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NIZKs for NP: Roadmap

Last-time: Transformation from NIZKs in hidden-bit model to
NIZKs in common random string model

Today: NIZKs for NP in the hidden-bit model

Homework: Non-adaptive NIZKs to Adaptive NIZKs
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Hamiltonian Graphs

Definition (Hamiltonian Graph)
Let G = (V,E) be a graph with |V | = n. We say that G is a
Hamiltonian graph if it has a Hamiltonian cycle, i.e., there are
v1, . . . , vn ∈ V s.t. for all i ∈ [n]:

(vi, v(i+1) mod n) ∈ E

Fact: Deciding whether a graph is Hamiltonian is NP-Complete. Let
LH be the language of Hamiltonian graphs G = (V,E) s.t. |V | = n

Today: NIZK proof system for LH in the hidden-bit model
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Notation

Definition (Adjacency Matrix)
A graph G = (V,E) with |V | = n, can be represented as an n× n
adjacency matrix MG of boolean values such that:

M [i, j] =

{
1 if (i, j) ∈ E
0 otherwise

Cycle Matrix: A cycle matrix is a boolean matrix that corresponds to
a graph that contains a Hamiltonian cycle and no other edges

Permutation Matrix: A permutation matrix is a boolean matrix
such that each row and each column has exactly one entry equal to 1

Fact: Every cycle matrix is a permutation matrix, but the converse is
not true. For every n, there are n! permutation matrices, but only
(n− 1)! cycle matrices
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NIZKs for LH in Hidden-Bit Model

Two Steps:
Step I. NIZK (K1,P1,V1) for LH in hidden-bit model where K

produces (hidden) strings r with a specific distribution:
each r represents an n× n cycle matrix

Step II. Modify the above construction to obtain (K2,P2,V2)
where the (hidden) string r is uniformly random
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Step I

Construction of (K1,P1,V1) for LH:

K1(1
n): Output r ← {0, 1}n

2

s.t. it represents an n× n cycle
matrix Mc

P1(r, x, w): Execute the following steps:
Parse x = G = (V,E) s.t. |V | = n, and w = H where
H = (v1, . . . , vn) is a Hamiltonian cycle in G
Choose a permutation ϕ : V → {1, . . . , n} that maps
H to the cycle in Mc, i.e., for every i ∈ [n]:

Mc[ϕ(vi), ϕ(v(i+1) mod n)] = 1

Define I = {ϕ(u), ϕ(v)|MG[u, v] = 0} to be the set of
non-edges in G
Output (I, ϕ)
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Step I (contd.)

Construction of (K1,P1,V1) for LH:
V1(I, rI , ϕ): Execute the following steps:

Parse rI = {Mc[u, v]}(u,v)∈I
Check that for every (u, v) ∈ I, Mc[u, v] = 0
Check that for every (u, v) ∈ I,
MG(ϕ

−1(u), ϕ−1(v)) = 0
If both the checks succeed, then output 1 and 0
otherwise

Completeness: An honest prover P can always find a correct mapping
ϕ that maps H to the cycle in Mc

Soundness: If G = (V,E) is not a Hamiltonian graph, then for any
mapping ϕ : V → {1, . . . , n}, ϕ(G) will not cover all the edges in Mc.
There must exist at least one non-zero entry in Mc that is revealed as a
non-edge of G
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Step I (contd.)

Zero Knowledge: Simulator S performs the following steps:
Sample a random permutation ϕ : V → {1, . . . , n}
Compute I = {ϕ(u), ϕ(v)|MG[u, v] = 0}
For every (a, b) ∈ I, set Mc[a, b] = 0

Output (I, {Mc[a, b]}(a,b)∈I , ϕ)
It is easy to verify that the above output distribution is identical to the
real experiment
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Step II: Strategy

Define a deterministic procedure Q that takes as input a
(sufficiently long) random string r and outputs a biased string s
that corresponds to a cycle matrix with inverse polynomial
probability 1

`(n)

If we feed Q n · `(n) random inputs, then with high probability, at
least one of the outputs will correspond to a cycle matrix

In the NIZK construction, the (hidden) random string will be
r = r1, . . . , rn·`(n)

For every i, the prover will try to compute a proof using si = Q(ri)

At least one si will contain a cycle matrix, so we can use the NIZK
proof system from Step I
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Procedure Q

Let r be a random string s.t. |r| = d3 log ne · n4

Procedure Q(r):
Parse r = r1, . . . , rn4 s.t. ∀i, |ri| = d3 log ne
Compute s = s1, . . . , sn4 , where:

si =

{
1 if ri = 111 · · · 1
0 otherwise

Define an n2 × n2 boolean matrix M consisting of entries from s

If M contains an n× n sub-matrix Mc s.t. Mc is a cycle matrix,
then output (M,Mc), else output (M,⊥)
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Analysis of Q

Notation. Let Good be the set of outputs of Q(·) that contain a cycle
matrix and Bad be the complementary set

Lemma
For a random input r, Pr[Q(r) ∈ Good] > 1

3n3

Let M be an n2 × n2 matrix computed by Q on a random input r. We
will prove the above lemma via a sequence of claims:

Claim 1: M contains exactly n 1’s with probability at least 1
3n

Claim 2: M contains a permutation sub-matrix with probability at
least 1

3n2

Claim 3: M contains a cycle sub-matrix with probability at least
1

3n3
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Analysis of Q (contd.)

Proof of Claim 1: Let X be the random variable denoting the
number of 1’s in M

X follows the binomial distribution with N = n4, p = 1
n3

E(X) = N · p = n

Var(X) = Np(1− p) < n

Recall Chebyshev’s Inequality: Pr
[
|X − E(X)| > k

]
6 Var(X)

k2

Setting k = n, we have:

Pr
[
|X − n| > n

]
6

1

n

Observe:

2n∑
i=1

Pr[X = i] = 1− Pr
[
|X − n| > n

]
> 1− 1

n
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Analysis of Q (contd.)

Proof of Claim 1 (contd.):
Pr[X = i] is maximum at i = n

Observe:

Pr[X = n] >

∑2n
i=1 Pr[X = i]

2n

>
1

3n
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Analysis of Q (contd.)

Proof of Claim 2: Want to bound the probability that each of the n
‘1’ entries in M is in a different row and column

After k ‘1’ entries have been added to M ,

Pr[new ‘1’ entry is in different row and column] =
(
1− k

n2

)2
Multiplying all:

Pr[no collision] >
(
1− 1

n2

)2
· · ·
(
1− n− 1

n2

)2
>

1

n

Combining the above with Claim 1,

Pr[M contains a permutation n× n submatrix ] >
1

3n2
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Analysis of Q (contd.)

Proof of Claim 3: Want to bound the probability that M contains an
n× n cycle sub-matrix

Observe:

Pr[n× n permutation matrix is a cycle matrix] =
1

n

Combining the above with Claim 2,

Pr[M contains a cycle n× n submatrix ] >
1

3n3
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Step II: Details

Construction of (K2,P2,V2) for LH:
K2(1

n): Output r ← {0, 1}L where L = d3 log ne · n8

P2(r, x, w): Parse r = r1, . . . , rn4 s.t. for every i ∈ [n4],
|ri| = d3 log ne · n4. For every i ∈ [n4]:

If Q(ri) = (M i,⊥), set Ii = [|ri|] (i.e., reveal the
entire ri), and πi = ∅
Else, let (M i,M i

c)← Q(ri). Compute
(I ′i, ϕi)← P1(M

i
c, x, w). Set Ii = I ′i ∪ Ji where Ji is

the set of indices s.t. ri restricted to Ji yields the
residual M i after removing M i

c, and πi = ϕi

Output (I = {Ii}, π = {πi})
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Step II: Details (contd.)

Construction of (K2,P2,V2) for LH:
V2(I, rI , π): Parse I = I1, . . . , In4 , rI = s1, . . . , sn4 , and

π = π1, . . . , πn4 . For every i ∈ [n4]:
If Ii is the complete set, then check that Q(si) = (·,⊥)
Otherwise, parse Ii = I ′i ∪ Ji. Parse si = s1i , s

2
i and

check that s2i is the all 0 string. Also, check that
V1(I

′
i, s

1
i , πi) = 1

If all the checks succeed, then output 1 and 0 otherwise
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Step II: Security

Completeness: Follows from completeness of the construction in Step
I

Soundness: For random r = r1, . . . , rn4 , Q(ri) ∈ Good for at least
one ri with high probability. Soundness then follows from the
soundness of the construction in Step I

Zero-Knowledge: For i s.t. Q(ri) ∈ Good, V does not learn any
information from the zero-knowledge property of the construction in
Step I. For i s.t. Q(ri) ∈ Bad, V does not see anything besides ri.
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