Lecture 4: Pseudorandomness - 11 J

Last Time

o Hard Core Predicates

e Computational Indistinguishability

Today

Pseudorandom Distributions & Next-bit Unpredictability

Completeness of Next-bit Test for Pseudorandomness
Pseudorandom Generators

o 1-bit stretch
e Polynomial stretch

@ Pseudorandom functions

Pseudorandomness

o Uniform distribution over {0,1}¢() is denoted by Up(n)

o Intuition: A distribution is pseudorandom if it looks like a uniform
distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble {X,,}, where X,, is a distribution over {0, 1}4™) is said to
be pseudorandom if:

{Xn} = {Ugn)}

e Looking ahead: A PRG’s output should be pseudorandom

Next-Bit Test

o Here is another interesting way to talk about pseudorandomness

e A pseudorandom string should pass all efficient tests that a (truly)
random string would pass

e Next Bit Test: for a truly random sequence of bits, it is not
possible to predict the “next bit” in the sequence with probability
better than 1/2 even given all previous bits of the sequence so far

@ A sequence of bits passes the next bit test if no efficient adversary
can predict “the next bit” in the sequence with probability better
than 1/2 even given all previous bits of the sequence so far

_ Lecture 4: Pseudorandomness - II 5/ 16

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions {X,,} over {0,1}*™ is next-bit
unpredictable if, for all 0 < ¢ < ¢(n) and n.u. PPT A, 3 negligible
function v(-) s.t.:

1
Pl‘[t =t.. .tg(n) ~ Xni A(tl 000 ti) = ti_t,_l] < 5 < I/(n)

Theorem (Completeness of Next-bit Test)

If {X,} is next-bit unpredictable then {X,} is pseudorandom.

Next-bit Unpredictability = Pseudorandomness

Hr(zi) — {x ~ Xp,u~U,: x1 ...Jiiui+1-~u£(n)}

o First Hybrid: H? is the uniform distribution Usg(n)

Last Hybrid: Hﬁ(n) is the distribution X,
(n))

Suppose Hff is next-bit unpredictable but not pseudorandom
7Y % g™ — Jiem) —1]st. HY % 7Y

e Now, next bit unpredictability is violated

o Exercise: Do the full formal proof

Pseudorandom Generators (PRG)

Definition (Pseudorandom Generator)

A deterministic algorithm G is called a pseudorandom generator (PRG)
if:

e (G can be computed in polynomial time

° |G(x)] > |x]

° {az «—{0,1}™: G(x)} S {Uz(n)} where ¢(n) = |G(0")]
The stretch of G is defined as: |G(x)| — |z|

o Can we construct PRG with even 1-bit stretch?

e What about many bits? Can we generically stretch?

PRG with 1-bit stretch

Remember the hardcore predicate?
o It is hard to guess h(s) even given f(s)
Let G(s) = f(s)||h(s) where f is a OWF

Some small issues:
— | f(s)| might be less than [s|

— f(s) may always start with prefix 101 (not random)

Solution: let f be a one-way permutation (OWP) over {0, 1}"
Domain and Range are of same size, i.e., |f(s)| = |s| =n

— f(s) is uniformly random over {0,1}" if s is

Vy: Pr[f(s) =y] =Pr[s = f'(y)| =27"

= f(s) is uniform and cannot start with a fix value!

PRG with 1-bit stretch

e Let f:{0,1}* — {0,1}* be a OWP
o Let h:{0,1}* — {0,1} be a hardcore predicate for f
e Construction: G(s) = f(s) || h(s)

Theorem (PRG based on OWP)

G is a pseudorandom generator with 1-bit stretch.

@ Think: Proof?

@ Proof Idea: Use next-bit unpredictability. Since first n bits of the
output are uniformly distributed (since f is a permutation), any
adversary for next-bit unpredictability with non-negligible
advantage () must be predicting the (n + 1)th bit with advantage

(n). Build an adversary for hard-core predicate to get a
contradiction.

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy, : {0, 1} — {0, 1}
o Let G : {0,1}" — {0,1}"! be a one-bit stretch PRG

s = Xy
G(Xo) = Xi||bv

G(Xymy-1) = Xem)llbeen)
4] Gpoly(s) = b1 “oe bé(n)

Think: Proof?

Proof that G, is pseudorandom

o Want: {s «—{0,1}™: Gpgly(s)} Rle {Ug(n)}
@ Let D be any non-uniform PPT algorithm.

Experiment Hy

s = X()
G(Xo) = Xi|bs
G(X1) = Xsllbe
Step 0: .
G(Xe-1) = Xollbe

Output D(b1by .. .by)

Claim:)Prs[mc'(s)) —1] — Pry[Hy = 1]‘ —0.
Proof: Input of D is identically distributed in both cases. [

_ Lecture 4: Pseudorandomness - II 12 / 16

Proof that G, is pseudorandom

Step 1: modify Hy one line at a time.

Experiment Hy

G (Xo) _
G(X1) =

G(X, 1) =

Output D(b1bs ..

Xo
X1|by
Xo||ba

X||be

be).

13 / 16

Proof that G, is pseudorandom

Step 1: modify Hy one line at a time.

Experiment Hy

G (Xo) _
G(X1) =

G(X, 1) =

Output D(b1bs ..

Xo
X1|by
Xo||ba

X||be

be).

Experiment H;

s = Xy
X1Hb1 = slHul
G(s1) = Xolbo
G(Xe—1) = X||be

Output D(uibs...by).

Claim: |Pry[Hy = 1] — Pry g, o, [H1 = 1]] < p(n)

e Can similarly define Ho, ..

sampled from U,

e To prove that Gy is PRG, it suffices to show that Hy ~. Hy

. Hy_1 st.in Hyp_q, b1by... by is

13 / 16

Proof that Gy is pseudorandom (contd.)

Step 2: Hybrid Lemma

e For contradiction, suppose that Gy is not a PRG, i.e., Hy and

H, are distinguishable with non-negligible probability p(ln)

e By Hybrid Lemma, there exists ¢ s.t. H; and H;11 are

distinguishable with probability ng(n)

@ Idea: Contradict the security of G

Proof that Gy is pseudorandom (contd.)

Step 3: Breaking security of G

e For simplicity, suppose that i = 0 (proof works for any)

@ Construct D to break the pseudorandomness of G as follows
— D gets as input Z||r sampled either as X1]||b; or as sq||ug
— Compute X3||be = G(Z) and continue as the rest of the

experiment(s)

— Output D(rbs...b)

o If Z||r is pseudorandom, i.e., sampled as Xi||b; = G(s), then

output of D is distributed identically to the output of Hy

e Otherwise, i.e., Z||r is (truly) random, and therefore output of D is
is distributed identically to the output of H;
1

e Hence: D distinguishes the output of G with advantage KO
and runs in polynomial time. This is a contradiction [

_ Lecture 4: Pseudorandomness - II 15 / 16

Concluding Remarks on PRG

e OWF = PRG: [lmpagliazzo-Levin-Luby-89| and [Hastad-90|
o Celebrated result! Good to read
e More Efficient Constructions: |Vadhan-Zheng-12]

Computational analogues of Entropy

Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-8§|

