Secure Computation - I J

CS 601.642/442 Modern Cryptography

Fall 2017

CS 601.642/442 Modern Cryptograph Secure Computation - I Fall 2017 1/1

Motivating Example

Consider two billionaires Alice and Bob with net worths = and y,
respectively:
@ They want to find out who is richer by computing the following

function
1 ifx>y

0 otherwise

f(x,y)Z{

e Potential Solution: Alice sends = to Bob, who sends y to Alice.
They each compute f on their own.

e Problem: Alice learns Bob’s net worth (and vice-versa). No
privacy!

e Main Question: Can Alice and Bob compute f in a “secure
manner” s.t. they only learn the output of f, and nothing more?

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017 2/1

General Setting

Two parties A and B, with private inputs and y, respectively:

e They want to “securely” compute a function f

o If both A and B are honest, then they should learn the output
flz,y)

e Even if one party is adversarial, it should not learn anything
beyond the output (and its own input)

e Think: How to formalize this security requirement?

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017

3/1

Types of Adversaries

Two types of adversaries:

e Honest but curious (a.k.a. semi-honest): Such an adversary
follows the instructions of the protocol, but will later analyze the
protocol transcript to learn any “extra information” about the
input of the other party

e Malicious: Such an adversary can deviate from the protocol
instructions and follow an arbitrary strategy

Note: We will only consider semi-honest adversaries

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017 4 /1

Secure Computation: Intuition

e Want to formalize that no semi-honest adversary learns anything
from the protocol execution beyond its input and the (correct)
output

o Idea: Use simulation paradigm, as in zero-knowledge proofs

e View of adversary in the protocol execution can be efficiently
simulated given only its input and output, and without the input
of the honest party

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017 5/1

Secure Computation: Definition

Definition (Semi-honest Secure Computation)

A protocol m = (A, B) securely computes a function f in the
semi-honest model if there exists a pair of non-uniform PPT simulator
algorithms S4,Sp such that for every security parameter n, and all
inputs z,y € {0,1}", it holds that:

{Sate, @), f@,y)} = {e < [A@) & B)) : Viewa(e), Outs(e) |,

{880, f@.9). f(a.9) } ~ {e < [A@) & B)]: Views(e), Outa(e) .

v

Secure Computation - I Fall 2017 6 /1

Remarks on Definition

e Recall: In zero-knowledge, we only require indistinguishability of
simulated view and adversary’s view in the real execution

e Here, indistinguishability is w.r.t. the joint distribution over the
adversary’s view and the honest party’s output

e This is necessary for correctness: it implies that output of the
honest party in the protocol execution must be indistinguishable
from the correct output f(z,y)

e If we remove this requirement, then a clearly wrong protocol where
parties are instructed to output y would be trivially secure!

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017 7/1

Oblivious Transfer

Consider the following functionality, called, 1-out-of-2 oblivious transfer

(OT):
o Two parties: Sender A, and Receiver B
o Inputs: A’s input is a pair of bits (ag,a1), and B’s input is a bit b
o Outputs: B’s output is ap, and A receives no output

Note: Definition of secure computation promises that in a secure OT
protocol, A does not learn b and B does not learn aj_p

601.642/442 Modern Cryptographj Secure Computation - I Fall 2017 8 /1

Importance of Oblivious Transfer

e Can be realized from physical channels [Wiener,Rabin]|

e OT is complete: given a secure protocol for OT, any function
can be securely computed

e OT is necessary: OT is the minimal assumption for secure
computation

5 601.642/442 Modern Cryptograph Secure Computation - I Fall 2017 9/1

Oblivious Transfer: Construction

Let {fi}icz be a family of trapdoor permutations with sampling
algorithm Gen. Let h be a hardcore predicate for any f;.

Sender’s input: (ag,a1) where a; € {0,1}
Receiver’s input: b € {0,1}
Protocol OT = (4, B):
A — B: A samples (f;, f;l) + Gen(1™) and sends f; to B
B — A: B samples z < {0,1}" and computes y, = f;(x). It also
samples yi_p {0,1}". B sends (yo,y1) to A

A — B: A computes the inverse of each value y; and XORs the
hard-core bit of the result with a;:

2 =h(fi ;) @ a4
A sends (zp,21) to B
B(x,b,29,2z1): B outputs h(z) @ z

Secure Computation - I Fall 2017 10 /1

OT = (A, B) is Semi-honest Secure : Intuition

@ Security against A: Both yy and y; are uniformly distributed and
therefore independent of b. Thus, b is hidden from A

@ Security against B: If B could learn aj_p, then it would be able to
predict the hardcore predicate

Note: A malicious B can easily learn aj_; by deviating from the
protocol strategy

CS 601.642/442 Modern Cryptograph Secure Computation - I Fall 2017 11 /1

OT = (A, B) is Semi-honest Secure : Simulator Sx

Simulator S4((ap,a1),L):

@ Fix a random tape r4 for A. Run honest emulation of A using
(ap,a1) and 74 to obtain the first message f;

@ Choose two random strings yo,y1 € {0,1}" as B’s message

@ Run honest emulation of A using (yo,y1) to obtain the third
message (2o, 21)

@ Stop and output L

Claim: The following two distributions are identical:
{SA((ag,al),J_),ab} and
{e « [A(ag, a1) < B(b)] : Viewa(e), OutB(e)}

Proof: The only difference between S4 and real execution is in step 2.
However, since f is a permutation, yg,y1 are identically distributed in
both cases.

Secure Computation - I Fall 2017

12 /1

OT = (A, B) is Semi-honest Secure : Simulator Sp

Simulator Sp(b, ap):
@ Sample f;
@ Choose random tape rp for B. Run honest emulation of B using
(b, 7, f;) to produce (z,yo, 1) s.t. yp = fi(x) and y1_p < {0,1}"
@ Compute z, = h(z) ® ap and 21, & {0,1}
@ Output (zp, 21) as third message and stop

Claim: The following two distributions are indistinguishable:
{SB(b, ab),J_} and {e « [A(ag, a1) < B(b)] :ViewB(e),OutA(e)}

Proof: The only difference is in step 3, where Sp computes z1_; as a
random bit. However, since h(f; *(y1_p)) is indistinguishable from
random (even given y;_p), this change is indistinguishable

Secure Computation - I Fall 2017 13/1

Remarks

l-out-of-k OT:

@ The previous protocol can be easily generalized to construct
l-out-of-k OT for k£ > 2

Semi-honest vs Malicious:

o In reality, adversary may be malicious and not semi-honest

e Goldreich-Micali-Wigderson [GMW] gave a compiler to transform
any protocol secure against semi-honest adversary into one secure
against malicious adversary

e The transformation uses coin-flipping (to make sure that
adversary’s random tape is truly random) and zero-knowledge
proofs (to make sure that adversary is following the protocol
instructions)

@ Details outside the scope of this class

CS 601.642/442 Modern Cryptograph| Secure Computation - I Fall 2017 14 /1

