
CS 600.442 – Modern Cryptography November 9; 2016

Lecture 17: Chosen Ciphertext Security (II)

Instructor: Abhishek Jain Scribe: Aarushi Goel

1 Chosen-Ciphertext Attacks

In the last class we discussed why IND-CPA security might not be sufficient for all real world
attacks. We need to consider a stronger security model for cases when the adversary has access
to a decryption oracle. We have two security definitions in the Chosen-Ciphertext Attack model,
where the adversary can make decryption queries over ciphertexts of its choice (No decryption
query c should be equal to the challenge ciphertext c∗):

• CCA-1: The adversary is allowed to make decryption queries only before the challenge ci-
phertext query.

• CCA-2: The adversary is allowed to make decryption queries before and after the challenge
ciphertext query.

In this lecture, we will first revisit the definition of IND-CCA-2 Security and then construct a
CCA-2 secure Public key encryption.

2 CCA-2 Security

We begin by defining the challenge experiment ExptCCA2A (b, z) for an adversary in the CCA-2 Se-
curity model.

ExptCCA2A (b, z) :

• st = z

• (pk, sk)← Gen(1n)

• Decryption query phase 1 (repeated poly times):

· c← A(pk, st)

· m← Dec(sk, c)

· st = (st, m)

• (m0,m1)← A(pk, st)

• c∗ ← Enc(pk,mb)

• Decryption query phase 2 (repeated poly times):

· c← A(pk, c∗ st)

· If c = c∗, output reject.

· m← Dec(sk, c)

· st = (st, m)

1-1

• Output b′ ← A(pk, c∗, st)

Definition 1 IND-CCA-2 Security:
A public-key encryption scheme (Gen,Enc,Dec) is IND-CCA-1 secure if for all n.u. PPT adver-
saries A, there exists a negligible function µ(.), s.t. for all auxiliary inputs z ∈ {0, 1}∗:

|Pr[ExptCCA2A (1, z) = 1]− Pr[ExptCCA2A (0, z) = 1]| ≤ µ(n)

A CCA-1 secure encryption scheme does not necessarily guarantee security in the CCA-2 model.
This is mainly because in CCA-2, the challenge ciphertext is known to the adversary before the
second decryption query phase. Thus, the adversary may be able to “maul” the challenge ciphertext
into another ciphertext and then request decryption in the second phase. This is called malleability
attack.
Such attacks can be prevented, if we make the encryption non-malleable, i.e., ensure that the
adversary’s decryption query is “independent” of (instead of just being different from) the challenge
ciphertext.

3 CCA-2 Secure Public-Key Encryption

The first construction of CCA-2 secure encryption scheme was given by Dolev-Dwork-Naor. The
following cryptographic primitives are required for this construction:

• An IND-CPA secure encryption scheme (Gen,Enc,Dec)

• An adaptive NIZK proof (K,P,V)

• A strongly unforgeable one-time signature (OTS) scheme (Setup,Sign,Verify). Recall, that
for a strongly unforgeable signature scheme we require, that it should be computationally
hard for an adversary to come up with a new signature on a message, even if a signature
corresponding to that message is already known to him. We assume, without loss of generality
that, verification keys in OTS scheme are of length n.

Remark. Note that apart from the primitives used in the construction a CCA-1 secure encryption
scheme, we also require a signature scheme. This is mainly required to cater to the additional
requirement of non-malleability of the encryption scheme in the CCA-2 model.

3.1 Construction

Assuming we have an IND-CPA secure encryption scheme (Gen,Enc,Dec), an adaptive NIZK proof
(K,P,V) and a strongly unforgeable OTS scheme (Setup,Sign,Verify), we construct an encryption
scheme (Gen′,Enc′,Dec′) as follows:

Gen′(1n) : Execute the following steps:

• Compute CRS for NIZK:
σ ← K(1n)

1-2

• Compute 2n key pairs of IND-CPA encryption scheme:

(pkji , sk
j
i)← Gen(1n)

where j ∈ {0, 1}, i ∈ [n].

• Output pk′ = (

[
pk01 pk02 . . . pk0n
pk11 pk12 . . . pk1n

]
, σ), sk′ =

[
sk01
sk11

]
Enc′(pk′,m) : Execute the following steps:

• Compute key pair for OTS scheme:

(SK, V K)← Setup(1n)

• Let V K = V K1,V Kn. For every i ∈ [n], encrypt m using pkV Ki
i and randomness ri:

ci ← Enc(pkV Ki
i ,m; ri)

• Compute proof that each ci encrypts the same message:

π ← P(σ, x, w)

where x = ({pkV Ki
i }, {ci}), w = (m, {ri}) and R(x,w) = 1 iff every ci encrypts the same

message m.

• Sign everything:
Φ← Sign(SK,M)

where M = ({ci}, π)

• Output c′ = (V K, {ci}, π,Φ)

Dec′(sk′, c′) : Execute the following steps:

• Parse c′ = (V K, {ci}, π,Φ)

• Let M = ({ci}, π)

• Verify the signature: Output ⊥ if

Verify(V K,M,Φ) = 0

• Verify the NIZK proof: Output ⊥ if

V(σ, x, π) = 0

where x = ({pkV Ki
i }, {ci})

• Else, decrypt the first ciphertext component:

m′ ← Dec(skV K1
1 , c1)

• Output m′

Remark. Note that key pair for the signature scheme is not generated in Gen′(.), because we
want to construct a public key encryption scheme. If the key pair for signature scheme, were to be
generated in Gen′(.), the signing key SK, would have to be kept hidden. As a result (because of
the structure of ciphertext in this construction), given only the public key, not everybody would
be able to encrypt messages, which would make it a secret key encryption scheme.

1-3

3.2 Security

Theorem 1 The encryption scheme presented above, is CCA-2 secure if (Gen,Enc,Dec) is an
IND-CPA secure encryption scheme, (K,P,V) is an adaptively-secure NIZK proof system, and
(Setup,Sign,Verify) is a strongly- unforgeable OTS scheme.

Proof. We begin by outlining the intuition to argue security of the above construction. Consider
the decryption queries in the second phase, i.e., after the adversary receives the challenge ciphertext
C∗. Let C 6= C∗ be a decryption query. Then the following two cases are possible:

• Case 1: V K = V K∗

The verification key V K in C and the verification key V K∗ in C∗ are same.
⇒ ({c∗i }, π∗,Φ∗) 6= ({ci}, π,Φ)
If this is the case, then we have been able to generate different signatures corresponding to
the same verification key and thus, can break the strong unforgeability of the OTS scheme.

• Case 2: V K 6= V K∗

In this case, V K and V K∗ must differ in atleast one position ` ∈ [n]:

– Answer decryption query using the secret key skV Ki
`

– Knowledge of secret keys sk
V K∗

i
i , for i ∈ [n] is not required.

– Reduce to IND-CPA security of underlying encryption scheme (Gen,Enc,Dec).

We now construct the following hybrids, to prove security of the above construction in CCA-2
attack model.

H0 := ExptCCA2A (0, z) (Honest Encryption of m0)

• σ ← K(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ), sk′ = (sk01, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pk
V K∗

i
i ,m0; r

∗
i)

• π∗ ← P(σ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

1-4

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• Output A(pk′, c∗, z)

H1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator

• (σ, τ)← S0(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ), sk′ = (sk01, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pk
V K∗

i
i ,m0; r

∗
i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• Output A(pk′, c∗, z)

H2 : Choose V K∗ in the beginning during Gen′

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ), sk′ = (sk01, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• (m0,m1)← A(pk, z)

1-5

• c∗i ← Enc(pk
V K∗

i
i ,m0; r

∗
i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• Output A(pk′, c∗, z)

H3 :

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ)

•

On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z), if
Verify(V K,M = ({ci}, π),Φ) = 1:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set

sk′ = sk
V K∗

i
i , i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(sk

V K∗
`

` , c`)

• (m0,m1)← A(pk, z)

• c∗i ← Enc(pk
V K∗

i
i ,m0; r

∗
i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

•

On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗z), if
Verify(V K,M = ({ci}, π),Φ) = 1 and c 6= c∗:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set

sk′ = sk
V K∗

i
i , i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(sk

V K∗
`

` , c`)

1-6

• Output A(pk′, c∗, z)

H4 : Change every c∗i in C∗ to be encryption of m1

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z), if Verify(V K,M =
({ci}, π),Φ) = 1:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set sk′ = sk
V K∗

i
i ,

i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(sk

V K∗
`

` , c`)

• (m0,m1)← A(pk, z)

• c∗i ← Enc(pk
V K∗

i
i ,m1; r

∗
i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m1, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗z), if Verify(V K,M =
({ci}, π),Φ) = 1 and c 6= c∗:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set sk′ = sk
V K∗

i
i ,

i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(sk

V K∗
`

` , c`)

• Output A(pk′, c∗, z)

H5 := ExptCCA2A (1, z) (Honest Encryption of m1)

• σ ← K(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0i , pk1i }, σ), sk′ = (sk01, sk
1
1).

1-7

•
On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pk
V K∗

i
i ,m1; r

∗
i)

• π∗ ← P(σ, x∗ = ({pkV K∗
i

i }, {c∗i }), w∗ = (m1, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

•
On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,

return Dec(skV K1
1 , c1)

• Output A(pk′, c∗, z)

We now argue indistinguishability of the above hybrids:

• H0 ≈ H1 : Since the only difference between the two hybrids is that in H1, CRS σ and proof
π are computed using NIZK simulator. The indistinguishability of these hybrids follows from
the Zero Knowledge property of NIZK.

• H1 ≈ H2 : From an adversary’s point of view, generating V K∗ early or later does not change
the distribution.

• H2 ≈ H3 : We argue indistinguishability of these hybrids as follows:

– Case 1: The protocol is aborted.
We claim that the probability of aborting is negligible. By the definition of CCA-2,
c 6= c∗. So if V K = V K∗, then it must be that ({ci}, π,Φ) 6= ({c∗i }, π∗,Φ∗). Now, if
Verify(V K, ({ci}, π),Φ) = 1, then we can break strong unforgeability of the OTS scheme.

– Case 2: The protocol is not aborted.
Let ` be the position s.t. V K` 6= V K∗` . Note that the only difference in H2 and H3 in
this case might be the answers to the decryption queries of adversary. In particular, in

H2, we decrypt c1 in c using skV K1
1 . In contrast, in H3, we decrypt c` in c using sk

V K
∗
`

` .
Now, from soundness of NIZK, it follows that except with negligible probability, all the
c′is in c encrypt the same message. Therefore decrypting c` instead of c1 does not change
the answer.

• H3 ≈ H4 : Indistinguishability of these hybrids follows from the IND-CPA security if under-
lying PKE (Gen,Enc,Dec)

1-8

• H4 ≈ H5 : Combining the above steps, we get H0 ≈ H3. Indistinguishability of these hybrids
(H4 and H5) can be argued in a similar manner (in the reverse order).

Combining the above we get H0 ≈ H5.
Hence, Encryption of m0 is computationally indistinguishable from the encryption of m1 in the
CCA-2 model.

1-9

