Secure Computation - III

CS 601.642/442 Modern Cryptography

Fall 2019

Securely Computing any Function

How can a group of parties securely compute any function over their private inputs?

- Last time: Yao's Garbled Circuits based solution. Requires little interaction, but only tailored to two-party case.
- Today: Goldreich-Micali-Wigderson (GMW) solution. Highly interactive. But extends naturally to $n>2$ parties (where up to $n-1$ parties may be corrupted).

Circuit Representation

Function $f(x, y)$ can be written as a boolean circuit C :

- Input: Input wires of C correspond to inputs x and y to f
- Gates: C contains AND and NOT gates, where each gate has fan in at most 2 and arbitrary fan out

- Output: Output wires of C correspond to output of $f(x, y)$

Secret Sharing

A k-out-of- n secret sharing scheme allows for "dividing" a secret value s into n parts s_{1}, \ldots, s_{n} s.t.

- Correctness: Any subset of k shares can be "combined" to reconstruct the secret s
- Privacy: The value s is completely hidden from anyone who only has at most $k-1$ shares of s

Think: How to formalize?

Secret Sharing: Definition

Definition

A (k, n) secret-sharing consists of a pair of PPT algorithms
(Share, Reconstruct) s.t.:

- Share(s) produces an n tuple $\left(s_{1}, \ldots, s_{n}\right)$
- Reconstruct $\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right)$ is s.t. if $\left\{s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right\} \subseteq\left\{s_{1}, \ldots, s_{n}\right\}$, then it outputs s
- For any two s and \tilde{s}, and for any subset of at most $k-1$ indices $X \subset[1, n],|X|<k$, the following two distributions are statistically close:

$$
\begin{aligned}
& \left\{\left(s_{1}, \ldots, s_{n}\right) \leftarrow \operatorname{Share}(s):\left(s_{i} \mid i \in X\right)\right\}, \\
& \left\{\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right) \leftarrow \operatorname{Share}(\tilde{s}):\left(\tilde{s}_{i} \mid i \in X\right)\right\} .
\end{aligned}
$$

Secret Sharing: Construction

An (n, n) secret-sharing scheme for $s \in\{0,1\}$ based on XOR:

- Share (s) : Sample random bits $\left(s_{1}, \ldots, s_{n}\right)$ s.t. $s_{1} \oplus \cdots \oplus s_{n}=s$
- Reconstruct $\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$: Output $s_{1}^{\prime} \oplus \cdots \oplus s_{n}^{\prime}$

Think: Security?
Additional Reading: Shamir's (k, n) secret-sharing using polynomials

GMW Protocol: Outline

GMW protocol consists of three phases:

- Input Sharing: Each party secret-shares its input into two parts and sends one part to the other party
- Circuit evaluation: The parties evaluate the circuit in a gate-by-gate fashion in such a manner that for every internal wire w in the circuit, each party holds a secret share of the value of wire w
- Output reconstruction: Finally, the parties exchange the secret shares of the output wires. Each party then, on its own, combines the secret shares to compute the output of the circuit

GMW Protocol: Details

Notation:

- Protocol Ingredients: A $(2,2)$ secret-sharing scheme (Share, Reconstruct), and a 1-out-of-4 OT scheme (OT $=(S, R))$
- Common input: Circuit C for function $f(\cdot, \cdot)$ with two n-bit inputs and an n-bit output
- A's input: $x=x_{1}, \ldots, x_{n}$ where $x_{i} \in\{0,1\}$
- B 's input: $y=y_{1}, \ldots, y_{n}$ where $y_{i} \in\{0,1\}$

Protocol Invariant: For every wire in $C(x, y)$ with value $w \in\{0,1\}$, A and B have shares w^{A} and w^{B}, respectively, s.t.
$\operatorname{Reconstruct}\left(w^{A}, w^{B}\right)=w$

GMW Protocol: Details (contd.)

Protocol $\Pi=(A, B)$:
Input Sharing: A computes $\left(x_{i}^{A}, x_{i}^{B}\right) \leftarrow \operatorname{Share}\left(x_{i}\right)$ for every $i \in[n]$ and sends $\left(x_{1}^{B}, \ldots, x_{n}^{B}\right)$ to B. B acts analogously.
Circuit Evaluation: Run the CircuitEval sub-protocol. A obtains out $_{i}^{A}$ and B obtains out ${ }_{i}^{B}$ for every output wire i.
Output Phase: For every output wire i, A sends out $_{i}^{A}$ to B, and B sends out ${ }_{i}^{B}$ to A. Each party computes

$$
\text { out }_{i}=\operatorname{Reconstruct}^{\left(\text {out }_{i}^{A}, \text { out }_{i}^{B}\right)}
$$

The output is out $=$ out $_{1}, \ldots$, out $_{n}$

CircuitEval: NOT Gate

NOT Gate: Input u, output w

- A holds u^{A}, B holds u^{B}
- A computes $w^{A}=u^{A} \oplus 1$
- B computes $w^{B}=u^{B}$

Observe: $w^{A} \oplus w^{B}=u^{A} \oplus 1 \oplus u^{B}=\bar{u}$

CircuitEval: AND Gate

AND Gate: Inputs u, v, output w

- A holds u^{A}, v^{A}, B holds u^{B}, v^{B}
- A samples $w^{A} \stackrel{\$}{\leftarrow}\{0,1\}$ and computes $w_{1}^{B}, \ldots, w_{4}^{B}$ as follows:

u^{B}	v^{B}	w^{B}
0	0	$w_{1}^{B}=w^{A} \oplus\left(\left(u^{A} \oplus 0\right) \cdot\left(v^{A} \oplus 0\right)\right)$
0	1	$w_{2}^{B}=w^{A} \oplus\left(\left(u^{A} \oplus 0\right) \cdot\left(v^{A} \oplus 1\right)\right)$
1	0	$w_{3}^{B}=w^{A} \oplus\left(\left(u^{A} \oplus 1\right) \cdot\left(v^{A} \oplus 0\right)\right)$
1	1	$w_{4}^{B}=w^{A} \oplus\left(\left(u^{A} \oplus 1\right) \cdot\left(v^{A} \oplus 1\right)\right)$

- A and B run OT $=(S, R)$ where A acts as sender S with inputs $\left(w_{1}^{B}, \ldots, w_{4}^{B}\right)$ and B acts as receiver R with input $b=1+2 u^{B}+v^{B}$

Intuition for Security

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- NOT gate: Follows from construction
- AND gate: Follows from security of OT

At the end, the parties only learn the values of the output wires
Exercise: Construct Simulator for Π using Simulator for OT and prove indistinguishability

