Non-Interactive Zero Knowledge (II)

CS 601.442/642 Modern Cryptography

Fall 2017

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ Ξ → →

Fall 2017

1 / 18

CS 601.442/642 Modern Cryptograph Non-Interactive Zero Knowledge (II)

• Last-time: Transformation from NIZKs in hidden-bit model to NIZKs in common random string model

Fall 2017

- Today: NIZKs for NP in the hidden-bit model
- Homework: Non-adaptive NIZKs to Adaptive NIZKs

Definition (Hamiltonian Graph)

Let G = (V, E) be a graph with |V| = n. We say that G is a Hamiltonian graph if it has a Hamiltonian cycle, i.e., there are $v_1, \ldots, v_n \in V$ s.t. for all $i \in [n]$:

 $(v_i, v_{(i+1) \bmod n}) \in E$

Fact: Deciding whether a graph is Hamiltonian is **NP**-Complete. Let L_{H} be the language of Hamiltonian graphs G = (V, E) s.t. |V| = n

ヘロト 人間ト 人間ト 人間ト

Fall 2017

3 / 18

Today: NIZK proof system for L_{H} in the hidden-bit model

Notation

Definition (Adjacency Matrix)

A graph G = (V, E) with |V| = n, can be represented as an $n \times n$ adjacency matrix M_G of boolean values such that:

$$M[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E\\ 0 & \text{otherwise} \end{cases}$$

Cycle Matrix: A cycle matrix is a boolean matrix that corresponds to a graph that contains a Hamiltonian cycle and no other edges

Permutation Matrix: A permutation matrix is a boolean matrix such that each row and each column has exactly one entry equal to 1

Fact: Every cycle matrix is a permutation matrix, but the converse is not true. For every n, there are n! permutation matrices, but only (n-1)! cycle matrices

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Two Steps:

- Step I. NIZK (K_1, P_1, V_1) for L_H in hidden-bit model where K produces (hidden) strings r with a specific distribution: each r represents an $n \times n$ cycle matrix
- Step II. Modify the above construction to obtain (K_2, P_2, V_2) where the (hidden) string r is uniformly random

Fall 2017

Step I

Construction of (K_1, P_1, V_1) for L_H :

 $\mathsf{K}_1(1^n)\colon$ Output $r\leftarrow\{0,1\}^{n^2}$ s.t. it represents an $n\times n$ cycle matrix M_c

 $\mathsf{P}_1(r, x, w)$: Execute the following steps:

- Parse x = G = (V, E) s.t. |V| = n, and w = H where $H = (v_1, \ldots, v_n)$ is a Hamiltonian cycle in G
- Choose a permutation $\varphi: V \to \{1, \ldots, n\}$ that maps H to the cycle in M_c , i.e., for every $i \in [n]$:

$$M_c[\varphi(v_i), \varphi(v_{(i+1) \bmod n})] = 1$$

- Define $I = \{\varphi(u), \varphi(v) | M_G[u, v] = 0\}$ to be the set of non-edges in G
- Output (I, φ)

Fall 2017 6 / 18

・ロト ・同ト ・ヨト ・ヨト ・ヨー つへの

Step I (contd.)

Construction of (K_1, P_1, V_1) for L_H :

 $V_1(I, r_I, \varphi)$: Execute the following steps:

- Parse $r_I = \{M_c[u, v]\}_{(u, v) \in I}$
- Check that for every $(u, v) \in I$, $M_c[u, v] = 0$
- Check that for every $(u, v) \in I$, $M_G(\varphi^{-1}(u), \varphi^{-1}(v)) = 0$
- If both the checks succeed, then output 1 and 0 otherwise

Completeness: An honest prover P can always find a correct mapping φ that maps H to the cycle in M_c

Soundness: If G = (V, E) is not a Hamiltonian graph, then for any mapping $\varphi : V \to \{1, \ldots, n\}, \varphi(G)$ will not cover all the edges in M_c . There must exist at least one non-zero entry in M_c that is revealed as a non-edge of G

Fall 2017 7 / 18

・ロト ・回ト ・ヨト ・ヨー うへの

Zero Knowledge: Simulator \mathcal{S} performs the following steps:

- Sample a random permutation $\varphi: V \to \{1, \dots, n\}$
- Compute $I = \{\varphi(u), \varphi(v) | M_G[u, v] = 0\}$
- For every $(a,b) \in I$, set $M_c[a,b] = 0$
- Output $(I, \{M_c[a, b]\}_{(a,b)\in I}, \varphi)$

It is easy to verify that the above output distribution is identical to the real experiment

Fall 2017

Step II: Strategy

- Define a deterministic procedure Q that takes as input a (sufficiently long) random string r and outputs a biased string s that corresponds to a cycle matrix with inverse polynomial probability $\frac{1}{\ell(n)}$
- If we feed $Q \ n \cdot \ell(n)$ random inputs, then with high probability, at least one of the outputs will correspond to a cycle matrix
- In the NIZK construction, the (hidden) random string will be $r = r_1, \ldots, r_{n \cdot \ell(n)}$
- For every *i*, the prover will try to compute a proof using $s_i = Q(r_i)$
- At least one s_i will contain a cycle matrix, so we can use the NIZK proof system from Step I

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Fall 2017

Procedure Q

Let r be a random string s.t. $|r| = \lceil 3 \log n \rceil \cdot n^4$ **Procedure** Q(r):

- Parse $r = r_1, \ldots, r_{n^4}$ s.t. $\forall i, |r_i| = \lceil 3 \log n \rceil$
- Compute $s = s_1, \ldots, s_{n^4}$, where:

$$s_i = \begin{cases} 1 & \text{if } r_i = 111 \cdots 1 \\ 0 & \text{otherwise} \end{cases}$$

- Define an $n^2 \times n^2$ boolean matrix M consisting of entries from s
- If M contains an $n \times n$ sub-matrix M_c s.t. M_c is a cycle matrix, then output (M, M_c) , else output (M, \bot)

Fall 2017

Analysis of ${\cal Q}$

Notation. Let GOOD be the set of outputs of $Q(\cdot)$ that contain a cycle matrix and BAD be the complementary set

Lemma

For a random input r, $\Pr[Q(r) \in \text{GOOD}] \ge \frac{1}{3n^3}$

Let M be an $n^2 \times n^2$ matrix computed by Q on a random input r. We will prove the above lemma via a sequence of claims:

Claim 1: M contains exactly n 1's with probability at least $\frac{1}{3n}$

- Claim 2: M contains a permutation sub-matrix with probability at least $\frac{1}{3n^2}$
- Claim 3: *M* contains a cycle sub-matrix with probability at least $\frac{1}{3n^3}$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Fall 2017

Analysis of Q (contd.)

Proof of Claim 1: Let X be the random variable denoting the number of 1's in M

• X follows the binomial distribution with $N = n^4$, $p = \frac{1}{n^3}$

•
$$\mathsf{E}(X) = N \cdot p = n$$

•
$$Var(X) = Np(1-p) < n$$

• Recall Chebyshev's Inequality: $\Pr\left[|X - \mathsf{E}(X)| > k\right] \leq \frac{\mathsf{Var}(X)}{k^2}$ Setting k = n, we have:

$$\Pr\left[|X-n| > n\right] \leqslant \frac{1}{n}$$

• Observe:

$$\sum_{i=1}^{2n} \Pr[X=i] = 1 - \Pr\left[|X-n| > n\right] > 1 - \frac{1}{n}$$

CS 601.442/642 Modern Cryptograph Non-Interactive Zero Knowledge (II)

・ロト ・回ト ・ヨト ・ヨト ・日・

Proof of Claim 1 (contd.):

•
$$\Pr[X = i]$$
 is maximum at $i = n$

• Observe:

$$\Pr[X = n] \geq \frac{\sum_{i=1}^{2n} \Pr[X = i]}{2n}$$
$$\geq \frac{1}{3n}$$

Image: A matrix

• 3 > 1

포 🕨 🖉 포

13 / 18

Fall 2017

CS 601.442/642 Modern Cryptograph Non-Interactive Zero Knowledge (II)

Analysis of Q (contd.)

Proof of Claim 2: Want to bound the probability that each of the n '1' entries in M is in a different row and column

• After k '1' entries have been added to M,

Pr[new '1' entry is in different row and column] = $\left(1 - \frac{k}{n^2}\right)^2$ • Multiplying all:

Pr[no collision]
$$\geq \left(1 - \frac{1}{n^2}\right)^2 \cdots \left(1 - \frac{n-1}{n^2}\right)^2$$

 $\geq \frac{1}{n}$

• Combining the above with Claim 1,

 $\Pr[M \text{ contains a permutation } n \times n \text{ submatrix }] \ge \frac{1}{3n^2}$ (CS 601.442/642 Modern Cryptograph Non-Interactive Zero Knowledge (II) Fall 2017 14 / 18

Proof of Claim 3: Want to bound the probability that M contains an $n \times n$ cycle sub-matrix

• Observe:

 $\Pr[n \times n \text{ permutation matrix is a cycle matrix}] = \frac{1}{n}$

• Combining the above with Claim 2,

 $\Pr[M \text{ contains a cycle } n \times n \text{ submatrix }] \ge \frac{1}{3n^3}$

Fall 2017

15 / 18

CS 601.442/642 Modern Cryptograph Non-Interactive Zero Knowledge (II)

Step II: Details

Construction of (K_2, P_2, V_2) for L_H : $\mathsf{K}_2(1^n)$: Output $r \leftarrow \{0,1\}^L$ where $L = \lceil 3 \log n \rceil \cdot n^8$ $\mathsf{P}_2(r, x, w)$: Parse $r = r_1, \ldots, r_{n^4}$ s.t. for every $i \in [n^4]$, $|r_i| = \lceil 3 \log n \rceil \cdot n^4$. For every $i \in [n^4]$: • If $Q(r_i) = (M^i, \bot)$, set $I_i = [|r_i|]$ (i.e., reveal the entire r_i), and $\pi_i = \emptyset$ • Else, let $(M^i, M_c^i) \leftarrow Q(r_i)$. Compute $(I'_i, \varphi_i) \leftarrow \mathsf{P}_1(M^i_c, x, w)$. Set $I_i = I'_i \cup J_i$ where J_i is the set of indices s.t. r_i restricted to J_i yields the residual M^i after removing M_c^i , and $\pi_i = \varphi_i$ Output $(I = \{I_i\}, \pi = \{\pi_i\})$

(ロ) (日) (日) (日) (日) (日) (日)

Fall 2017

Construction of (K_2, P_2, V_2) for L_H :

$$V_2(I, r_I, \pi)$$
: Parse $I = I_1, \dots, I_{n^4}, r_I = s_1, \dots, s_{n^4}$, and $\pi = \pi_1, \dots, \pi_{n^4}$. For every $i \in [n^4]$:

• If I_i is the complete set, then check that $Q(s_i) = (\cdot, \bot)$

Fall 2017

17 / 18

Otherwise, parse I_i = I'_i ∪ J_i. Parse s_i = s¹_i, s²_i and check that s²_i is the all 0 string. Also, check that V₁(I'_i, s¹_i, π_i) = 1

If all the checks succeed, then output 1 and 0 otherwise

Completeness: Follows from completeness of the construction in Step I

Soundness: For random $r = r_1, \ldots, r_{n^4}, Q(r_i) \in \text{GOOD}$ for at least one r_i with high probability. Soundness then follows from the soundness of the construction in Step I

Zero-Knowledge: For *i* s.t. $Q(r_i) \in \text{GOOD}$, *V* does not learn any information from the zero-knowledge property of the construction in Step I. For *i* s.t. $Q(r_i) \in \text{BAD}$, *V* does not see anything besides r_i .

・ロト ・回ト ・ヨト ・ヨト 三日

Fall 2017