One-way Functions

601.642/442: Modern Cryptography

Fall 2017

601.642/442: Modern Cryptography

One-way Functions

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → → E

 Image: Image:

- Learning the crypto language
 - Modeling "real-world" adversaries
 - Defining security against such adversaries
- One-way Functions (OWFs)
 - Motivation
 - Definitions: Strong and Weak OWFs
 - Candidate OWF

- Adversary's Resources: Is the adversary an all powerful entity or does it have bounded computational resources?
- Adversary's Strategy: Can the adversary use its resources anyway it likes or is it restricted to certain strategies?

Goal: Model real-world adversaries

- In practice, *everyone* has bounded computational resources.
- Therefore, it is reasonable to model the adversary as such an entity
- However, we do not make any assumptions about adversarial strategy. Adversary can use its bounded computational resources however intelligently it likes.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Turing machines capture all types of computations that are possible.
- So our adversary will be a computer program or an algorithm, modeled as a Turing machine.
- Our adversary will also be *efficient* (captured via its running time)
- Computational Security: Security against efficient adversaries
- Information-theoretic Security: Security against inefficient adversaries
- In this course, we will mostly focus on computational security

Definition (Algorithm)

An algorithm is a deterministic Turing machine whose input and output are strings over the binary alphabet $\Sigma = \{0, 1\}$.

Definition (Running Time)

An algorithm \mathcal{A} is said to run in time T(n) if for all $x \in \{0, 1\}^n$, $\mathcal{A}(x)$ halts within T(|x|) steps. \mathcal{A} runs in polynomial time if there exists a constant c such that \mathcal{A} runs in time $T(n) = n^c$.

An algorithm is *efficient* if it runs in polynomial time.

イロト イヨト イヨト イヨト

Definition (Randomized Algorithm)

A randomized algorithm, also called a probabilistic polynomial time Turing machine (PPT) is a Turing machine equipped with an extra randomness tape. Each bit of the randomness tape is uniformly and independently chosen.

- Output of a randomized algorithm is a distribution.
- This notion captures what we can do efficiently *ourselves*. (uniform TMs)

イロト イヨト イヨト イヨ

- The adversary could be more tricky...
- For example, the adversary might posses a *different* algorithm for each input size, each of which might be efficient.
- This still counts efficient since he is using polynomial time resources!
- We call this a *non-uniform* adversary since the algorithm is not uniform across all input sizes.

Definition (Non-Uniform PPT)

A non-uniform probabilistic polynomial time Turing machine A is a sequence of probabilistic machines $A = \{A_1, A_2, \ldots\}$ for which there exists a polynomial $p(\cdot)$ such that for every $A_i \in A$, the description size $|A_i|$ and the running time of A_i are at most p(i). We write A(x) to denote the distribution obtained by running $A_{|x|}(x)$.

• Our adversary will usually be a non-uniform PPT Turing machine. (most general)

(日) (四) (三) (三) (三)

• A function is one-way if it "easy to compute," but "hard to invert"

イロト イヨト イヨト イヨト

- A function is one-way if it "easy to compute," but "hard to invert"
- Necessary for the existence of most cryptographic primitives (e.g., encryption, digital signatures)

・ロト ・ 同ト ・ ヨト ・ ヨト

- A function is one-way if it "easy to compute," but "hard to invert"
- Necessary for the existence of most cryptographic primitives (e.g., encryption, digital signatures)
- Also sufficient for some cryptographic primitives (e.g., pseudorandom functions, digital signatures)

- A function is one-way if it "easy to compute," but "hard to invert"
- Necessary for the existence of most cryptographic primitives (e.g., encryption, digital signatures)
- Also sufficient for some cryptographic primitives (e.g., pseudorandom functions, digital signatures)
- OWFs are at the bottom of the cryptographic "complexity zoo;" hence the natural first primitive for study

イロト イポト イヨト イヨト

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

 $\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , for any input length $n \in \mathbb{N}$

Probability of Inversion is small

One Way Functions: Attempt 1

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , for any input length $n \in \mathbb{N}$

 $\Pr\left[\mathcal{A} \text{ inverts } f(x) \text{ for random } x\right] \leq small.$

601.642/442: Modern Cryptography

One Way Functions: Attempt 1

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , for any input length $n \in \mathbb{N}$

 $\Pr\left[\mathcal{A} \text{ inverts } f(x) \text{ for random } x\right] \leq small.$

This is called **average-case** hardness.

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , for any input length $n \in \mathbb{N}$

$$\Pr\left[x \xleftarrow{} \{0,1\}^n; \ \mathcal{A} \text{ inverts } f(x)\right] \leq small.$$

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , there exists a fast decaying function $\nu(\cdot)$ s.t. for any input length $n \in \mathbb{N}$

$$\Pr\left[x \xleftarrow{\$} \{0,1\}^n; \ \mathcal{A} \text{ inverts } f(x)\right] \leq \nu(n).$$

イロト イポト イヨト イヨト

Definition (Negligible Function)

A function $\nu(n)$ is negligible if for every c, there exists some n_0 such that for all $n > n_0$, $\nu(n) \leq \frac{1}{n^c}$.

 Negligible function decays faster than all "inverse-polynomial" functions

2 That is, $n^{-\omega(1)}$

Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: for every non-uniform PPT adversary \mathcal{A} , there exists a *negligible* function $\nu(\cdot)$ s.t. for any input length $\forall n \in \mathbb{N}$:

$$\Pr\left[x \xleftarrow{} \{0,1\}^n; \ \mathcal{A} \text{ inverts } f(x)\right] \leqslant \nu(|x|).$$

Technical Problem: What is \mathcal{A} 's input?

イロト イポト イヨト イヨト

\mathcal{A} 's Input

- Let's write y = f(x).
- Condition 1: \mathcal{A} on input y must run in time poly(|y|).
- Condition 2: \mathcal{A} cannot output x' s.t. f(x') = y.
- What if |y| is much smaller than n = |x|?
 ⇒ A cannot write the inverse even if it can find it!
- Example: $f(x) = \text{first } \log |x| \text{ bits of } x.$
- It is trivial to invert: $f^{-1}(y) = y \| \underbrace{00 \dots 0}_{n \log n}$ where $n = 2^{|y|}$.
- But it satisfies our Attempt 1 definiton!
 - f is easy to compute.
 - A cannot invert in time poly(|y|). It needs 2^{|y|} steps just to write the answer!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Give \mathcal{A} a long enough input.
- If y is too short, pad it with 1s in the beginning.
- We adopt the convention to **always** pad it and write: $\mathcal{A}(1^n, y)$.
- Now \mathcal{A} has enough time to write the answer.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition (One Way Function)

A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a *one-way function* (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: there exists a *negligible* function $\nu : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT adversary \mathcal{A} and $\forall n \in \mathbb{N}$:

$$\Pr\left[x \leftarrow \{0,1\}^n, x' \leftarrow \mathcal{A}(1^n, f(x)) : f(x') = f(x)\right] \leq \nu(n).$$

This definition is also called **strong** one-way functions.

601.642/442: Modern Cryptography

イロト イボト イヨト イヨト 三日

• Injective or 1-1 OWFs: each image has a *unique* pre-image:

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

• One Way Permutations (OWP): 1-1 OWF with the additional conditional that "each image has a pre-image"

(Equivalently: domain and range are of same size.)

- Do OWFs exist? NOT Unconditionally proving that f is one-way requires proving (at least) $\mathbf{P} \neq \mathbf{NP}$.
- However, we can construct them ASSUMING that certain problems are hard.
- Such constructions are sometimes called "candidates" because they are based on an assumption or a conjecture.

(日) (周) (日) (日)

• Consider the **multiplication** function $f_{\times} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$f_{\times}(x,y) = \begin{cases} \perp & \text{if } x = 1 \lor y = 1\\ x \cdot y & \text{otherwise} \end{cases}$$

- The first condition helps exclude the trivial factor 1.
- Is f_{\times} a OWF?
- Clearly not! With prob. 1/2, a random number (of any fixed size) is *even*. I.e., xy is even w/ prob. $\frac{3}{4}$ for random (x, y).
- Inversion: given number z, output (2, z/2) if z is even and (0, 0) otherwise!(succeeds 75% time)

Factoring Problem (continued)

- Eliminate such trivial small factors.
- Let Π_n be the set of all **prime** numbers $< 2^n$.
- Choose numbers p and q randomly from Π_n and multiply.
- This is unlikely to have small trivial factors.

Assumption (Factoring Assumption)

For every (non-uniform PPT) adversary A, there exists a negligible function ν such that

$$\Pr\left[p \xleftarrow{\hspace{0.1cm}}{}^{\$} \Pi_n; q \xleftarrow{\hspace{0.1cm}}{}^{\$} \Pi_n; N = pq : \mathcal{A}(N) \in \{p, q\}\right] \leqslant \nu(n).$$

601.642/442: Modern Cryptography

- Factoring assumption is a well established conjecture.
- Studied for a long time, with no "good" attack.
- Best known algorithms for breaking Factoring Assumption:

$$2^{O\left(\sqrt{n\log n}\right)} \quad \text{(provable)} \\ 2^{O\left(\sqrt[3]{n\log^2 n}\right)} \quad \text{(heuristic)}$$

• Can we construct OWFs from the Factoring Assumption?

Back to Multiplication Function

- Let's reconsider the function $f_{\times} : \mathbb{N}^2 \to \mathbb{N}$.
- Clearly, if a random x and a random y happen to be prime, no \mathcal{A} could invert. Call it the GOOD case.
- If GOOD case occurs with probability > ε,
 ⇒ every A must fail to invert f_× with probability at least ε.
- Now suppose that ε is a noticeable function (Definition of noticeable function later; for now think of it as inverse polynomial.)
 ⇒ every A must fail to invert f_× with noticeable probability.
- This is already useful!
- Usually called a **weak** OWF.

イロト イヨト イヨト イヨト

Weak One Way Functions

Definition (Weak One Way Function)

A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a *weak one-way function* if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Somewhat hard to invert: there is a noticeable function $\varepsilon : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT \mathcal{A} and $\forall n \in \mathbb{N}$:

$$\Pr\left[x \leftarrow \{0,1\}^n, x' \leftarrow \mathcal{A}(1^n, f(x)) : f(x') \neq f(x)\right] \ge \varepsilon(n).$$

Noticeable means $\exists c \text{ s.t. for infinitely many } n \in \mathbb{N}, \varepsilon(n) \ge \frac{1}{n^c}$.

601.642/442: Modern Cryptography

Back to Multiplication

- Can we prove that f_{\times} is a weak OWF?
- Remember the GOOD case? Both x and y are prime.
- If we can show that GOOD case occurs with noticeable probability, we can prove that f_{\times} is a weak OWF.

Theorem

Assuming the factoring assumption, function f_{\times} is a weak OWF.

- Proof Idea: The fraction of prime numbers between 1 and 2^n is noticeable!
- Chebyshev's theorem: An n bit number is a prime with probability $\frac{1}{2n}$
- Next time: Formal proof by reduction

- Can we construct strong OWFs from the Factoring Assumption?
- Even better: Can we construction strong OWFs from ANY weak OWF?
- Yes! Yao's Hardness Amplification Theorem.
- Details Next time!