Merkle-Damgård Transformation

Merkle-Damgård Transformation: Let $h : \{0,1\}^{n+t} \to \{0,1\}^n$ be a fixed input length compression function. Recall that using the Merkle-Damgård transformation we can construct a hash function $H : \{0,1\}^* \to \{0,1\}^n$ from h as follows:

- Let x be the input.
- Let y_0 be an n-bit IV.
- Let $x_{k+1} = L$, where L = |x| written as a t bit binary string.
- Split x into pieces x_1, x_2, \ldots, x_k , where each x_i is t bits. The last piece x_k should be padded with zeroes if necessary.
- For i = 1 to k + 1, set $y_i = h(y_{i-1}||x_i)$.
- Output y_{k+1} .

Claim 1. *H* is collision resistant, if *h* is collision resistant.

Proof. Let us assume for the sake of contradiction that H is not collision resistant. Then there exists a PPT adversary \mathcal{A} who can find a pair x, x', where $x \neq x'$ such that H(x) = H(x') with a non-negligible probability. We will now construct another PPT adversary \mathcal{B} who can break the collision resistance of h. This adversary \mathcal{B} internally runs \mathcal{A} as follows:

- Let x, x' be a collision returned by \mathcal{A} in H.
- \mathcal{B} defines $x_1, \ldots, x_{k+1}, y_0, \ldots, y_{k+1}$ and $x'_1, \ldots, x'_{k'+1}, y'_0, \ldots, y'_{k'+1}$ as in the Merkle Damgård transformation (here k may or may not be equal to k').

$$(H(x) = H(x')) \Rightarrow (y_{k+1} = y'_{k'+1}) \Rightarrow h(y_k || x_{k+1}) = h(y'_{k'} || x'_{k'+1})$$

- If $|x| \neq |x'|$:

$$\begin{aligned} x_{k+1} &\neq x'_{k'+1} \\ \Rightarrow y_k || x_{k+1} &\neq y'_{k'} || x'_{k'+1} \end{aligned}$$

 \mathcal{B} outputs $y_k || x_{k+1}$ and $y'_{k'} || x'_{k'+1}$ as a collision in h.

- If |x| = |x'|: For i = k + 1 to 1, \mathcal{B} checks if $y_{i-1}||x_i$ and $y'_{i-1}||x'_i$ is a collision in h. Since $x \neq x'$, \mathcal{B} is guaranteed to find such an i. It outputs $y_{i-1}||x_i$ and $y'_{i-1}||x'_i$ as a collision in h.

Since \mathcal{A} finds a valid collision x, x' with non-negligible probability, \mathcal{B} can also find a collision in h with non-negligible probability. But since h is collision resistant, such an adversary cannot exist. Hence our assumption is wrong and H is collision resistant.