
Lecture 5: Pseudorandomness - III

Lecture 5: Pseudorandomness - III 1 / 17

Going beyond Poly Stretch

PRGs can only generate polynomially long pseudorandom strings
Think: How to efficiently generate exponentially long
pseudorandom strings?

Idea: Functions that index exponentially long pseudorandom strings

Lecture 5: Pseudorandomness - III 2 / 17

Random Functions

How do we define a random function?

Consider functions F : {0, 1}n → {0, 1}n

Think: How many such functions are there?
Write F as a table:

first column has input strings from 0n to 1n;
against each input, second column has the function value
i.e., each row is of the form (x, F (x))

The size of the table for F = 2n × n = n2n

Total number of functions mapping n bits to n bits = 2n2
n

Lecture 5: Pseudorandomness - III 3 / 17

Random Functions

There are two ways to define a random function:

First method: A random function F from n bits to n bits is a
function selected uniformly at random from all 2n2n functions that
map n bits to n bits
Second method: Use a randomized algorithm to describe the
function. Sometimes more convenient to use in proofs

randomized program M to implement a random function F
M keeps a table T that is initially empty.
on input x, M has not seen x before, choose a random string y and
add the entry (x, y) to the table T
otherwise, if x is already in the table, M picks the entry
corresponding to x from T , and outputs that

M ’s output distribution identical to that of F .

Lecture 5: Pseudorandomness - III 4 / 17

Random Functions

Truly random functions are huge random objects

No matter which method we use, we cannot store the entire
function efficiently

With the second method, we can support polynomial calls to the
function efficiently because M will only need polynomial space and
time to store and query T
Can we use some crypto magic to make a function F ′ so that:

it “looks like” a random function
but actually needs much fewer bits to describe/store/query?

Lecture 5: Pseudorandomness - III 5 / 17

Pseudorandom Functions (PRF)

PRF looks like a random function, and needs polynomial bits to be
described

Think: What does “looks like” mean?
First Idea: Use computational indistinguishability

– Random Functions and PRFs are hard to tell apart efficiently

Think: Should the distinguisher get the description of either a
random function or a PRF?
Main Issue: A random function is of exponential size

– D can’t even read the input efficiently
– D can tell by looking at the size

Idea: D can only query the function on inputs of its choice, and
see the output.

Lecture 5: Pseudorandomness - III 6 / 17

Pseudorandom Functions

Keep the description of PRF secret from D?
Security by obscurity not a good idea (Kerckoff’s priniciple)

Solution: PRF will be a keyed function. Only the key will be
secret, and the PRF evaluation algorithm will be public
Security via a Game based definition

– Players: a challenger Ch and D. Ch is randomized and efficient
– Game starts by Ch choosing a random bit b. If b = 0, Ch

implements a random function, otherwise it implements a PRF
– D send queries x1, x2, . . . to Ch, one-by-one
– Ch answers by correctly replying F (x1), F (x2), . . .
– Finally, D outputs his guess b′ (of F being random or PRF)
– D wins if b′ = b

PRF Security: No D can win with probability better than 1/2.

Lecture 5: Pseudorandomness - III 7 / 17

Pseudorandom Functions: Definition

Definition (Pseudorandom Functions)
A family {Fk}k∈{0,1}n of functions, where : Fk : {0, 1}n → {0, 1}n for all
k, is pseudorandom if:

Easy to compute: there is an efficient algorithm M such that
∀k, x :M(k, x) = Fk(x).

Hard to distinguish: for every non-uniform PPT D there exists
a negligible function ν such that ∀n ∈ N:

|Pr[D wins GuessGame]− 1/2| 6 ν(n).

where GuessGame is defined below

Lecture 5: Pseudorandomness - III 8 / 17

Pseudorandom Functions: Game Based Definition

GuessGame(1n) incorporates D and proceeds as follows:
The games choose a PRF key k and a random bit b.

It runs D answering every query x as follows:
If b = 0: (answer using PRF)

– output Fk(x)

If b = 1: (answer using a random F)
– (keep a table T for previous answers)
– if x is in T : return T [x].
– else: choose y ← {0, 1}n, T [x] = y, return y.

Game stops when D halts. D outputs a bit b′

D wins GuessGame if b′ = b.

Remark: note that for any b only one of the two functions is ever used.

Lecture 5: Pseudorandomness - III 9 / 17

Pseudorandom Functions (contd.)

Think: How can we construct a PRF?

Use PRG?

Simpler problem: build PRF for just 1-bit inputs using PRG

Lecture 5: Pseudorandomness - III 10 / 17

From PRG to PRF with 1-bit input

Let G be a length doubling PRG

Want: {Fk} such that Fk : {0, 1} → {0, 1}n

G is length doubling, so let

G(s) = y0‖y1

where |y0| = |y1| = n

PRF: Set k = s and,

Fk(0) = y0, Fk(1) = y1

Think: What about n-bit inputs?
Idea for 1-bit case: “double and choose”
For general case: Apply the “double and choose” idea repeatedly!

Lecture 5: Pseudorandomness - III 11 / 17

PRF from PRG

Theorem (Goldreich-Goldwasser-Micali (GGM))
If pseudorandom generators exist then pseudorandom functions exist

Notation: define G0 and G1 as

G(s) = G0(s)‖G1(s)

i.e., G0 chooses left half of G and G1 chooses right half

Construction for n-bit inputs x = x1x2 . . . xn

Fk(x) = Gxn

(
Gxn−1

(
. . .

(
Gx1(k))..)

Lecture 5: Pseudorandomness - III 12 / 17

PRF from PRG (contd.)

Fk(x) = Gxn

(
Gxn−1

(
. . .

(
Gx1(k))..)

We can represent Fk as a binary tree of size 2n

The root corresponds to k

Left and right child on level 1 and 2 are:

k0 = G0(k) and k1 = G1(k)

Second level children:

k00 = G0(k0), k01 = G1(k0), k10 = G0(k1), k11 = G1(k1)

At level `, 2` nodes, one for each path, denoted by kx1...x`

Lecture 5: Pseudorandomness - III 13 / 17

Proof Strategy

Let’s use Hybrid Arguments!

Problem: If we replace each node in the tree one-by-one with
random, then exponentially many hybrids. Hybrid lemma doesn’t
apply!

Observation: Efficient adversary can only make polynomial
queries

Thus, only need to change polynomial number of nodes in the tree

Lecture 5: Pseudorandomness - III 14 / 17

Proof Strategy (contd.)

Two layers of hybrids:
First, define hybrids over the n levels in the tree. For every i, Hi is
such that the nodes up to level i are random, but the nodes below
are pseudorandom.

If H1 and Hn are distinguishable with noticeable advantage, then
use hybrid lemma to find level i s.t. Hi and Hi+1 are also
distinguishable with noticeable advantage

Now, hybrid over the nodes in level i+ 1 that are “affected” by
adversary’s queries, replacing each node one by one with random

Use hybrid lemma again to identify one node that is changed from
pseudorandom to random and break PRG’s security to get a
contradiction

Lecture 5: Pseudorandomness - III 15 / 17

Proof Details

Must make sure that all hybrids are implementable in polynomial
time
Will use two key points to ensure this:

1 Adversary only makes polynomial number of queries
2 A random function can be efficiently implemented (using second

method) if the number of queries are polynomial

Think: Formal proof?

Lecture 5: Pseudorandomness - III 16 / 17

Concluding Remarks

PRFs from concrete assumptions: [Naor-Reingold97],
[Banerjee-Peikert-Rosen12]
Constrained PRFs: PRFs with “punctured” keys that are
disabled on certain inputs [Boneh-Waters13,
Kiayias-Papadopoulos-Triandopoulos-Zacharias13,
Boyle-Goldwasser-Ivan14, Sahai-Waters14]
Related-key Security: Evaluation of Fs(x) does not help in
predicting Fs′(x) [Bellare-Cash10]
Key-homomorphic PRFs: Given fs(x) and fs′(x), compute
fg(s,s′)(x) [Boneh-Lewi-Montgomery-Raghunathan13]

Lecture 5: Pseudorandomness - III 17 / 17

