
Lecture 4: Pseudorandomness - II

Lecture 4: Pseudorandomness - II 1 / 16

Last Time

Hard Core Predicates
Computational Indistinguishability

Lecture 4: Pseudorandomness - II 2 / 16

Today

Pseudorandom Distributions & Next-bit Unpredictability
Completeness of Next-bit Test for Pseudorandomness
Pseudorandom Generators

1-bit stretch
Polynomial stretch

Pseudorandom functions

Lecture 4: Pseudorandomness - II 3 / 16

Pseudorandomness

Uniform distribution over {0, 1}`(n) is denoted by U`(n)

Intuition: A distribution is pseudorandom if it looks like a uniform
distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble {Xn}, where Xn is a distribution over {0, 1}`(n), is said to
be pseudorandom if:

{Xn} ≈ {U`(n)}

Looking ahead: A PRG’s output should be pseudorandom

Lecture 4: Pseudorandomness - II 4 / 16

Next-Bit Test

Here is another interesting way to talk about pseudorandomness

A pseudorandom string should pass all efficient tests that a (truly)
random string would pass

Next Bit Test: for a truly random sequence of bits, it is not
possible to predict the “next bit” in the sequence with probability
better than 1/2 even given all previous bits of the sequence so far

A sequence of bits passes the next bit test if no efficient adversary
can predict “the next bit” in the sequence with probability better
than 1/2 even given all previous bits of the sequence so far

Lecture 4: Pseudorandomness - II 5 / 16

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions {Xn} over {0, 1}`(n) is next-bit
unpredictable if, for all 0 6 i < `(n) and n.u. PPT A, ∃ negligible
function ν(·) s.t.:

Pr[t = t1 . . . t`(n) ∼ Xn : A(t1 . . . ti) = ti+1] 6
1

2
+ ν(n)

Theorem (Completeness of Next-bit Test)
If {Xn} is next-bit unpredictable then {Xn} is pseudorandom.

Lecture 4: Pseudorandomness - II 6 / 16

Next-bit Unpredictability =⇒ Pseudorandomness

H(i)
n :=

{
x ∼ Xn, u ∼ Un : x1 . . . xiui+1 . . . u`(n)

}
First Hybrid: H0

n is the uniform distribution U`(n)

Last Hybrid: H`(n)
n is the distribution Xn

Suppose H(`(n))
n is next-bit unpredictable but not pseudorandom

H
(0)
n 6≈ H(`(n))

n =⇒ ∃ i ∈ [`(n)− 1] s.t. H(i)
n 6≈ H(i+1)

n

Now, next bit unpredictability is violated
Exercise: Do the full formal proof

Lecture 4: Pseudorandomness - II 7 / 16

Pseudorandom Generators (PRG)

Definition (Pseudorandom Generator)
A deterministic algorithm G is called a pseudorandom generator (PRG)
if:

G can be computed in polynomial time
|G(x)| > |x|{
x← {0, 1}n : G(x)

}
≈c

{
U`(n)

}
where `(n) = |G(0n)|

The stretch of G is defined as: |G(x)| − |x|

Can we construct PRG with even 1-bit stretch?

What about many bits? Can we generically stretch?

Lecture 4: Pseudorandomness - II 8 / 16

PRG with 1-bit stretch

Remember the hardcore predicate?

It is hard to guess h(s) even given f(s)

Let G(s) = f(s)‖h(s) where f is a OWF
Some small issues:

– |f(s)| might be less than |s|
– f(s) may always start with prefix 101 (not random)

Solution: let f be a one-way permutation (OWP) over {0, 1}n
– Domain and Range are of same size, i.e., |f(s)| = |s| = n

– f(s) is uniformly random over {0, 1}n if s is

∀y : Pr[f(s) = y] = Pr[s = f−1(y)] = 2−n

⇒ f(s) is uniform and cannot start with a fix value!

Lecture 4: Pseudorandomness - II 9 / 16

PRG with 1-bit stretch

Let f : {0, 1}∗ → {0, 1}∗ be a OWP

Let h : {0, 1}∗ → {0, 1} be a hardcore predicate for f

Construction: G(s) = f(s) ‖ h(s)

Theorem (PRG based on OWP)
G is a pseudorandom generator with 1-bit stretch.

Think: Proof?
Proof Idea: Use next-bit unpredictability. Since first n bits of the
output are uniformly distributed (since f is a permutation), any
adversary for next-bit unpredictability with non-negligible
advantage 1

p(n) must be predicting the (n+1)th bit with advantage
1

p(n) . Build an adversary for hard-core predicate to get a
contradiction.

Lecture 4: Pseudorandomness - II 10 / 16

One-bit stretch PRG =⇒ Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpoly : {0, 1}n → {0, 1}`(n):
Let G : {0, 1}n → {0, 1}n+1 be a one-bit stretch PRG

s = X0

G(X0) = X1‖b1
...

G(X`(n)−1) = X`(n)‖b`(n)

Gpoly(s) := b1 . . . b`(n)

Think: Proof?

Lecture 4: Pseudorandomness - II 11 / 16

Proof that Gpoly is pseudorandom

Want:
{
s← {0, 1}n : Gpoly(s)

}
≈c

{
U`(n)

}
Let D be any non-uniform PPT algorithm.

Step 0:

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`)

Claim:
∣∣∣Prs[D(G′(s)) = 1]− Prs[H0 = 1]

∣∣∣ = 0.
Proof: Input of D is identically distributed in both cases. �

Lecture 4: Pseudorandomness - II 12 / 16

Proof that Gpoly is pseudorandom

Step 1: modify H0 one line at a time.

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`).

Experiment H1

s = X0

X1‖b1 = s1‖u1
G(s1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(u1b2 . . . b`).

Claim:
∣∣∣Prs[H0 = 1]− Prs,s1,u1 [H1 = 1]

∣∣∣ 6 µ(n)
Can similarly define H2, . . . ,H`−1 s.t. in H`−1, b1b2 . . . b` is
sampled from U`

To prove that Gpoly is PRG, it suffices to show that H0 ≈c H`

Lecture 4: Pseudorandomness - II 13 / 16

Proof that Gpoly is pseudorandom

Step 1: modify H0 one line at a time.

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`).

Experiment H1

s = X0

X1‖b1 = s1‖u1
G(s1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(u1b2 . . . b`).

Claim:
∣∣∣Prs[H0 = 1]− Prs,s1,u1 [H1 = 1]

∣∣∣ 6 µ(n)
Can similarly define H2, . . . ,H`−1 s.t. in H`−1, b1b2 . . . b` is
sampled from U`

To prove that Gpoly is PRG, it suffices to show that H0 ≈c H`

Lecture 4: Pseudorandomness - II 13 / 16

Proof that Gpoly is pseudorandom (contd.)

Step 2: Hybrid Lemma

For contradiction, suppose that Gpoly is not a PRG, i.e., H0 and
H` are distinguishable with non-negligible probability 1

p(n)

By Hybrid Lemma, there exists i s.t. Hi and Hi+1 are
distinguishable with probability 1

p(n)`(n)

Idea: Contradict the security of G

Lecture 4: Pseudorandomness - II 14 / 16

Proof that Gpoly is pseudorandom (contd.)

Step 3: Breaking security of G

For simplicity, suppose that i = 0 (proof works for any i)
Construct D to break the pseudorandomness of G as follows

– D gets as input Z‖r sampled either as X1‖b1 or as s1‖u1
– Compute X2‖b2 = G(Z) and continue as the rest of the

experiment(s)
– Output D(rb2 . . . b`)

If Z‖r is pseudorandom, i.e., sampled as X1‖b1 = G(s), then
output of D is distributed identically to the output of H0

Otherwise, i.e., Z‖r is (truly) random, and therefore output of D is
is distributed identically to the output of H1

Hence: D distinguishes the output of G with advantage 1
p(n)`(n)

and runs in polynomial time. This is a contradiction �

Lecture 4: Pseudorandomness - II 15 / 16

Concluding Remarks on PRG

OWF =⇒ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
Celebrated result! Good to read

More Efficient Constructions: [Vadhan-Zheng-12]
Computational analogues of Entropy
Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-88]

Lecture 4: Pseudorandomness - II 16 / 16

