Zero-Knowledge Proofs - II

CS 601.642/442 Modern Cryptography

Fall 2017

CS 601.642/442 Modern Cryptograph

Zero-Knowledge Proofs - II

Image: A matrix

(4) (3) (4) (4) (4)

 ●
 ■
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is said to be zero knowledge if for every non-uniform PPT adversary V^* , there exists a PPT simulator S s.t. for every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $x \in L, w \in R(x), z \in \{0, 1\}^*, D$ distinguishes between the following distributions with probability at most $\nu(|x|)$:

•
$$\left\{ \operatorname{View}_{V}^{*}[P(x,w) \leftrightarrow V^{*}(x,z)] \right\}$$

• $\left\{ S(1^{n},x,z) \right\}$

- If the distributions are statistically close, then we call it *statistical zero knowledge*
- If the distributions are identical, then we call it *perfect zero* knowledge

CS 601.642/442 Modern Cryptograph

Zero-Knowledge Proofs - II

Fall 2017 2 / 24

Recall: Interactive Proof for Graph Isomorphism

Common Input: $x = (G_0, G_1)$

P's witness: π s.t. $G_1 = \pi(G_0)$

Protocol (P, V): Repeat the following procedure *n* times using fresh randomness

 $P \to V$: Prover chooses a random permutation $\sigma \in \Pi_n$, computes $H = \sigma(G_0)$ and sends H

 $V \to P$: V chooses a random bit $b \in \{0, 1\}$ and sends it to P

 $P \to V$: If b = 0, P sends σ . Otherwise, it sends $\varphi = \sigma \cdot \pi^{-1}$

 $V(x, b, \varphi)$: V outputs 1 iff $H = \varphi(G_b)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

$\left(P,V\right)$ is Perfect Zero Knowledge: Strategy

- Will prove that a single iteration of (P, V) is perfect zero knowledge
- For the full protocol, use the following (read proof online):

Theorem

Sequential repetition of any ZK protocol is also ZK

- To prove that a single iteration of (P, V) is perfect ZK, we need to do the following:
 - Construct a Simulator S for every PPT V^*
 - Prove that expected runtime of S is polynomial
 - Prove that the output distribution of S is correct (i.e., indistinguishable from real execution)

イロト イヨト イヨト イヨト

(P, V) is Perfect Zero Knowledge: Simulator

Simulator S(x, z):

- Choose random $b' \stackrel{\hspace{0.4mm}{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}, \, \sigma \stackrel{\hspace{0.4mm}{\scriptscriptstyle\$}}{\leftarrow} \Pi_n$
- Compute $H = \sigma(G_{b'})$
- Emulate execution of $V^*(x, z)$ by feeding it H. Let b denote its response
- If b = b', then feed σ to V^* and output its view. Otherwise, restart the above procedure

イロト イヨト イヨト イヨト

Correctness of Simulation

Lemma

In the execution of S(x, z),

- *H* is identically distributed to $\sigma(G_0)$, and
- $\Pr[b = b'] = \frac{1}{2}$

Proof:

- Since G_0 is isomorphic to G_1 , for a random $\sigma \stackrel{\$}{\leftarrow} \Pi_n$, $\sigma(G_0)$ and $\sigma(G_1)$ are identically distributed
- That is, distribution of H is *independent* of b'
- Therefore, H has the same distribution as $\sigma(G_0)$
- Now, since V^* only takes H as input, its output b' is also independent of b'
- Since b' is chosen at random, $\Pr[b' = b] = \frac{1}{2}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Correctness of Simulation (contd.)

Runtime of S:

- From Lemma 3: S has probability $\frac{1}{2}$ of succeeding in each trial
- $\bullet\,$ Therefore, in expectation, S stops after 2 trials
- Each trial takes polynomial time, so run time of S is expected polynomial

Indistinguishability of Simulated View:

- From Lemma 3: *H* has the same distribution as $\sigma(G_0)$
- If we could always output σ , then output distribution of S would be same as in real execution
- S, however, only outputs H and σ if b' = b
- But since H is independent of b', this does not change the output distribution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Reflections on Zero Knowledge Proofs

Paradox?

- Protocol execution convinces V of the validity of x
- $\bullet\,$ Yet, V could have generated the protocol transcript on its own
- To understand why there is no paradox, consider the following story:
 - Alice and Bob run (P, V) on input (G_0, G_1) where Alice acts as P and Bob as V
 - Now, Bob goes to Eve: " G_0 and G_1 are isomorphic"
 - Eve: "Oh really?"
 - Bob: "Yes, you can see this accepting transcript"
 - Eve: "Are you kidding me? Anyone can come up with this transcript without knowing the isomorphism!"
 - Bob: "But I computed this transcript by talking to Alice who answered my challenge correctly every time!"

・ロン ・四マ ・ヨマ

Moral of the story:

- Bob participated in a "live" conversation with Alice, and was convinced by *how* the transcript was generated
- But to Eve, who did not see the live conversation, there is no way to tell whether the transcript is from real execution or produced by simulator

Theorem

If one-way permutations exist, then every language in \mathbf{NP} has a zero-knowledge interactive proof.

- The assumption can in fact be relaxed to just one-way functions
- <u>Think</u>: How to prove the theorem?
- Construct ZK proof for every **NP** language?
- Not efficient!

・ 同 ト・ イヨート・ イヨート

Zero-Knowledge Proofs for **NP** (contd.)

Proof Strategy:

- Step 1: Construct a ZK proof for an NP-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color
- Step 2: To construct ZK proof for any **NP** language L, do the following:
 - Given instance x and witness w, P and V reduce x into an instance x' of Graph 3-coloring using Cook's (deterministic) reduction
 - P also applies the reduction to witness w to obtain witness w' for x'
 - Now, P and V can run the ZK proof from Step 1 on common input x^\prime

Physical ZK Proof for Graph 3-Coloring

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E
- P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise
- The above process is repeated n|E| times
- Intuition for Soundness: In each iteration, cheating prover is caught with probability $\frac{1}{|E|}$
- Intuition for ZK: In each iteration, V only sees something it knew before two random (but different) colors

- To "digitze" the above proof, we need to implement locked boxes
- Need two properties from digital locked boxes:
 - Hiding: V should not be able to see the content inside a locked box
 - **Binding**: *P* should not be able to modify the content inside a box once its locked

- Digital analogue of locked boxes
- Two phases:

Commit phase: Sender locks a value v inside a box Open phase: Sender unlocks the box and reveals v

• Can be implemented using interactive protocols, but we will consider non-interactive case. Both commit and reveal phases will consist of single messages

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a *commitment* scheme for n-bit strings if it satisfies the following properties:

- **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $Com(v_0; r_0) \neq Com(v_1; r_1)$
- **Hiding:** For every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $v_0, v_1 \in \{0, 1\}^n$, Ddistinguishes between the following distributions with probability at most $\nu(n)$

•
$$\left\{ r \stackrel{\$}{\leftarrow} \{0,1\}^n : \operatorname{Com}(v_0;r) \right\}$$

•
$$\left\{ r \xleftarrow{\hspace{0.1cm}{\scriptscriptstyle\bullet}} \{0,1\}^n : \operatorname{Com}(v_1;r) \right\}$$

CS 601.642/442 Modern Cryptograph

Fall 2017

15 / 24

- The previous definition only guarantees hiding for one commitment
- **Multi-value Hiding:** Just like encryption, we can define multi-value hiding property for commitment schemes
- Using hybrid argument (as for public-key encryption), we can prove that any commitment scheme satisfies multi-value hiding
- **Corollary:** One-bit commitment implies string commitment

・ロト ・ 同ト ・ ヨト ・ ヨト

Construction of Bit Commitments

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b, r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise

Security:

- Binding follows from construction since f is a permutation
- Hiding follows in the same manner as IND-CPA security of public-key encryption scheme constructed from trapdoor permutations

ZK Proof for Graph 3-Coloring

Common Input: G = (V, E), where |V| = n

P's witness: Colors $color_1, \ldots, color_n \in \{1, 2, 3\}$

Protocol (P, V): Repeat the following procedure n|E| times using fresh randomness

 $P \to V$: P chooses a random permutation π over $\{1, 2, 3\}$. For every $i \in [n]$, it computes $C_i = \text{Com}(\widetilde{\text{color}}_i)$ where $\widetilde{\text{color}}_i = \pi(\text{color}_i)$. It sends (C_1, \ldots, C_n) to V

 $V \to P$: V chooses a random edge $(i, j) \in E$ and sends it to P

 $P \to V$: Prover opens C_i and C_j to reveal $(\widetilde{\mathsf{color}}_i, \widetilde{\mathsf{color}}_j)$

V: If the openings of C_i, C_j are valid and $color_i \neq color_j$, then V accepts the proof. Otherwise, it rejects.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Proof of Soundness

- If G is not 3-colorable, then for any coloring $color_1, \ldots, color_n$, there exists at least one edge which has the same colors on both endpoints
- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widetilde{color}_1, \ldots, \widetilde{color}_n$
- Combining the above, let $(i^*, j^*) \in E$ be s.t. $\widetilde{\mathsf{color}}_{i^*} = \widetilde{\mathsf{color}}_{j^*}$
- Then, with probability $\frac{1}{|E|}$, V chooses $i = i^*, j = j^*$ and catches P
- In n|E| independent repetitions, P successfully cheats in all repetitions with probability at most

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$$

イロト イヨト イヨト イヨト

Fall 2017

19 / 24

CS 601.642/442 Modern Cryptograph

Zero-Knowledge Proofs - II

Intuition:

- $\bullet\,$ In each iteration, V only sees two random colors
- $\bullet\,$ Hiding property of Com guarantees that everything else remains hidden from V
- As for Graph Isomorphism, we will only prove zero knowledge for one iteration. For the full protocol, we can prove zero knowledge using Theorem 2

A (10) A (10) A (10) A

Proving Zero Knowledge: Simulator

Simulator S(x = G, z):

Choose a random edge (i', j')
^s← E and pick random colors color'_{i'}, color'_{j'}
^s← {1, 2, 3} s.t. color'_{i'} ≠ color'_{j'}. For every other k ∈ [n] \ {i', j'}, set color'_k = 1

• For every
$$\ell \in [n]$$
, compute $C_{\ell} = \mathsf{Com}(\mathsf{color}'_{\ell})$

- Emulate execution of $V^*(x, z)$ by feeding it (C_1, \ldots, C_n) . Let (i, j) denote its response
- If (i, j) = (i', j'), then feed the openings of C_i, C_j to V^* and output its view. Otherwise, restart the above procedure, at most n|E| times
- If simulation has not succeeded after n|E| attempts, then output fail

・ロン ・四 と ・日 ・ 日 ・ 日

Hybrid Experiments:

- H_0 : Real execution
- H_1 : Hybrid simulator S' that acts like the real prover (using witness color₁,..., color_n), except that it also chooses $(i', j') \stackrel{\$}{\leftarrow} E$ at random and if $(i', j') \neq (i, j)$, then it outputs fail
- H_2 : Simulator S

Correctness of Simulation (contd.)

• $H_0 \approx H_1$: If S' does not output fail, then H_0 and H_1 are identical. Since (i, j) and (i', j') are independently chosen, S' fails with probability at most:

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$$

Therefore, H_0 and H_1 are statistically indistinguishable

• $H_1 \approx H_2$: The only difference between H_1 and H_2 is that for all $k \in [n] \setminus \{i', j'\}, C_k$ is a commitment to $\pi(\operatorname{color}_k)$ in H_1 and a commitment to 1 in H_2 . Then, from the multi-value hiding property of Com, it follows that $H_1 \approx H_2$

イロト スポト スヨト スヨト 三日

- Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston'14]
- Non-black-box Simulation [Barak'01]
- Concurrent Composition of Zero-Knowledge Proofs [Dwork-Naor-Sahai'98, Richardson-Kilian'99, Kilian-Petrank'01,Prabhakaran-Rosen-Sahai'02]
- Non-malleable Commitments and ZK Proofs [Dolev-Dwork-Naor'91]
- Non-interactive Zero-knowledge Proofs [Blum-Feldman-Micali'88,Feige-Lapidot-Shamir'90]