combining the Lemmas 4.4 and 4.5, we get the
following theorem:

Theorem 4.6 If the rate of requests can be as

large as 1/k of the capacities then throughput com-

petitiveness of any on-line algorithm is Ω(T 1/k +
F 1/k + n1/k).

Acknowledgements

We would like to thank Orli Waarts for many
helpful discussions.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and
O. Waarts. On-line machine scheduling with
applications to load balancing and virtual
circuit routing. In Proc. 25th Annual ACM

Symposium on Theory of Computing, pages
623–631, May 1993.

[2] Special issue on Asynchronous Transfer
Mode. Int. Journal of Digital and Analog

Cabled Systems, 1(4), 1988.

[3] B. Awerbuch, Y. Azar, S. Plotkin, and
O. Waarts. Competitive routing of virtual
circuits with unknown duration. Unpub-
lished manuscript, July 1993.

[4] B. Awerbuch, I. Cidon, I. Gopal, M. Ka-
plan, and S. Kutten. Distributed control for

PARIS. In Proc. 9th Annual ACM Sympo-

sium on Principles of Distributed Comput-

ing, pages 145–160, 1990.

[5] Y. Azar, A. Broder, and A. Karlin. On-
line load balancing. In Proc. 33rd IEEE

Annual Symposium on Foundations of Com-

puter Science, pages 218–225, 1992.

[6] Y. Azar, B. Kalyanasundaram, S. Plotkin,
K. Pruhs, and O. Waarts. On-line load bal-
ancing of temporary tasks. In Proc. Work-

shop on Algorithms and Data Structures,
August 1993.

[7] Y. Azar, J. Naor, and R. Rom. The com-
petitiveness of on-line assignment. In Proc.

3rd ACM-SIAM Symposium on Discrete Al-

gorithms, pages 203–210, 1992.

[8] I. Cidon and I. S. Gopal. PARIS: An ap-
proach to integrated high-speed private net-
works. International Journal of Digital &

Analog Cabled Systems, 1(2):77–86, April-
June 1988.

[9] J. Garay, I. Gopal, S. Kutten, Y. Mansour,
and M. Yung. Efficient on-line call control al-
gorithms. In Proc. of 2nd Annual Israel Con-

ference on Theory of Computing and Sys-

tems, 1993.

[10] J.A. Garay and I.S. Gopal. Call preemption
in communication networks. In Proc. INFO-

COM ’92, volume 44, pages 1043–1050, Flo-
rence, Italy, 1992.

[11] F. P. Kelly. Blocking probabilities in large
circuit-switched networks. Advances in Appl.

Prob., 18:473–505, 1986.

[12] T. Leighton, F. Makedon, S. Plotkin,
C. Stein, É. Tardos, and S. Tragoudas. Fast
approximation algorithms for multicommod-
ity flow problem. In Proc. 23th ACM Sym-

posium on the Theory of Computing, pages
101–111, May 1991.

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

[13] S. Plotkin, D. Shmoys, and É. Tardos.
Fast approximation algorithms for fractional
packing and covering problems. In Proc.

32nd IEEE Annual Symposium on Founda-

tions of Computer Science, pages 495–504,
October 1991.

[14] F. Shahrokhi and D. Matula. The maximum
concurrent flow problem. J. Assoc. Comput.

Mach., 37:318–334, 1990.

[15] D.D. Sleator and R.E. Tarjan. Amortized
efficiency of list update and paging rules.
Comm. ACM, 28(2):202–208, 1985.

Proceedings of 34’th IEEE Conf. on Found. of Computer Science, Oct. 1993

