Blockchains from Proofs of Space and Time: from Spacemint to Chia
 Krzysztof Pietrzak

Guest Lecture, Blockchains and Cryptocurrencies (Spring 2018)

Outline

- Bitcoin and Proofs of Work
- Proofs of Stake
- Proofs of Space
- Proofs of Sequential Work
- Putting it all together (Chia)

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Can we have a more "sustainable" Blockchain?

Alternative Proof Systems: Proof of Stake

 PoW based blockchain (Bitcoin): Probability a miner can add a block proportional to its hashing power.Proof of Stake: Probability proportional to the fraction of coins the miner owns.

Alternative Proof Systems: Proof of Stake

 PoW based blockchain (Bitcoin): Probability a miner can add a block proportional to its hashing power.Proof of Stake: Probability proportional to the fraction of coins the miner owns.

Nxt, Algorand, Snow White, Ouroboros,...

Global Information Storage Capacity
in optimally compressed bytes

2007 ANALOG 19 exabytes

- Paper, film, audiotape and vinyl: 6%
- Analog videotapes (VHS, etc): 94% ANALOG
- Portable media, flash drives: 2%

DIGITAL ת

- Portable hard disks: 2.4\%
- CDs and minidisks: 6.8\%
- Computer servers and mainframes: 8.9 \%
- Digital tape: 11.8 \%
- DVD/Blu-ray: 22.8%
- PC hard disks: 44.5 \%

123 billion gigabytes

\% digital:

1 \%
mobile phones, PDAs, cameras/camcorders, videogames)

First Ingredient

Proofs of Space

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

Parameter N

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

communication $\tilde{O}(1)$

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

Parameter N

communication $\tilde{O}(1)$

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

Parameter N

communication $\tilde{O}(1)$

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

Proofs of Space
 Dziembowski-Faust-Kolmogorov-Pietrzak 2015

\mathcal{V}

communication $\tilde{O}(1)$

Security: either $S \approx N$ space before exec or $T \approx N$ time in exec

Two Types of Proofs of Space

Two Types of Proofs of Space

Constructions from "Hard to Pebble Graphs"a

- Optimal bounds: either $\Theta(N)$ space or $\Theta(N)$ time
- Non-Interactive Initialization Phase, Complicated
${ }^{\text {a }}$ Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof Pietrzak: Proofs of Space. CRYPTO 2015

Two Types of Proofs of Space

Constructions from "Hard to Pebble Graphs"a

- Optimal bounds: either $\Theta(N)$ space or $\Theta(N)$ time
- Non-Interactive Initialization Phase, Complicated
${ }^{\text {a }}$ Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof Pietrzak: Proofs of Space. CRYPTO 2015
Inverting Random Functions ${ }^{a}$
- Bounds (only) asymptotically optimal: $T \cdot S^{k} \geq N^{k}$ for "small" k, e.g. $S=T=N^{k /(1+k)}$ (proof size exponential in k)
- Non-Interactive Initialization Phase, Simple!
${ }^{a}$ H. Abusalah, J. Alwen, B. Cohen, D. Khilko, K. Pietrzak, L. Reyzin: Beyond Hellman's TimeMemory Trade-Offs with Applications to Proofs of Space. ASIACRYPT 2017

Constructions from "Hard to Pebble Graphs"a

- Optimal bounds: either $\Theta(N)$ space or $\Theta(N)$ time
- Non-Interactive Initialization Phase, Complicated
${ }^{\text {a }}$ Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof Pietrzak: Proofs of Space. CRYPTO 2015
Inverting Random Functions ${ }^{\text {a }}$
- Bounds (only) asymptotically optimal: $T \cdot S^{k} \geq N^{k}$ for "small" k, e.g. $S=T=N^{k /(1+k)}$ (proof size exponential in k)
- Non-Interactive Initialization Phase, Simple!
${ }^{a}$ H. Abusalah, J. Alwen, B. Cohen, D. Khilko, K. Pietrzak, L. Reyzin: Beyond Hellman's TimeMemory Trade-Offs with Applications to Proofs of Space. ASIACRYPT 2017

Spacemint ${ }^{\star}$:
 A Cryptocurrency Based on Proofs of Space

Sunoo Park*, Krzysztof Pietrzak ${ }^{\dagger}$, Albert Kwon*, Joël Alwen ${ }^{\dagger}$, Georg Fuchsbauer ${ }^{\dagger}$, and Peter Gaži ${ }^{\dagger}$

Constructions from "Hard to Pebble Graphs"a

- Optimal bounds: either $\Theta(N)$ space or $\Theta(N)$ time
- Non-Interactive Initialization Phase, Complicated
${ }^{\text {a }}$ Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof Pietrzak: Proofs of Space. CRYPTO 2015
Inverting Random Functions ${ }^{a}$
- Bounds (only) asymptotically optimal: $T \cdot S^{k} \geq N^{k}$ for "small" k, e.g. $S=T=N^{k /(1+k)}$ (proof size exponential in k)
- Non-Interactive Initialization Phase, Simple!
${ }^{a}$ H. Abusalah, J. Alwen, B. Cohen, D. Khilko, K. Pietrzak, L. Reyzin: Beyond Hellman's TimeMemory Trade-Offs with Applications to Proofs of Space. ASIACRYPT 2017

Proofs of Space From Hard to Invert Functions

Beyond Hellman's Time-Memory Trade-Offs with Applications to Proofs of Space

Hamza Abusalah ${ }^{1}$, Joël Alwen ${ }^{1}$, Bram Cohen ${ }^{2}$, Danylo Khilko ${ }^{3}$, Krzysztof Pietrzak ${ }^{1}$, and Leonid Reyzin ${ }^{4}$

Towards a Simple Construction

\mathcal{V}

Random Table L

$1, y_{1}$
$2, y_{2}$
\cdots
\cdots
N, y_{N}

Towards a Simple Construction

Towards a Simple Construction

Random Table L

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

Towards a Simple Construction

Random Table L

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

Towards a Simple Construction

lookup
Random Table L

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

Towards a Simple Construction

Random Table L

$1, y_{1}$
$2, y_{2}$
\ldots
\cdots
N, y_{N}

$1, y_{1}$
$2, y_{2}$
\cdots
\cdots
N, y_{N}

Towards a Simple Construction

Towards a Simple Construction

Towards a Simple Construction

$1, \pi(1)$
$2, \pi(2)$
\cdots
\cdots
$N, \pi(N)$

Towards a Simple Construction

$1, \pi(1)$
$2, \pi(2)$
\cdots
\cdots
$N, \pi(N)$

Towards a Simple Construction

$$
\pi:[N] \rightarrow[N]
$$

$1, \pi(1)$
$2, \pi(2)$
\cdots
\cdots
$N, \pi(N)$

Towards a Simple Construction

$$
\pi:[N] \rightarrow[N]
$$

$1, \pi(1)$
$2, \pi(2)$
\cdots
\cdots
$N, \pi(N)$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Problem: Hellman 1980
$\pi:[N] \rightarrow[N]$

Towards a Simple Construction

Towards a Simple Construction

Problem: Hellman 1980 $\pi:[N] \rightarrow[N]$

Yao 1990: π random: $S T \geq N$

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$f:[N] \rightarrow[N]$
S bits advice
T oracle queries

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$\begin{array}{ll}f:[N] \rightarrow[N] & S \text { bits advice } \\ & T \text { oracle queries }\end{array}$

	lower bound	upper bound	
permutation	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S T \in \tilde{O}(\epsilon N)^{*} \quad S=T \approx N^{1 / 2}$	
random functions	$S T \in \tilde{\Omega}(\epsilon N)^{*}$		
general functions			
our functions			

*: Yao-1990, Gennaro-Trevisan'00, Wee05, De-Trevisan-Tulsiani-2010
*: Hellman1980

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$\begin{array}{ll}f:[N] \rightarrow[N] & S \text { bits advice } \\ & T \text { oracle queries }\end{array}$

	lower bound	upper bound	
permutation	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S T \in \tilde{O}(\epsilon N)^{*}$	$S=T \approx N^{1 / 2}$
random functions	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S^{2} T \in \tilde{O}\left(\epsilon^{2} N^{2}\right)^{*}$	$S=T \approx N^{2 / 3}$
general functions			
our functions			

*: Yao-1990, Gennaro-Trevisan'00, Wee05, De-Trevisan-Tulsiani-2010
*: Hellman1980
*: Fiat-Naor1991

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$\begin{array}{ll}f:[N] \rightarrow[N] & S \text { bits advice } \\ & T \text { oracle queries }\end{array}$

	lower bound	upper bound	
permutation	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S T \in \tilde{O}(\epsilon N)^{*}$	$S=T \approx N^{1 / 2}$
random functions	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S^{2} T \in \tilde{O}\left(\epsilon^{2} N^{2}\right)^{*}$	$S=T \approx N^{2 / 3}$
general functions		$S^{3} T \in \tilde{O}\left(\epsilon^{3} N^{3}\right)^{*}$	$S=T \approx N^{3 / 4}$
our functions			

*: Yao-1990, Gennaro-Trevisan'00, Wee05, De-Trevisan-Tulsiani-2010
*: Hellman1980
*: Fiat-Naor1991

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$\begin{array}{ll}f:[N] \rightarrow[N] & S \text { bits advice } \\ & T \text { oracle queries }\end{array}$

	lower bound	upper bound	
permutation	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S T \in \tilde{O}(\epsilon N)^{*}$	$S=T \approx N^{1 / 2}$
random functions	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S^{2} T \in \tilde{O}\left(\epsilon^{2} N^{2}\right)^{*}$	$S=T \approx N^{2 / 3}$
general functions		$S^{3} T \in \tilde{O}\left(\epsilon^{3} N^{3}\right)^{*} \quad S=T \approx N^{3 / 4}$	
our functions	$S^{k} T \in \tilde{\Omega}\left(\epsilon^{k} N^{k}\right)$	$S=T \approx N^{k /(k+1)}$	

*: Yao-1990, Gennaro-Trevisan'00, Wee05, De-Trevisan-Tulsiani-2010
*: Hellman1980
*: Fiat-Naor1991

Inverting Functions

\mathcal{A} inverts f on ϵ fraction with
$\begin{array}{ll}f:[N] \rightarrow[N] & S \text { bits advice } \\ & T \text { oracle queries }\end{array}$

	lower bound	upper bound	
permutation	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S T \in \tilde{O}(\epsilon N)^{*}$	$S=T \approx N^{1 / 2}$
random functions	$S T \in \tilde{\Omega}(\epsilon N)^{*}$	$S^{2} T \in \tilde{O}\left(\epsilon^{2} N^{2}\right)^{*} \quad S=T \approx N^{2 / 3}$	
general functions		$S^{3} T \in \tilde{O}\left(\epsilon^{3} N^{3}\right)^{*}$	$S=T \approx N^{3 / 4}$
our functions	$S^{k} T \in \tilde{\Omega}\left(\epsilon^{k} N^{k}\right)$	$S=T \approx N^{k /(k+1)}$	

*: Yao-1990, Gennaro-Trevisan'00, Wee05, De-Trevisan-Tulsiani-2010
*: Hellman1980
*: Fiat-Naor1991

Two Observations

1) For Hellman's attack to work, the function should be easy to evaluate in forward direction

Two Observations

1) For Hellman's attack to work, the function should be easy to evaluate in forward direction
2) Usefulness for PoS: sufficient that the function table is computable in linear time

Our Function

$f:[N] \rightarrow[N]$ permutation $g:[N] \times[N] \rightarrow[N]$
$\sigma:[N] \rightarrow[N]$ involution without fixed points, e.g., flip all bits

Our Function

$f:[N] \rightarrow[N]$ permutation $g:[N] \times[N] \rightarrow[N]$
$\sigma:[N] \rightarrow[N]$ involution without fixed points, e.g., flip all bits

$$
\begin{gathered}
g_{f}:[N] \rightarrow[N] \\
g_{f}(x)=g\left(x, x^{\prime}\right)
\end{gathered} \begin{aligned}
\text { s.t. } & \sigma(f(x))=f\left(x^{\prime}\right)
\end{aligned}
$$

Our Function

$f:[N] \rightarrow[N] \quad$ permutation $g:[N] \times[N] \rightarrow[N]$
$\sigma:[N] \rightarrow[N]$ involution without fixed points, e.g., flip all bits

$$
\begin{gathered}
g_{f}:[N] \rightarrow[N] \\
g_{f}(x)=g\left(x, x^{\prime}\right)
\end{gathered} \begin{aligned}
& \text { s.t. } \quad \sigma(f(x))=f\left(x^{\prime}\right)
\end{aligned}
$$

equivalently

$$
g_{f}(x)=g\left(x, f^{-1}(\sigma(f(x)))\right)
$$

Our Function

$f:[N] \rightarrow[N] \quad$ permutation
$g:[N] \times[N] \rightarrow[N]$
$\sigma:[N] \rightarrow[N]$ involution without fixed points, e.g., flip all bits

$$
\begin{gathered}
g_{f}:[N] \rightarrow[N] \\
g_{f}(x)=g\left(x, x^{\prime}\right)
\end{gathered} \begin{aligned}
\text { s.t. } & \sigma(f(x))=f\left(x^{\prime}\right)
\end{aligned}
$$

equivalently

$$
g_{f}(x)=g\left(x, f^{-1}(\sigma(f(x)))\right)
$$

Theorem: If \mathcal{A} has S bits of advice and makes up to T queries to f and g and succeeds in inverting g_{f} with ϵ probability, then

$$
S^{2} T \in \Omega\left(\epsilon^{2} N^{2}\right)
$$

Our Function

$f:[N] \rightarrow[N] \quad$ permutation
$g:[N] \times[N] \rightarrow[N]$
$\sigma:[N] \rightarrow[N]$ involution without fixed points, e.g., flip all bits

$$
\begin{gathered}
g_{f}:[N] \rightarrow[N] \\
g_{f}(x)=g\left(x, x^{\prime}\right)
\end{gathered} \begin{aligned}
\text { s.t. } & \sigma(f(x))=f\left(x^{\prime}\right)
\end{aligned}
$$

equivalently

$$
g_{f}(x)=g\left(x, f^{-1}(\sigma(f(x)))\right)
$$

Theorem: If \mathcal{A} has S bits of advice and makes up to T queries to f and g and succeeds in inverting g_{f} with ϵ probability, then

$$
S^{2} T \in \Omega\left(\epsilon^{2} N^{2}\right)
$$

Caveat: holds for $T \leq N^{2 / 3}$

Function Inversion for PoS

Proof Sketch

Theorem: If \mathcal{A} has S bits of advice and makes up to T queries to f and g and succeeds in inverting g_{f} with ϵ probability, then

$$
S^{2} T \in \Omega\left(\epsilon^{2} N^{2}\right)
$$

Proof Sketch

Theorem: If \mathcal{A} has S bits of advice and makes up to T queries to f and g and succeeds in inverting g_{f} with ϵ probability, then

$$
S^{2} T \in \Omega\left(\epsilon^{2} N^{2}\right)
$$

- Compression argument:
- Use \mathcal{A} (given S bits advice and T queries per challenge) to "compress" f, g by X bits.
- As random f, g are incompressible \Rightarrow advice S was at least X.

Proof Sketch

Theorem: If \mathcal{A} has S bits of advice and makes up to T queries to f and g and succeeds in inverting g_{f} with ϵ probability, then

$$
S^{2} T \in \Omega\left(\epsilon^{2} N^{2}\right)
$$

- $\mathcal{A}(y) \rightarrow g_{f}^{-1}(y)$ makes $\leq T$ queries total, of which T_{g} to g_{f}.
- Case $1, T_{g} \leq \sqrt{T}$: compress g using $S \cdot T_{g} \geq N$ [Yao90] $\Rightarrow S^{2} \cdot T \geq N^{2}$.
- Case $2 T_{g}>\sqrt{T}$:
- can use every g_{f} query $\left(x, x^{\prime}\right)$ to compress an f value (as $\left.f(x)=f\left(x^{\prime}\right)+1\right)$ if $f(x)$ is "fresh".
- During $\approx N / T$ invocations of \mathcal{A} most f "fresh", as every invocation "spoils" $\leq T f$ values.
- Can compress total of $\frac{N}{T} \cdot T_{g} \geq \frac{N}{\sqrt{T}}$ values

$$
\Rightarrow S \geq N / \sqrt{T} \Rightarrow S^{2} \cdot T \geq N^{2}
$$

Second Ingredient

Proofs of Sequential Work aka Verifiable Delay Algorithm

Time-lock puzzles and timed-release Crypto
Ronald L. Rivest*, Adi Shamir**, and David A. Wagner ${ }^{* * *}$ Revised March 10, 1996

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest*, Adi Shamir ${ }^{* *}$, and David A. Wagner ${ }^{* * *}$
Revised March 10, 1996
Puzzle: given $\left(N=p \cdot q, x \in Z_{N}^{*}, T \in \mathbb{N}\right)$ find $x^{2^{T}} \bmod N$ requires T sequential squarings if p, q unknown:

$$
x \rightarrow x^{2} \rightarrow x^{2^{2}} \rightarrow \ldots x^{2^{T}} \bmod N
$$

Given p, q, compute $\phi(N):=(p-1)(q-1)$

$$
\begin{aligned}
& m:=2^{T} \bmod \phi(N) \bmod N \\
& x^{m}:=x^{2^{T}} \bmod N .
\end{aligned}
$$

Time-lock puzzles and timed-release Crypto
Ronald L. Rivest*, Adi Shamir ${ }^{* *}$, and David A. Wagner ${ }^{* * *}$

Revised March 10, 1996

Puzzle: given $\left(N=p \cdot q, x \in Z_{N}^{*}, T \in \mathbb{N}\right)$ find $x^{2^{T}} \bmod N$ requires T sequential squarings if p, q unknown:

$$
x \rightarrow x^{2} \rightarrow x^{2^{2}} \rightarrow \ldots x^{2^{T}} \bmod N
$$

Given p, q, compute $\phi(N):=(p-1)(q-1)$

$$
m:=2^{T} \bmod \phi(N) \bmod N
$$

$$
x^{m}:=x^{2^{T}} \bmod N
$$

"Dedicated verifier": if one can efficiently verify $y \stackrel{?}{=} 2^{2^{T}} \bmod N$ one can also efficiently compute it.

Proofs of Sequential Work

- Function τ : challenge \times time parameter \rightarrow proof
- $\tau(c, t)$ can be computed making t sequential queries to some hash function H
- There's an efficient verification algorithm that outputs 1 on input $c, t, \tau(c, t)$.
- For random c, no algorithm making (slightly less than) t parallel queries to H can produce τ that passes verification
compute $\tau(c, t)$ making $t \quad \mathcal{P}$ sequential
queries to H

$\mathcal{V}_{\text {(efficiently) }}$ verify $\tau(c, t)$

Publicly Verifiable Proofs of Sequential Work

Mohammad Mahmoody* Tal Moran ${ }^{\dagger}$ Salil Vadhan ${ }^{\ddagger}$

February 18, 2013

- Prover needs not just T sequential time, but also T space to compute proof.
- Proof not unique: given a valid proof ϕ, can generate different accepting proofs $\phi^{\prime} \neq \phi \Rightarrow$ GRINDING

Publicly Verifiable Proofs of Sequential Work

Mohammad Mahmoody* Tal Moran ${ }^{\dagger}$ Salil Vadhan ${ }^{\ddagger}$

February 18, 2013

- Prover needs not just T sequential time, but also T space to compute proof.
- Proof not unique: given a valid proof ϕ, can generate different accepting proofs $\phi^{\prime} \neq \phi \Rightarrow$ GRINDING

Simple Proofs of Sequential Work

```
Bram Cohen }\mp@subsup{}{}{1}\mathrm{ and Krzysztof Pietrzak 2^
    1 Chia Network, bram@chia.network
    2 IST Austria, pietrzak@ist.ac.at
```

Super simple and efficient, prover just needs $\log (T)$ space, but still not unique!

Construction:

- \mathcal{V} sends χ to \mathcal{P}, this defines hash (modelled as RO in proof) H (.).
- \mathcal{P} computes "labels" $\ell_{0000}, \ldots, \ell_{\varepsilon}$ of nodes where

$$
\ell_{i}=H\left(\ell_{p_{1}}, \ldots, \ell_{p_{d}}\right) \quad, \quad\left(p_{1}, \ldots, p_{d}\right)=\operatorname{parents}(i)
$$

Sends label of root ℓ_{ε} to \mathcal{V} (kinda Merkle-tree commitment to the ℓ_{i} 's).

- \mathcal{V} challenges \mathcal{P} to open some random leaves with its parents, checks consistency.

Security

- After sending $\ell_{\varepsilon} \mathcal{P}$ is "committed" to all labels.
- Assume \mathcal{P} "cheated" on some labels $\ell_{i} \neq H\left(\ell_{p_{1}}, \ldots, \ell_{p_{d}}\right)$. call those and all labels below them "bad". , let α be fraction of bad labels.
- \mathcal{P} must have made $(1-\alpha) T$ sequential queries (in RO).
- \mathcal{P} will fail if challenged to open a bad label \Rightarrow will succeed on t random labels with prob. $\leq(1-\alpha)^{t}$.

https://chia.net/

Bitcoin Mining Recap

Bticoin block $\beta_{i}=\left(\tilde{\beta}_{i}, \phi\right), \tilde{\beta}_{i}=\left(i, H\left(\beta_{i-1}\right), p k, \tau_{i}\right)$ contains

- Transactions τ_{i} (consistent with chain so far).
- $p k$ (block-reward and transactions fees go to $p k$)
- hash of previous block $H\left(\beta_{i-1}\right)$
- PoW ϕ where $H\left(\phi, \tilde{\beta}_{i}\right) \leq$ treshhold

Bitcoin mining:

Init: sample signature key-pair $(p k, s k)$

1. Find head of longest chain β_{i-1} \& compile block of transactions τ_{i}.
2. (PoW) hash distinct ϕ until $H(\phi, \ldots) \leq$ treshhold

- announce new block $\beta_{i}=(\phi, \ldots)$ and goto step 1 .
- if new longer chain observed immediately go to step 1 .

Bitcoin Mining Recap

Bticoin block $\beta_{i}=\left(\tilde{\beta}_{i}, \phi\right), \tilde{\beta}_{i}=\left(i, H\left(\beta_{i-1}\right), p k, \tau_{i}\right)$ contains

- Transactions τ_{i} (consistent with chain so far).
- $p k$ (block-reward and transactions fees go to $p k$)
- hash of previous block $H\left(\beta_{i-1}\right)$
- PoW ϕ where $H\left(\phi, \tilde{\beta}_{i}\right) \leq$ treshhold

Bitcoin mining:

Init: sample signature key-pair $(p k, s k)$

1. Find head of longest chain β_{i-1} \& compile block of transactions τ_{i}.
2. (PoW) hash distinct ϕ until $H(\phi, \ldots) \leq$ treshhold

- announce new block $\beta_{i}=(\phi, \ldots)$ and goto step 1 .
- if new longer chain observed immediately go to step 1 .

Chia Building Blocks

Unique Digital Signatures
$\forall m: \operatorname{Pr}[\operatorname{Sig} . v e r i f y ~(p k, m, \phi)=$ accept $]=1$ where $(p k, s k) \leftarrow$ Sig.keygen $; \phi \leftarrow$ Sig.sign $(s k, m)$
Unique : $\left(\operatorname{Sig}\right.$. verify $\left.(p k, m, \phi)=\operatorname{Sig} . v e r i f y ~\left(p k, m, \phi^{\prime}\right)=\operatorname{accept}\right) \Rightarrow\left(\phi=\phi^{\prime}\right)$

Unique \& Signed Proofs of Space
$S \leftarrow$ PoSpace.init $(p k, N)$
$\forall p k, N: \operatorname{PoSpace} . v e r i f y(c, \operatorname{PoSpace} . \operatorname{prove}(S, p k, c))=$ accept
Weakly Unique : $\mathbb{E}_{c}[\{\sigma:$ PoSpace.verify $(p k, c, \sigma)=$ accept $\}]=1$

$$
\text { Signed : } \sigma=\left(\sigma^{\prime}, \operatorname{Sig} . \operatorname{sign}\left(s k, \sigma^{\prime}\right)\right)
$$

Unique \& Publicly Verifiable Proofs of Sequential Work
$\forall t, c: \operatorname{PoSW} . v e r i f y(c, t$, PoSW.prove $(c, t))=$ accept
PoSW. prove (c, t) should take almost sequential time t to compute Unique : $\left(\operatorname{PoSW}\right.$.verify $(c, t, \tau)=\operatorname{PoSW}$.verify $\left(c, t, \tau^{\prime}\right)=$ accept $) \Rightarrow \tau=\tau^{\prime}$

Blockchain from Proofs of Space and Time

Space Miners (Farmers)

Initialization: $(p k, s k) \leftarrow$ Sig.KeyGen, $\Sigma \leftarrow \operatorname{PoSpace.Init}(p k, N)$ Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$ gossip ϕ and define "quality" of ϕ as $q(\phi):=H(\phi)$.

Blockchain from Proofs of Space and Time

Space Miners (Farmers)

Initialization: $(p k, s k) \leftarrow$ Sig.KeyGen, $\Sigma \leftarrow$ PoSpace.Init $(p k, N)$ Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$ gossip ϕ and define "quality" of ϕ as $q(\phi):=H(\phi)$.

Time "Miners"

If PoSpace PoSpace ϕ observed, start computing
$\tau \leftarrow$ PoSW (challenge $=\phi$, time $=q(\phi) \cdot$ hardness parameter)
ONLY IF (given local view) this will be the first PoSW to finalize a block at this level.

Gossip τ once finished.

Attacks
Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$

Attacks
Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$

> Extending Multiple Chains: As (unlike PoW) computing a PoSpace is cheap, the miner can try to extend all blocks it learns about.

Attacks
Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$

Extending Multiple Chains: As (unlike PoW)

 computing a PoSpace is cheap, the miner can try to extend all blocks it learns about. provably not such a big problem (wait two slides)

Attacks

Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$

Extending Multiple Chains: As (unlike PoW) computing a PoSpace is cheap, the miner can
 try to extend all blocks it learns about. provably not such a big problem (wait two slides)
Grinding: try out many τ_{i} 's to get different c 's until one found which gives me a super high quality PoSpace for next round \Rightarrow can hijack chain forever!

Attacks

Mining: When new longest chain with head β_{i} observed: compute $\phi \leftarrow \operatorname{PoSpace}(\Sigma, c)$ for challenge $c:=H\left(i, \beta_{i}, \tau_{i}, p k\right)$

Extending Multiple Chains: As (unlike PoW)

 computing a PoSpace is cheap, the miner can try to extend all blocks it learns about. provably not such a big problem (wait two slides)
Grinding: try out many τ_{i} 's to get different c 's until one found which gives me a super high quality PoSpace for next round \Rightarrow can hijack chain forever! separate proofs from everything "graindable", Chia block format (next slide) kills the problem!

The Chia Block Format \& (Non-)Grinding

A full block $\gamma_{i}=\left(\beta_{i}, \alpha_{i}\right)$ contains
$\beta_{i}=\left(i,\left(p k_{i}, \sigma_{i}\right), \tau_{i}\right)$ and $\alpha_{i}=\left(\phi_{i}\right.$, data $\left._{i}\right)$

1. PoSpace.verify $\left(p k_{i}, H\left(\tau_{i-1}\right), \sigma_{i}, N\right)=1$
2. PoSW.verify $\left(c, t, \tau_{i}\right)=1$ where $c=H\left(\sigma_{i}\right), t=0 . H\left(\sigma_{i}\right) \cdot T$
3. Sig.verify $\left(p k_{i}, H\left(\alpha_{i-1}, \sigma_{i}\right.\right.$, data $\left.\left._{i}\right), \phi_{i}\right)=1$

The Chia Block Format \& (Non-)Grinding
Transactions and other grindable stuff in the foliage ${ }^{\beta_{i+2}}$

All proofs in the trunk
nothing to grind here!

A full block $\gamma_{i}=\left(\beta_{i}, \alpha_{i}\right)$ contains
$\beta_{i}=\left(i,\left(p k_{i}, \sigma_{i}\right), \tau_{i}\right)$ and $\alpha_{i}=\left(\phi_{i}\right.$, data $\left._{i}\right)$

1. PoSpace.verify $\left(p k_{i}, H\left(\tau_{i-1}\right), \sigma_{i}, N\right)=1$
2. PoSW.verify $\left(c, t, \tau_{i}\right)=1$ where $c=H\left(\sigma_{i}\right), t=0 . H\left(\sigma_{i}\right) \cdot T$
3. Sig.verify $\left(p k_{i}, H\left(\alpha_{i-1}, \sigma_{i}\right.\right.$, data $\left.\left._{i}\right), \phi_{i}\right)=1$

Analysing Chain Growth

- h honest miners, each has one unit of space.
- adversarial miner with m units of space.
- every unit of space for every challenge gives a proof of quality uniform in $[0,1]$.
- to finalize a proof of quality α takes time α (all PoSW equally fast).
- adversary can run infinite number of PoSW.
- no network delays.

Analysing Chain Growth

- h honest miners, each has one unit of space.
- adversarial miner with m units of space.
- every unit of space for every challenge gives a proof of quality uniform in $[0,1]$.
- to finalize a proof of quality α takes time α (all PoSW equally fast).
- adversary can run infinite number of PoSW.
- no network delays.
- Consider h-ary tree of depth ℓ.
- Label every edge with random value from [0, 1].
- Random Variable $C_{\kappa, h}^{\ell}$ is length of shortest path we find when always following the κ best edges from root to a leave.

$C_{1,3}^{2}=.5$

$$
C_{\infty, 3}^{2}=.3
$$

Analysing Chain Growth

- h honest miners, each has one unit of space.
- adversarial miner with m units of space.
- every unit of space for every challenge gives a proof of quality uniform in $[0,1]$.
- to finalize a proof of quality α takes time α (all PoSW equally fast).
- adversary can run infinite number of PoSW.
- no network delays.
- Consider h-ary tree of depth ℓ.
- Label every edge with random value from $[0,1]$.
- Random Variable $C_{\kappa, h}^{\ell}$ is length of shortest path we find when always following the κ best edges from root to a leave.

- $C_{\kappa, h}^{\ell}$ is expected time h honest miners need to grow chain of length ℓ.
- $C_{\infty, m}^{\ell}$ is expected time adversary controlling m space needs to grow chain of length ℓ.

Pseudocode For Sampling $C_{\kappa, h}^{\ell}$

Algorithm 1 sample $C_{\kappa, h}^{\ell}$

```
1: Input: \(\kappa, \ell, h\)
    2: \(s[1, \ldots, \kappa]=0\)
    3: for \(i=1\) to \(\ell\) do
    4: \(\quad\) for \(j=1\) to \(\kappa\) do
    5: \(\quad\) for \(k=1\) to \(h\) do
                \(p[j, k]=s[j]+\operatorname{rand}([0,1]) \quad \triangleright\) chosen uniform from \([0,1]\)
                end for
    end for
    \(z=\operatorname{sort}(p[1,1], \ldots, p[\kappa, h])\)
                            \(\triangleright\) sort the \(\kappa \cdot h\) values
    \(s=z[1, \ldots, \kappa]\)
                                \(\triangleright\) new state are the \(\kappa\) shortest paths
11: end for
12: Return \(\min (\mathrm{s})\)
```


Simulation of $C_{\kappa, h}^{\ell}$

What we know about C^{ℓ}

1. $C_{\kappa, h}^{\ell}$ is expected time h honest miners need to grow chain of length ℓ without adversarial interference
2. No Slowdown Lemma: an adversary with unbounded space and parallelism (but which cannot break the underlying signature scheme) cannot slow down the rate at which this chain grows.
3. We know exact expectation for $\kappa=1$

$$
E\left[C_{1, h}^{\ell}\right]=\frac{\ell}{h+1}
$$

4. We can lower bound for $\kappa=\infty$

$$
E\left[C_{\infty, h}^{\ell}\right] \geq \frac{\ell}{h+1} \cdot \frac{1}{e}
$$

What we know about C^{ℓ}

1. $C_{\kappa, h}^{\ell}$ is expected time h honest miners need to grow chain of length ℓ without adversarial interference
2. No Slowdown Lemma: an adversary with unbounded space and parallelism (but which cannot break the underlying signature scheme) cannot slow down the rate at which this chain grows.
3. We know exact expectation for $\kappa=1$

$$
E\left[C_{1, h}^{\ell}\right]=\frac{\ell}{h+1}
$$

4. We can lower bound for $\kappa=\infty$

$$
E\left[C_{\infty, h}^{\ell}\right] \geq \frac{\ell}{h+1} \cdot \frac{1}{e}
$$

(Weak) Chain Quality Lemma: If $m<h / e$ (m space controlled by adversary, h honest space) then the fraction of honestly mined blocks is >0.

Proof Sketch

- We can lower bound for $\kappa=\infty$

$$
E\left[C_{\infty, h}^{\ell}\right] \geq \frac{\ell}{h+1} \cdot \frac{1}{e}
$$

$$
\begin{aligned}
& C_{1,3}^{2}=.5 \\
& C_{\infty, 3}^{2}=.3
\end{aligned}
$$

Proof Sketch

- We can lower bound for $\kappa=\infty$

$$
E\left[C_{\infty, h}^{\ell}\right] \geq \frac{\ell}{h+1} \cdot \frac{1}{e}
$$

- Instead of analyzing shortest path in h-ary tree of depth ℓ, consider h^{ℓ} independent paths, prove that this tilts the bound in right direction.
- (Chernoff) Show that probability that any of those is shorter than x is $\ll \frac{1}{h^{\ell}}$.
- (Union Bound) Whp. all h^{ℓ} of them are shorter than x.

Choosing κ

Pseudocode

Space Miner Pseudocode (1/2)

Algorithm 2 SpaceMiner.init

1: Global Parameters: N

2: $\mathcal{C} \leftarrow$ Chain.init
3: $(p k, s k) \leftarrow$ Sig.keygen

4: $S \leftarrow \operatorname{PoSpace.init}(N, p k)$. \triangleright run PoSpace initialisation with space N and identity $p k$ to get a file S of size $|S|=N$.
5: Initalize a vector pos_count to all 0
\triangleright see Remark ??
6: Output:

7: $(p k, s k), S$, pos_count
8: \mathcal{C}
\triangleright extract view from network \triangleright generate a signature key pair
\triangleright State for SpaceMiner.mine \triangleright State for Chain.update

Algorithm 3 SpaceMiner.loop

1: loop

2: \quad Wait for block(s) Γ to be received from the network
3: $\quad\left(\Gamma_{f}, \Gamma_{n}\right) \leftarrow$ Chain.update (Γ)
4: $\quad \forall \gamma \in \Gamma_{f}:$ SpaceMiner.mine $(\gamma) \quad \triangleright$ Algorithm 4
5: end loop

Space Miner Pseudocode (2/2)

Algorithm 4 SpaceMiner.mine
1: Global Parameters: κ
2: Input: $\gamma_{i}=\left(\beta_{i}=\left(i, \sigma_{i}, \tau_{i}\right), \alpha_{i}\right)$. \triangleright finalized, fresh \& valid block for slot i
3: State: $(p k, s k), S$, pos_count
4: if pos_count $(i)=\kappa$ then $\quad \triangleright$ already generated κ PoS for slot i
5: return without output
6: end if
7: pos_count $(i) \leftarrow$ pos_count $(i)+1$
8: $\sigma_{i+1} \leftarrow \operatorname{PoSpace} . \operatorname{prove}\left(S, p k, \mathrm{H}\left(\tau_{i}\right)\right)$
\triangleright produce PoSpace
9: Generate data ${ }_{i+1}$
\triangleright application specific
10: $\phi_{i+1} \leftarrow \operatorname{Sig} . \operatorname{sign}\left(s k,\left(\alpha_{i}, \sigma_{i+1}\right.\right.$, data $\left._{i+1}\right) \triangleright$ signature for signature chain
11: Chain.update $\left(\left(i+1, \sigma_{i+1}\right), \alpha_{i+1}=\left(\phi_{i+1}, \operatorname{data}_{i+1}\right)\right)$

Time Miner Pseudocode (1/3)

Algorithm 5 TimeMiner.init

1: $\mathcal{C} \leftarrow$ Chain.init $\quad \triangleright$ extract view from network
2: Initalize a vectors finalized and running to all 0
3: Output:
4: finalized, running
5: \mathcal{C}
\triangleright State for TimeMiner.mine/finalized/runPoSW
\triangleright State for Chain.update

Algorithm 6 TimeMiner.loop
1: loop
2: \quad Wait for block(s) Γ to be received from the network
3: $\quad\left(\Gamma_{f}, \Gamma_{n}\right) \leftarrow$ Chain.update (Γ)
4: $\quad \forall((i, \sigma), \alpha) \in \Gamma_{n}:$ TimeMiner.mine $(i, \sigma) \quad \triangleright$ Algorithm 7
5: $\quad \forall((i, \sigma, \tau), \alpha) \in \Gamma_{f}:$ TimeMiner.finalized $(i) \quad \triangleright$ Algorithm 9
6: end loop

Algorithm 7 TimeMiner.mine

1: Global Parameters: T, κ
2: Input: $\beta_{i}=\left(i, \sigma_{i}\right) \quad \triangleright$ non-finalized, fresh \& valid block for slot i received
3: State: finalized, running
4: if finalize $[i]=\kappa$ then
\triangleright already finalized κ blocks for this slot
5: return with no output
6: end if
7: $t:=0 . \mathrm{H}\left(\sigma_{i}\right) \cdot T$
\triangleright time required to finalize this block
if finalize $[i]+$ running $[i]<\kappa$ then $\triangleright<\kappa$ proofs finalized or running start thread TimeMiner.runPoSW $\left(i, \mathrm{H}\left(\sigma_{i}\right), t\right) \quad \triangleright$ to finish at time now $+t$
10: \quad running $[i]=$ running $[i]+1$
11: end if
12: if finalize $[i]+\operatorname{running}[i]=\kappa$ then $\quad \triangleright$ exactly κ proofs finalized or running
13: \quad if the slowest PoSW for slot i will finish at time $>t+$ now then 14: abort the thread of this PoSW
15: \quad start thread TimeMiner.runPoSW $\left(i, \mathrm{H}\left(\sigma_{i}\right), t\right)$
16: end if
17: end if

Time Miner Pseudocode (3/3)

Algorithm 8 TimeMiner.runPoSW
1: State: finalized, running
2: Input: $i,(c, t)$
3: $\tau_{i} \leftarrow \operatorname{PoSW}(c, t) \triangleright$ start PoSW, if not aborted will output proof τ_{i} in time t
4: finalized $[i]=$ finalized $[i]+1$
5: running $[i]=\operatorname{running}[i]-1$
6: Chain.update $\left(\tau_{i}\right)$
Algorithm 9 TimeMiner.finalized
1: State: finalized, running
2: Input: $i \quad \triangleright$ fresh, valid \& finalized block for slot i was received
3: if running $[i]>0$ and running $[i]+$ finalized $[i]=\kappa$ then
4: abort the thread TimeMiner.runPoSW for slot i scheduled to finish last
5: \quad running $[i]=$ running $[i]-1$
6: end if
7: finalized $[i]=\min \{$ finalized $[i]+1, \kappa\}$

Some Open Problems

- (PoSW) Construct unique proofs of sequential work without heavy crypto machinery (SNARKs).
- (PoS) Is there a proof of space with non-interactive initialization and (at least asymptotically) optimal bounds?
- (Analysis) Better chain quality, persistience etc. analysis? Can we say something about rational (not just honest) miners?

