Lecture 5: Pseudorandomness - III

Going beyond Poly Stretch

- PRGs can only generate polynomially long pseudorandom strings
- <u>Think</u>: How to efficiently generate exponentially long pseudorandom strings?

 $\underline{\text{Idea}}\textsc{:}$ Functions that index exponentially long pseudorandom strings

Random Functions

- How do we define a random function?
- Consider functions $F: \{0,1\}^n \to \{0,1\}^n$
- Think: How many such functions are there?
- Write F as a table:
 - first column has input strings from 0^n to 1^n ;
 - against each input, second column has the function value
 - i.e., each row is of the form (x, F(x))
- The size of the table for $F = 2^n \times n = n2^n$
- Total number of functions mapping n bits to n bits = 2^{n2^n}

Random Functions

There are two ways to define a random function:

- First method: A random function F from n bits to n bits is a function selected *uniformly at random* from all 2^{n2^n} functions that map n bits to n bits
- **Second method:** Use a randomized algorithm to describe the function. Sometimes more convenient to use in proofs
 - ullet randomized program M to implement a random function F
 - M keeps a table T that is initially empty.
 - on input x, M has not seen x before, choose a random string y and add the entry (x,y) to the table T
 - otherwise, if x is already in the table, M picks the entry corresponding to x from T, and outputs that
- M's output distribution identical to that of F.

Random Functions

- Truly random functions are huge random objects
- No matter which method we use, we cannot store the entire function efficiently
- ullet With the second method, we can support **polynomial** calls to the function efficiently because M will only need polynomial space and time to store and query T
- Can we use some crypto magic to make a function F' so that:
 - it "looks like" a random function
 - but actually needs much fewer bits to describe/store/query?

Pseudorandom Functions (PRF)

- PRF looks like a random function, and needs polynomial bits to be described
- Think: What does "looks like" mean?
- First Idea: Use computational indistinguishability
 - Random Functions and PRFs are hard to tell apart efficiently
- Think: Should the distinguisher get the description of either a random function or a PRF?
- Main Issue: A random function is of exponential size
 - D can't even read the input efficiently
 - D can tell by looking at the size
- **Idea**: D can only query the function on inputs of its choice, and see the output.

Pseudorandom Functions

- Keep the description of PRF **secret** from *D*?
 - Security by obscurity not a good idea (Kerckoff's priniciple)
- <u>Solution</u>: PRF will be a keyed function. Only the key will be secret, and the PRF evaluation algorithm will be public
- Security via a Game based definition
 - Players: a **challenger** Ch and D. Ch is randomized and efficient
 - Game starts by Ch choosing a random bit b. If b = 0, Ch implements a random function, otherwise it implements a PRF
 - D send queries x_1, x_2, \ldots to Ch, one-by-one
 - Ch answers by correctly replying $F(x_1), F(x_2), \ldots$
 - Finally, D outputs his guess b' (of F being random or PRF)
 - D wins if b' = b
- PRF Security: No D can win with probability better than 1/2.

Pseudorandom Functions: Definition

Definition (Pseudorandom Functions)

A family $\{F_k\}_{k\in\{0,1\}^n}$ of functions, where : $F_k:\{0,1\}^n\to\{0,1\}^n$ for all k, is pseudorandom if:

- Easy to compute: there is an efficient algorithm M such that $\forall k, x : M(k, x) = F_k(x)$.
- Hard to distinguish: for every non-uniform PPT D there exists a negligible function ν such that $\forall n \in \mathbb{N}$:

$$|\Pr[D \text{ wins GuessGame}] - 1/2| \leq \nu(n).$$

where GuessGame is defined below

Pseudorandom Functions: Game Based Definition

GuessGame (1^n) incorporates D and proceeds as follows:

- The games choose a PRF key k and a random bit b.
- ullet It runs D answering every query x as follows:
- If b = 0: (answer using PRF)
 - output $F_k(x)$
- If b = 1: (answer using a random F)
 - (keep a table T for previous answers)
 - if x is in T: return T[x].
 - else: choose $y \leftarrow \{0,1\}^n$, T[x] = y, return y.
- Game stops when D halts. D outputs a bit b'

D wins GuessGame if b' = b.

Remark: note that for any b only one of the two functions is ever used.

Pseudorandom Functions (contd.)

- Think: How can we construct a PRF?
- Use PRG?
- Simpler problem: build PRF for just 1-bit inputs using PRG

From PRG to PRF with 1-bit input

- \bullet Let G be a length doubling PRG
- Want: $\{F_k\}$ such that $F_k: \{0,1\} \to \{0,1\}^n$
- ullet G is length doubling, so let

$$G(s) = y_0 || y_1$$

where $|y_0| = |y_1| = n$

• PRF: Set k = s and,

$$F_k(0) = y_0, \ F_k(1) = y_1$$

- <u>Think:</u> What about *n*-bit inputs?
 - Idea for 1-bit case: "double and choose"
 - For general case: Apply the "double and choose" idea repeatedly!

PRF from PRG

Theorem (Goldreich-Goldwasser-Micali (GGM))

If pseudorandom generators exist then pseudorandom functions exist

• Notation: define G_0 and G_1 as

$$G(s) = G_0(s) \|G_1(s)\|$$

i.e., G_0 chooses left half of G and G_1 chooses right half

• Construction for *n*-bit inputs $x = x_1 x_2 \dots x_n$

$$F_k(x) = G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k))_{\dots})$$

PRF from PRG (contd.)

$$F_k(x) = G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k))_{\dots}))$$

- We can represent F_k as a binary tree of size 2^n
- ullet The root corresponds to k
- Left and right child on level 1 and 2 are:

$$k_0 = G_0(k)$$
 and $k_1 = G_1(k)$

• Second level children:

$$k_{00} = G_0(k_0), \ k_{01} = G_1(k_0), \ k_{10} = G_0(k_1), \ k_{11} = G_1(k_1)$$

• At level ℓ , 2^{ℓ} nodes, one for each path, denoted by $k_{x_1...x_{\ell}}$

Lecture 5: Pseudorandomness - III

Proof Strategy

- Let's use Hybrid Arguments!
- <u>Problem</u>: If we replace each node in the tree one-by-one with random, then exponentially many hybrids. Hybrid lemma doesn't apply!
- Observation: Efficient adversary can only make polynomial queries
- Thus, only need to change polynomial number of nodes in the tree

Proof Strategy (contd.)

Two layers of hybrids:

- First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.
- If H_1 and H_n are distinguishable with noticeable advantage, then use hybrid lemma to find level i s.t. H_i and H_{i+1} are also distinguishable with noticeable advantage
- Now, hybrid over the nodes in level i + 1 that are "affected" by adversary's queries, replacing each node one by one with random
- Use hybrid lemma again to identify one node that is changed from pseudorandom to random and break PRG's security to get a contradiction

Proof Details

- Must make sure that all hybrids are implementable in polynomial time
- Will use two key points to ensure this:
 - 4 Adversary only makes polynomial number of queries
 - ② A random function can be efficiently implemented (using second method) if the number of queries are polynomial
- Think: Formal proof?

Concluding Remarks

- PRFs from concrete assumptions: [Naor-Reingold97], [Banerjee-Peikert-Rosen12]
- Constrained PRFs: PRFs with "punctured" keys that are disabled on certain inputs [Boneh-Waters13, Kiayias-Papadopoulos-Triandopoulos-Zacharias13, Boyle-Goldwasser-Ivan14, Sahai-Waters14]
- Related-key Security: Evaluation of $F_s(x)$ does not help in predicting $F_{s'}(x)$ [Bellare-Cash10]
- Key-homomorphic PRFs: Given $f_s(x)$ and $f_{s'}(x)$, compute $f_{g(s,s')}(x)$ [Boneh-Lewi-Montgomery-Raghunathan13]