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Motivating Example

Consider two billionaires Alice and Bob with net worths x and y,
respectively:

They want to find out who is richer by computing the following
function

f(x, y) =

{
1 if x > y
0 otherwise

Potential Solution: Alice sends x to Bob, who sends y to Alice.
They each compute f on their own.

Problem: Alice learns Bob’s net worth (and vice-versa). No
privacy!

Main Question: Can Alice and Bob compute f in a “secure
manner” s.t. they only learn the output of f , and nothing more?
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General Setting

Two parties A and B, with private inputs x and y, respectively:
They want to “securely” compute a function f

If both A and B are honest, then they should learn the output
f(x, y)

Even if one party is adversarial, it should not learn anything
beyond the output (and its own input)

Think: How to formalize this security requirement?
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Types of Adversaries

Two types of adversaries:
Honest but curious (a.k.a. semi-honest): Such an adversary
follows the instructions of the protocol, but will later analyze the
protocol transcript to learn any “extra information” about the
input of the other party

Malicious: Such an adversary can deviate from the protocol
instructions and follow an arbitrary strategy

Note: We will only consider semi-honest adversaries
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Secure Computation: Intuition

Want to formalize that no semi-honest adversary learns anything
from the protocol execution beyond its input and the (correct)
output

Idea: Use simulation paradigm, as in zero-knowledge proofs

View of adversary in the protocol execution can be efficiently
simulated given only its input and output, and without the input
of the honest party
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Secure Computation: Definition

Definition (Semi-honest Secure Computation)

A protocol π = (A,B) securely computes a function f in the
semi-honest model if there exists a pair of non-uniform PPT simulator
algorithms SA,SB such that for every security parameter n, and all
inputs x, y ∈ {0, 1}n, it holds that:{
SA(x, f(x, y)), f(x, y)

}
≈
{
e← [A(x)↔ B(y)] : ViewA(e),OutB(e)

}
,{

SB(y, f(x, y)), f(x, y)
}
≈
{
e← [A(x)↔ B(y)] : ViewB(e),OutA(e)

}
.
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Remarks on Definition

Recall: In zero-knowledge, we only require indistinguishability of
simulated view and adversary’s view in the real execution

Here, indistinguishability is w.r.t. the joint distribution over the
adversary’s view and the honest party’s output

This is necessary for correctness: it implies that output of the
honest party in the protocol execution must be indistinguishable
from the correct output f(x, y)

If we remove this requirement, then a clearly wrong protocol where
parties are instructed to output y would be trivially secure!
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Oblivious Transfer

Consider the following functionality, called, 1-out-of-2 oblivious transfer
(OT):

Two parties: Sender A, and Receiver B

Inputs: A’s input is a pair of bits (a0, a1), and B’s input is a bit b

Outputs: B’s output is ab, and A receives no output

Note: Definition of secure computation promises that in a secure OT
protocol, A does not learn b and B does not learn a1−b
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Importance of Oblivious Transfer

Can be realized from physical channels [Wiener,Rabin]

OT is complete: given a secure protocol for OT, any function
can be securely computed

OT is necessary: OT is the minimal assumption for secure
computation
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Oblivious Transfer: Construction

Let {fi}i∈I be a family of trapdoor permutations with sampling
algorithm Gen. Let h be a hardcore predicate for any fi.

Sender’s input: (a0, a1) where ai ∈ {0, 1}
Receiver’s input: b ∈ {0, 1}
Protocol OT = (A,B):

A→ B: A samples (fi, f−1i )← Gen(1n) and sends fi to B

B → A: B samples x $←{0, 1}n and computes yb = fi(x). It also
samples y1−b

$←{0, 1}n. B sends (y0, y1) to A

A→ B: A computes the inverse of each value yj and XORs the
hard-core bit of the result with aj :

zj = h(f−1i (yj))⊕ aj

A sends (z0, z1) to B

B(x, b, z0, z1): B outputs h(x)⊕ zb
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OT = (A,B) is Semi-honest Secure : Intuition

Security against A: Both y0 and y1 are uniformly distributed and
therefore independent of b. Thus, b is hidden from A

Security against B: If B could learn a1−b, then it would be able to
predict the hardcore predicate

Note: A malicious B can easily learn a1−b by deviating from the
protocol strategy
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OT = (A,B) is Semi-honest Secure : Simulator SA

Simulator SA((a0, a1),⊥):
1 Fix a random tape rA for A. Run honest emulation of A using

(a0, a1) and rA to obtain the first message fi
2 Choose two random strings y0, y1 ∈ {0, 1}n as B’s message
3 Run honest emulation of A using (y0, y1) to obtain the third

message (z0, z1)

4 Stop and output ⊥

Claim: The following two distributions are identical:{
SA((a0, a1),⊥), ab

}
and{

e← [A(a0, a1)↔ B(b)] : ViewA(e),OutB(e)
}

Proof: The only difference between SA and real execution is in step 2.
However, since f is a permutation, y0, y1 are identically distributed in
both cases.
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OT = (A,B) is Semi-honest Secure : Simulator SB

Simulator SB(b, ab):
1 Sample fi
2 Choose random tape rB for B. Run honest emulation of B using

(b, rB, fi) to produce (x, y0, y1) s.t. yb = fi(x) and y1−b
$←{0, 1}n

3 Compute zb = h(x)⊕ ab and z1−b
$←{0, 1}

4 Output (z0, z1) as third message and stop

Claim: The following two distributions are indistinguishable:{
SB(b, ab),⊥

}
and

{
e← [A(a0, a1)↔ B(b)] : ViewB(e),OutA(e)

}
Proof: The only difference is in step 3, where SB computes z1−b as a
random bit. However, since h(f−1i (y1−b)) is indistinguishable from
random (even given y1−b), this change is indistinguishable
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Remarks

1-out-of-k OT:
The previous protocol can be easily generalized to construct
1-out-of-k OT for k > 2

Semi-honest vs Malicious:
In reality, adversary may be malicious and not semi-honest

Goldreich-Micali-Wigderson [GMW] gave a compiler to transform
any protocol secure against semi-honest adversary into one secure
against malicious adversary

The transformation uses coin-flipping (to make sure that
adversary’s random tape is truly random) and zero-knowledge
proofs (to make sure that adversary is following the protocol
instructions)

Details outside the scope of this class
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