Secure Computation - III

CS 601.642/442 Modern Cryptography

Fall 2017

Securely Computing any Function

Main question: How can Alice and Bob securely compute any function f over their private inputs x and y ?

Two Solutions:

- Last time: Goldreich-Micali-Wigderson (GMW). Highly interactive solution. Extends naturally to multiparty case
- Today: Yao's Garbled Circuits technique. Requires little interaction, but only tailored to two-party case

Garbled Circuits

A Garbling Scheme consists of two procedures (Garble, Eval):

- Garble (C) : Takes as input a circuit C and outputs a collection of garbled gates \hat{G} and garbled input wires $\hat{\mathrm{In}}$ where

$$
\begin{aligned}
\hat{\mathrm{G}} & =\left\{\hat{g}_{1}, \ldots, \hat{g}_{|C|}\right\}, \\
\hat{\mathrm{n}} & =\left\{\hat{\mathrm{in}}_{1}, \ldots, \hat{\mathrm{in}}_{n}\right\} .
\end{aligned}
$$

- Eval $\left(\hat{\mathrm{G}}, \hat{\mathrm{n}}_{x}\right)$: Takes as input a garbled circuit $\hat{\mathrm{G}}$ and garbled input wires $\hat{\mathrm{I}}_{x}$ corresponding to an input x and outputs $z=C(x)$

Garbled Circuits: Ideas

- Each wire i in the circuit C is associated with two keys $\left(k_{0}^{i}, k_{1}^{i}\right)$ of a secret-key encryption scheme, one corresponding to the wire value being 0 and other for wire value being 1
- For an input x, the evaluator is given the input wire keys $\left(k_{x_{1}}^{1}, \ldots, k_{x_{n}}^{n}\right)$ corresponding to x. Furthermore, for every gate g in C, it is also given an "encrypted" truth table of g
- We want the evaluator to use the input wire keys and the encrypted truth tables to "uncover" a single key k_{v}^{i} for every internal wire i corresponding to the value v of that wire. However, k_{1-v}^{i} should remain hidden from the evaluator

Special Encryption Scheme

Special Encryption Scheme: We need a secret-key encryption scheme (Gen, Enc, Dec) with an extra property: there exists a negligible function $\nu(\cdot)$ s.t. for every n and every message $m \in\{0,1\}^{n}$,

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right), k^{\prime} \leftarrow \operatorname{Gen}\left(1^{n}\right), \operatorname{Dec}_{k^{\prime}}\left(\operatorname{Enc}_{k}(m)\right)=\perp\right]>1-\nu(n)
$$

That is, if a ciphertext is decrypted using the "wrong" key, then the answer is always \perp

Construction: Modify the secret-key encryption scheme discussed earlier in the class s.t. instead of encrypting m, we encrypt $0^{n} \| m$. Upon decrypting, check if the first n bits of the message are all 0 's; if not, then output \perp.

Garbled Circuits: Construction

Let (Gen, Enc, Dec) be a special encryption scheme. Assign an index to each wire in C s.t. the input wires have indices $1, \ldots, n$.

Garble (C):

- For every non-output wire i in C, sample $k_{0}^{i} \leftarrow \operatorname{Gen}\left(1^{n}\right)$, $k_{1}^{i} \leftarrow \operatorname{Gen}\left(1^{n}\right)$. For every output wire i in C, set $k_{0}^{i}=0, k_{1}^{i}=1$.
- For every $i \in[n]$, set $\mathrm{in}_{i}=\left(k_{0}^{i}, k_{1}^{i}\right)$. Set $\ln =\left(\mathrm{in}_{1}, \ldots, \mathrm{in}_{n}\right)$
- For every gate g in C with input wires (i, j), output wire ℓ :

First Input	Second Input	Output
k_{0}^{i}	k_{0}^{j}	$z_{1}=\operatorname{Enc}_{k_{0}^{i}}\left(\operatorname{Enc}_{k_{0}^{j}}\left(k_{g(0,0)}^{\ell}\right)\right.$
k_{0}^{i}	k_{1}^{j}	$z_{2}=\operatorname{Enc}_{k_{0}^{i}}\left(\operatorname{Enc}_{k_{1}^{j}}\left(k_{g(0,1)}^{\ell}\right)\right.$
k_{1}^{i}	k_{0}^{j}	$z_{3}=\operatorname{Enc}_{k_{1}^{i}}\left(\operatorname{Enc}_{k_{0}^{j}}\left(k_{g(1,0)}^{\ell}\right)\right.$
k_{1}^{i}	k_{1}^{j}	$z_{4}=\operatorname{Enc}_{k_{1}^{i}}\left(\operatorname{Enc}_{k_{1}^{j}}\left(k_{g(1,1)}^{\ell}\right)\right.$

Set $\hat{g}=\operatorname{RandomShuffle}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Output $\left(\hat{\mathrm{G}}=\left(\hat{g}_{1}, \ldots, \hat{g}_{|C|}\right)\right.$, In $)$

Garbled Circuits: Construction (contd.)

Think: Why is RandomShuffle necessary?
$\operatorname{Eval}\left(\hat{\mathrm{G}}, \hat{\mathrm{I}}_{x}\right):$

- Parse $\hat{G}=\left(\hat{g}_{1}, \ldots, \hat{g}_{|C|}\right), \hat{\mathrm{I}}_{x}=\left(k^{1}, \ldots, k^{n}\right)$
- Parse $\hat{g}_{i}=\left(\hat{g}_{i}^{1}, \ldots, \hat{g}_{i}^{4}\right)$
- Decrypt each garbled gate \hat{g}_{i} one-by-one, in a canonical order:
- Let k^{i} and k^{j} be the input wire keys for gate g.
- Repeat the following for every $p \in[4]$:

$$
\alpha_{p}=\operatorname{Dec}_{k^{i}}\left(\operatorname{Dec}_{k^{j}}\left(\hat{g}_{i}^{p}\right)\right)
$$

$$
\text { If } \exists \alpha_{p} \neq \perp \text {, set } k^{\ell}=\alpha_{p}
$$

- Let out ${ }_{i}$ be the value obtained for each output wire i. Output out $=\left(\right.$ out $_{1}, \ldots$, out $\left._{n}\right)$

Secure Computation from Garbled Circuits

A plausible strategy for computing $C(x, y)$ using Garbled Circuits:

- A generates a garbled circuit for $C(\cdot, \cdot)$ along with garbled wire keys for first and second input to C
- A sends the garbled wire keys corresponding to its input x along with the garbled circuit to B
- However, in order to evaluate the garbled circuit on $(x, y), B$ also needs the garbled wire keys corresponding to its input y
- Possible Solution: A sends all the wire keys corresponding to the second input of C to B
- Problem: In this case, B can not only compute $C(x, y)$ but also $C\left(x, y^{\prime}\right)$ for any y^{\prime} of its choice!
- Solution: A will transmit the garbled wire keys corresponding to B 's input using Oblivious Transfer!

Secure Computation from Garbled Circuits: Details

Ingredients: Garbling scheme (Garble, Eval), 1-out-of-2 OT scheme OT $=(S, R)$

Common Input: Circuit C for $f(\cdot, \cdot)$
A 's input: $x=x_{1}, \ldots, x_{n}, B$'s input: $y=y_{1}, \ldots, y_{n}$
Protocol $\Pi=(A, B)$:
$A \rightarrow B: A$ computes $(\hat{G}, \hat{\mathrm{n}}) \leftarrow \operatorname{Garble}(C)$. Parse $\hat{\mathrm{In}}=\left(\hat{\mathrm{in}}_{1}, \ldots, \hat{\mathrm{in}}_{2 n}\right)$ where $\hat{\mathrm{in}}_{i}=\left(k_{0}^{i}, k_{1}^{i}\right)$. Set $\hat{\mathrm{I}}_{x}=\left(k_{x_{1}}^{1}, \ldots, k_{x_{n}}^{n}\right)$. Send $\left(\hat{\mathrm{G}}, \hat{\mathrm{I}}_{x}\right)$ to B.
$A \leftrightarrow B$: For every $i \in[n], A$ and B run OT $=(S, R)$ where A plays sender S with input $\left(k_{0}^{n+i}, k_{1}^{n+i}\right)$ and B plays receiver R with input y_{i}. Let $\hat{\mathrm{In}}_{y}=\left(k_{y_{1}}^{n+1}, \ldots, k_{y_{n}}^{2 n}\right)$ be the outputs of the n OT executions received by B.
$B: B$ outputs $\operatorname{Eval}\left(\hat{\mathrm{G}}, \hat{\mathrm{n}}_{x}, \hat{\mathrm{I}}_{y}\right)$

Intuition for Security

Property 1: For every wire i, B only learns one of the two wire keys:

- Input wires: For input wires corresponding to A 's input, it follows from protocol description. For input wires corresponding to B's input, it follows from security of OT
- Internal Wires: Follows from the security of the encryption scheme
Property 2: B does not know whether the key corresponds to wire value being 0 or 1 (except the keys corresponding to its own input wires).

Overall, B only learns the output and nothing else. A does not learn anything (in particular, B 's input remains hidden from A due to security of OT)

Additional Reading: Read security proof from [Lindell-Pinkas'04]

