Non-Interactive Zero Knowledge (II)

CS 601.442/642 Modern Cryptography

Fall 2017

NIZKs for NP: Roadmap

- Last-time: Transformation from NIZKs in hidden-bit model to NIZKs in common random string model
- Today: NIZKs for NP in the hidden-bit model
- Homework: Non-adaptive NIZKs to Adaptive NIZKs

Hamiltonian Graphs

Definition (Hamiltonian Graph)

Let $G=(V, E)$ be a graph with $|V|=n$. We say that G is a Hamiltonian graph if it has a Hamiltonian cycle, i.e., there are $v_{1}, \ldots, v_{n} \in V$ s.t. for all $i \in[n]$:

$$
\left(v_{i}, v_{(i+1) \bmod n}\right) \in E
$$

Fact: Deciding whether a graph is Hamiltonian is NP-Complete. Let L_{H} be the language of Hamiltonian graphs $G=(V, E)$ s.t. $|V|=n$

Today: NIZK proof system for L_{H} in the hidden-bit model

Notation

Definition (Adjacency Matrix)

A graph $G=(V, E)$ with $|V|=n$, can be represented as an $n \times n$ adjacency matrix M_{G} of boolean values such that:

$$
M[i, j]= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Cycle Matrix: A cycle matrix is a boolean matrix that corresponds to a graph that contains a Hamiltonian cycle and no other edges
Permutation Matrix: A permutation matrix is a boolean matrix such that each row and each column has exactly one entry equal to 1

Fact: Every cycle matrix is a permutation matrix, but the converse is not true. For every n, there are n ! permutation matrices, but only $(n-1)$! cycle matrices

NIZKs for L_{H} in Hidden-Bit Model

Two Steps:

Step I. NIZK $\left(\mathrm{K}_{1}, \mathrm{P}_{1}, \mathrm{~V}_{1}\right)$ for L_{H} in hidden-bit model where K produces (hidden) strings r with a specific distribution: each r represents an $n \times n$ cycle matrix

Step II. Modify the above construction to obtain ($\mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{~V}_{2}$) where the (hidden) string r is uniformly random

Step I

Construction of $\left(\mathrm{K}_{1}, \mathrm{P}_{1}, \mathrm{~V}_{1}\right)$ for L_{H} :
$\mathrm{K}_{1}\left(1^{n}\right)$: Output $r \leftarrow\{0,1\}^{n^{2}}$ s.t. it represents an $n \times n$ cycle matrix M_{c}
$\mathrm{P}_{1}(r, x, w)$: Execute the following steps:

- Parse $x=G=(V, E)$ s.t. $|V|=n$, and $w=H$ where $H=\left(v_{1}, \ldots, v_{n}\right)$ is a Hamiltonian cycle in G
- Choose a permutation $\varphi: V \rightarrow\{1, \ldots, n\}$ that maps H to the cycle in M_{c}, i.e., for every $i \in[n]$:

$$
M_{c}\left[\varphi\left(v_{i}\right), \varphi\left(v_{(i+1) \bmod n}\right)\right]=1
$$

- Define $I=\left\{\varphi(u), \varphi(v) \mid M_{G}[u, v]=0\right\}$ to be the set of non-edges in G
- Output (I, φ)

Step I (contd.)

Construction of $\left(\mathrm{K}_{1}, \mathrm{P}_{1}, \mathrm{~V}_{1}\right)$ for L_{H} :
$\mathrm{V}_{1}\left(I, r_{I}, \varphi\right)$: Execute the following steps:

- Parse $r_{I}=\left\{M_{c}[u, v]\right\}_{(u, v) \in I}$
- Check that for every $(u, v) \in I, M_{c}[u, v]=0$
- Check that for every $(u, v) \in I$, $M_{G}\left(\varphi^{-1}(u), \varphi^{-1}(v)\right)=0$
- If both the checks succeed, then output 1 and 0 otherwise
Completeness: An honest prover P can always find a correct mapping φ that maps H to the cycle in M_{c}

Soundness: If $G=(V, E)$ is not a Hamiltonian graph, then for any mapping $\varphi: V \rightarrow\{1, \ldots, n\}, \varphi(G)$ will not cover all the edges in M_{c}. There must exist at least one non-zero entry in M_{c} that is revealed as a non-edge of G

Step I (contd.)

Zero Knowledge: Simulator \mathcal{S} performs the following steps:

- Sample a random permutation $\varphi: V \rightarrow\{1, \ldots, n\}$
- Compute $I=\left\{\varphi(u), \varphi(v) \mid M_{G}[u, v]=0\right\}$
- For every $(a, b) \in I$, set $M_{c}[a, b]=0$
- Output $\left(I,\left\{M_{c}[a, b]\right\}_{(a, b) \in I}, \varphi\right)$

It is easy to verify that the above output distribution is identical to the real experiment

Step II: Strategy

- Define a deterministic procedure Q that takes as input a (sufficiently long) random string r and outputs a biased string s that corresponds to a cycle matrix with inverse polynomial probability $\frac{1}{\ell(n)}$
- If we feed $Q n \cdot \ell(n)$ random inputs, then with high probability, at least one of the outputs will correspond to a cycle matrix
- In the NIZK construction, the (hidden) random string will be $r=r_{1}, \ldots, r_{n \cdot \ell(n)}$
- For every i, the prover will try to compute a proof using $s_{i}=Q\left(r_{i}\right)$
- At least one s_{i} will contain a cycle matrix, so we can use the NIZK proof system from Step I

Procedure Q

Let r be a random string s.t. $|r|=\lceil 3 \log n\rceil \cdot n^{4}$
Procedure $Q(r)$:

- Parse $r=r_{1}, \ldots, r_{n^{4}}$ s.t. $\forall i,\left|r_{i}\right|=\lceil 3 \log n\rceil$
- Compute $s=s_{1}, \ldots, s_{n^{4}}$, where:

$$
s_{i}= \begin{cases}1 & \text { if } r_{i}=111 \cdots 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Define an $n^{2} \times n^{2}$ boolean matrix M consisting of entries from s
- If M contains an $n \times n$ sub-matrix M_{c} s.t. M_{c} is a cycle matrix, then output $\left(M, M_{c}\right)$, else output (M, \perp)

Analysis of Q

Notation. Let Good be the set of outputs of $Q(\cdot)$ that contain a cycle matrix and BAD be the complementary set

Lemma
For a random input $r, \operatorname{Pr}[Q(r) \in G O O D] \geqslant \frac{1}{3 n^{3}}$
Let M be an $n^{2} \times n^{2}$ matrix computed by Q on a random input r. We will prove the above lemma via a sequence of claims:

Claim 1: M contains exactly n 1's with probability at least $\frac{1}{3 n}$
Claim 2: M contains a permutation sub-matrix with probability at least $\frac{1}{3 n^{2}}$
Claim 3: M contains a cycle sub-matrix with probability at least

$$
\frac{1}{3 n^{3}}
$$

Analysis of Q (contd.)

Proof of Claim 1: Let X be the random variable denoting the number of 1's in M

- X follows the binomial distribution with $N=n^{4}, p=\frac{1}{n^{3}}$
- $\mathrm{E}(X)=N \cdot p=n$
- $\operatorname{Var}(X)=N p(1-p)<n$
- Recall Chebyshev's Inequality: $\operatorname{Pr}[|X-\mathrm{E}(X)|>k] \leqslant \frac{\operatorname{Var}(X)}{k^{2}}$ Setting $k=n$, we have:

$$
\operatorname{Pr}[|X-n|>n] \leqslant \frac{1}{n}
$$

- Observe:

$$
\sum_{i=1}^{2 n} \operatorname{Pr}[X=i]=1-\operatorname{Pr}[|X-n|>n]>1-\frac{1}{n}
$$

Analysis of Q (contd.)

Proof of Claim 1 (contd.):

- $\operatorname{Pr}[X=i]$ is maximum at $i=n$
- Observe:

$$
\begin{aligned}
\operatorname{Pr}[X=n] & \geqslant \frac{\sum_{i=1}^{2 n} \operatorname{Pr}[X=i]}{2 n} \\
& \geqslant \frac{1}{3 n}
\end{aligned}
$$

Analysis of Q (contd.)

Proof of Claim 2: Want to bound the probability that each of the n ' 1 ' entries in M is in a different row and column

- After k ' 1 ' entries have been added to M,

$$
\operatorname{Pr}[\text { new ' } 1 \text { ' entry is in different row and column }]=\left(1-\frac{k}{n^{2}}\right)^{2}
$$

- Multiplying all:

$$
\begin{aligned}
\operatorname{Pr}[\text { no collision }] & \geqslant\left(1-\frac{1}{n^{2}}\right)^{2} \cdots\left(1-\frac{n-1}{n^{2}}\right)^{2} \\
& \geqslant \frac{1}{n}
\end{aligned}
$$

- Combining the above with Claim 1,

$$
\operatorname{Pr}[M \text { contains a permutation } n \times n \text { submatrix }] \geqslant \frac{1}{3 n^{2}}
$$

Analysis of Q (contd.)

Proof of Claim 3: Want to bound the probability that M contains an $n \times n$ cycle sub-matrix

- Observe:

$$
\operatorname{Pr}[n \times n \text { permutation matrix is a cycle matrix }]=\frac{1}{n}
$$

- Combining the above with Claim 2,

$$
\operatorname{Pr}[M \text { contains a cycle } n \times n \text { submatrix }] \geqslant \frac{1}{3 n^{3}}
$$

Step II: Details

Construction of $\left(\mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{~V}_{2}\right)$ for L_{H} :
$\mathrm{K}_{2}\left(1^{n}\right)$: Output $r \leftarrow\{0,1\}^{L}$ where $L=\lceil 3 \log n\rceil \cdot n^{8}$
$\mathrm{P}_{2}(r, x, w)$: Parse $r=r_{1}, \ldots, r_{n^{4}}$ s.t. for every $i \in\left[n^{4}\right]$, $\left|r_{i}\right|=\lceil 3 \log n\rceil \cdot n^{4}$. For every $i \in\left[n^{4}\right]$:

- If $Q\left(r_{i}\right)=\left(M^{i}, \perp\right)$, set $I_{i}=\left[\left|r_{i}\right|\right]$ (i.e., reveal the entire r_{i}), and $\pi_{i}=\emptyset$
- Else, let $\left(M^{i}, M_{c}^{i}\right) \leftarrow Q\left(r_{i}\right)$. Compute $\left(I_{i}^{\prime}, \varphi_{i}\right) \leftarrow \mathrm{P}_{1}\left(M_{c}^{i}, x, w\right)$. Set $I_{i}=I_{i}^{\prime} \cup J_{i}$ where J_{i} is the set of indices s.t. r_{i} restricted to J_{i} yields the residual M^{i} after removing M_{c}^{i}, and $\pi_{i}=\varphi_{i}$
Output $\left(I=\left\{I_{i}\right\}, \pi=\left\{\pi_{i}\right\}\right)$

Step II: Details (contd.)

Construction of $\left(\mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{~V}_{2}\right)$ for L_{H} :
$\mathrm{V}_{2}\left(I, r_{I}, \pi\right)$: Parse $I=I_{1}, \ldots, I_{n^{4}}, r_{I}=s_{1}, \ldots, s_{n^{4}}$, and $\pi=\pi_{1}, \ldots, \pi_{n^{4}}$. For every $i \in\left[n^{4}\right]$:

- If I_{i} is the complete set, then check that $Q\left(s_{i}\right)=(\cdot, \perp)$
- Otherwise, parse $I_{i}=I_{i}^{\prime} \cup J_{i}$. Parse $s_{i}=s_{i}^{1}, s_{i}^{2}$ and check that s_{i}^{2} is the all 0 string. Also, check that $\mathrm{V}_{1}\left(I_{i}^{\prime}, s_{i}^{1}, \pi_{i}\right)=1$
If all the checks succeed, then output 1 and 0 otherwise

Step II: Security

Completeness: Follows from completeness of the construction in Step I

Soundness: For random $r=r_{1}, \ldots, r_{n^{4}}, Q\left(r_{i}\right) \in$ Good for at least one r_{i} with high probability. Soundness then follows from the soundness of the construction in Step I

Zero-Knowledge: For i s.t. $Q\left(r_{i}\right) \in$ Good, V does not learn any information from the zero-knowledge property of the construction in Step I. For i s.t. $Q\left(r_{i}\right) \in \operatorname{BAD}, V$ does not see anything besides r_{i}.

