
One-way Functions

601.642/442: Modern Cryptography

Fall 2019

601.642/442: Modern Cryptography One-way Functions Fall 2019 1 / 26

Today’s Agenda

Provable security basics
Modeling “real-world” adversaries
Defining security against such adversaries

One-way Functions (OWFs)
Motivation
Definitions: Strong and Weak OWFs
Candidate OWF

601.642/442: Modern Cryptography One-way Functions Fall 2019 2 / 26

How to model the adversary?

Adversary’s Resources: Is the adversary an all powerful entity
or does it have bounded computational resources?
Adversary’s Strategy: Can the adversary use its resources
anyway it likes or is it restricted to certain strategies?

601.642/442: Modern Cryptography One-way Functions Fall 2019 3 / 26

Adversary Model

Goal: Model real-world adversaries

In practice, everyone has bounded computational resources.
Therefore, it is reasonable to model the adversary as such an entity
However, we do not make any assumptions about adversarial
strategy. Adversary can use its bounded computational resources
however intelligently it likes.

601.642/442: Modern Cryptography One-way Functions Fall 2019 4 / 26

Adversary Model (contd.)

Turing machines capture all types of computations that are
possible.
So our adversary will be a computer program or an algorithm,
modeled as a Turing machine.
Our adversary will also be efficient (read as computationally
feasible)
Computational Security: Security against efficient adversaries
Information-theoretic Security: Security against inefficient
adversaries
In this course, we will primarily focus on computational security

601.642/442: Modern Cryptography One-way Functions Fall 2019 5 / 26

Algorithms and Running Time

Definition (Algorithm)
An algorithm is a deterministic Turing machine whose input and output
are strings over the binary alphabet Σ “ t0, 1u.

Definition (Running Time)
An algorithm A is said to run in time T pnq if for all x P t0, 1un, Apxq
halts within T p|x|q steps. A runs in polynomial time if there exists a
constant c such that A runs in time T pnq “ nc.

An algorithm is efficient if it runs in polynomial time.

601.642/442: Modern Cryptography One-way Functions Fall 2019 6 / 26

Randomized Algorithms

Definition (Randomized Algorithm)
A randomized algorithm, also called a probabilistic polynomial time
Turing machine (PPT) is a Turing machine equipped with an extra
randomness tape. Each bit of the randomness tape is uniformly and
independently chosen.

Output of a randomized algorithm is a distribution.
This notion captures what we can do efficiently ourselves. (uniform
TMs)

601.642/442: Modern Cryptography One-way Functions Fall 2019 7 / 26

The Adversary

The adversary might use a different algorithm for each input size,
each of which might be efficient.

This still counts as efficient since he is using polynomial time
resources!

We call this a non-uniform adversary since the algorithm is not
uniform across all input sizes.

601.642/442: Modern Cryptography One-way Functions Fall 2019 8 / 26

Non-Uniform PPT

Definition (Non-Uniform PPT)
A non-uniform probabilistic polynomial time Turing machine A is a
sequence of probabilistic machines A “ tA1, A2, . . .u for which there
exists a polynomial pp¨q such that for every Ai P A, the description size
|Ai| and the running time of Ai are at most ppiq. We write Apxq to
denote the distribution obtained by running A|x|pxq.

Our adversary will usually be a non-uniform PPT Turing machine.
(most general)

601.642/442: Modern Cryptography One-way Functions Fall 2019 9 / 26

One Way Functions

A function is one-way if it “easy to compute,” but “hard to invert”
Necessary for the existence of most cryptographic primitives (e.g.,
encryption, digital signatures)
Also sufficient for some cryptographic primitives (e.g.,
pseudorandom functions, secret-key encryption, digital signatures)
OWFs are at the bottom of the cryptographic “complexity zoo;”
hence the natural first primitive for study

601.642/442: Modern Cryptography One-way Functions Fall 2019 10 / 26

One Way Functions

How to define one-way functions?

Specifically, how to formalize “hard to invert”?

601.642/442: Modern Cryptography One-way Functions Fall 2019 11 / 26

Computational Security Basics

Basing Security on Computational Intractability

601.642/442: Modern Cryptography One-way Functions Fall 2019 12 / 26

Asymptotic Cost of Attack

How does the running time of computation scale as the input
length goes to infinity?
Exponential-time (e.g., Θp2nq)1 “brute-force” attacks do not scale
well
But polynomial-time algorithms do (especially if exponent is small)
Disclaimer: Using polynomial time as a synonym for efficient might
be confusing since, e.g., Θpn1000q is poly-time and Θpnlog lognq is
not, yet the latter may likely be more “efficient” in practice
Nevertheless, the reason why polynomial time is very useful is
because of closure property: repeating a poly-time algorithm
polynomial times is still polynomial time!

1For n “ 128, this roughly amounts to a billion human civilizations worth of
computational effort.

601.642/442: Modern Cryptography One-way Functions Fall 2019 13 / 26

Examples

Efficient Algorithms known
Computing GCDs
Arithmetic mod N
Inverses mod N
Exponentiation mod N

Efficient Algorithms not known
Factoring Integers
Discrete Logarithm
Square roots mod composite N
Solving “noisy” linear equations

In this class, we will mostly focus on algorithms on classical
computers. Indeed, even in the second category, most problems,
except last one are known to have efficient quantum algorithms.

601.642/442: Modern Cryptography One-way Functions Fall 2019 14 / 26

Asymptotic Success Probability

Recall that we allow adversaries to be randomized algorithms, so it
is important to also consider their success probability
Consider an adversary who simply guesses the inversion. Clearly, it
is efficient and has non-zero chance of success. However, the
success probability is extremely low 1

2n . We will not care about
such blind guessing attacks
On the other hand, if say the adversary had a 1

2 chance of success,
then clearly we should worry about it. Ideally, we want the
probability to be “very low.” But what is low enough?
Just like running time, we will use an asymptotic approach to
capture low success probability so that it can be tweaked as
desired by changing the input length (often referred to as the
security parameter)

601.642/442: Modern Cryptography One-way Functions Fall 2019 15 / 26

Negligible Functions

A blind guessing adversary may “amplify” his success probability
by guessing polynomial (say nc) times, to achieve nc

2n

This is still very low when n is large. Indeed, 1
2n approaches zero

so fast that it cannot be “rescued” by any polynomial
We want to formalize this property so as to rule out the possibility
that a PPT adversary is able to amplify very low success
probability to “non-trivial” success probability

Definition (Negligible Function)
A function νp¨q is negligible if for every polynomial pp¨q, we have
limnÑ8 ppnqνpnq “ 0

601.642/442: Modern Cryptography One-way Functions Fall 2019 16 / 26

Negligible Functions (contd.)

1 A negligible function approaches zero so fast that you can never
catch up when multiplying by a polynomial

2 Alternatively: A negligible function decays faster than all
“inverse-polynomial” functions

Definition (Negligible Function)
A function νpnq is negligible if for every c, there exists some n0 such
that for all n ą n0, νpnq ď 1

nc .

601.642/442: Modern Cryptography One-way Functions Fall 2019 17 / 26

Defining One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a polynomial-time algorithm C s.t.
@x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Probability of Inversion is Negligible

601.642/442: Modern Cryptography One-way Functions Fall 2019 18 / 26

Defining One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a polynomial-time algorithm C s.t.
@x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Pr
“

A inverts fpxq for random x
‰

ď negligible.

This is called average-case hardness.

601.642/442: Modern Cryptography One-way Functions Fall 2019 19 / 26

Defining One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a polynomial-time algorithm C s.t.
@x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Pr
“

x
$
Ð t0, 1un; A inverts fpxq

‰

ď negligible.

601.642/442: Modern Cryptography One-way Functions Fall 2019 20 / 26

One Way Functions: Definition

Definition (One Way Function)
A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function (OWF) if it
satisfies the following two conditions:

Easy to compute: there is a polynomial-time algorithm C s.t.
@x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: there exists a negligible function ν : NÑ R s.t.
for every non-uniform PPT adversary A and @n P N:

Pr
”

xÐ t0, 1un, x1 Ð Ap1n, fpxqq : fpx1q “ fpxq
ı

ď νpnq.

Note that adversary receives n as an input in unary. Think: Why?
The above definition is also called strong one-way functions.

601.642/442: Modern Cryptography One-way Functions Fall 2019 21 / 26

Injective OWFs and One Way Permutations (OWP)

Injective or 1-1 OWFs: each image has a unique pre-image:

fpx1q “ fpx2q ùñ x1 “ x2

One Way Permutations (OWP): 1-1 OWF with the additional
conditional that “each image has a pre-image”

(Equivalently: domain and range are of same size.)

601.642/442: Modern Cryptography One-way Functions Fall 2019 22 / 26

Existence of OWFs

Do OWFs exist? NOT Unconditionally — proving that f is
one-way requires proving (at least) P ‰ NP.

However, we can construct them ASSUMING that certain
problems are hard.

Such constructions are sometimes called “candidates” because they
are based on an assumption or a conjecture.

601.642/442: Modern Cryptography One-way Functions Fall 2019 23 / 26

Factoring Problem

Consider the multiplication function fˆ : Nˆ NÑ N:

fˆpx, yq “

"

K if x “ 1_ y “ 1
x ¨ y otherwise

The first condition helps exclude the trivial factor 1.

Is fˆ a OWF?

Clearly not! With prob. 1{2, a random number (of any fixed
size) is even. I.e., xy is even w/ prob. 3

4 for random px, yq.

Inversion: given number z, output p2, z{2q if z is even and p0, 0q
otherwise! (succeeds 75% time)

601.642/442: Modern Cryptography One-way Functions Fall 2019 24 / 26

Factoring Problem (continued)

Eliminate such trivial small factors.

Let Πn be the set of all prime numbers ă 2n.

Choose numbers p and q randomly from Πn and multiply.

This is unlikely to have small trivial factors.

Assumption (Factoring Assumption)
For every (non-uniform PPT) adversary A, there exists a negligible
function ν such that

Pr
”

p
$
ÐΠn; q

$
ÐΠn;N “ pq : ApNq P tp, qu

ı

ď νpnq.

601.642/442: Modern Cryptography One-way Functions Fall 2019 25 / 26

Factoring Problem (continued)

Factoring assumption is a well established conjecture.

Studied for a long time, with no known polynomial-time attack.

Best known algorithms for breaking Factoring Assumption:

2O
`?

n logn
˘

(provable)

2O
`

3
?

n log2 n
˘

(heuristic)

Can we construct OWFs from the Factoring Assumption?

601.642/442: Modern Cryptography One-way Functions Fall 2019 26 / 26

