```
CS 600.442 - Modern Cryptography
    Lecture 1: Chosen-Ciphertext Security (I)
Instructor: Abhishek Jain

\section*{1 Recall}

\section*{Public-Key Encryption}
- Syntax
- \(\operatorname{Gen}\left(1^{n}\right) \rightarrow(p k, s k)\)
- \(\operatorname{Enc}\left(1^{n}\right) \rightarrow(p k, s k)\)
\(-\operatorname{Dec}\left(1^{n}\right) \rightarrow(p k, s k)\)
- Correctness: For every \(m, \operatorname{Dec}(s k, \operatorname{Enc}(p k, m))=m\), where \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)\).
- IND-CPA Security: For all n.u. PPT adversaries \(\mathcal{A}\), there exists a negligible function \(\mu(n)\) s.t.
\[
\left[\begin{array}{rl}
(p k, s k) & \stackrel{\$ \operatorname{Gen}\left(1^{n}\right)}{\leftarrow} \\
\left(m_{0}, m_{1}\right) & \left.\leftarrow \mathcal{A}\left(1^{n}, p k\right), \quad: \mathcal{A}\left(p k, \operatorname{Enc}\left(m_{b}\right)\right)=b\right] \leq \frac{1}{2}+\mu(n) \\
b & \stackrel{\$}{\leftarrow}\{0,1\}
\end{array}\right.
\]

Notice: for public-key encryption scheme, IND-CPA security for one-message implies IND-CPA security for multiple messages.

\section*{2 Security against Chosen-Ciphertext Attack (CCA)}

\subsection*{2.1 Definition}

Motivation: IND-CPA is not secure enough if an adversary is able to find an oracle that decrypts ciphertexts, which could be real-world possible attack. Hence we need to augment IND-CPA security to allow the adversary to make decryption queries of its choices. We then get two kinds of CCA security definitions.

Definition 1 (IND-CCA-1 Security) A public key encryption scheme (Gen, Enc, Dec) is IND-CCA1 secure if for all n.u. PPT adversaries \(\mathcal{A}\), there exists a negligible function \(\mu(n)\) s.t. for all auxiliary inputs \(z \in\{0,1\}^{*}\) :
\[
\left|\operatorname{Pr}\left[\boldsymbol{\operatorname { E x p }} \boldsymbol{t}_{\mathcal{A}}^{C C A 1}(1, z)=1\right]-\operatorname{Pr}\left[\boldsymbol{E x p t}_{\mathcal{A}}^{C C A 1}(0, z)=1\right]\right| \leq \mu(n)
\]
where \(\boldsymbol{E x p t}_{\mathcal{A}}^{C C A 1}(b, z)\) is defined as:
\(\boldsymbol{E x p t}_{\mathcal{A}}^{C C A 1}(0, z)\)
- \(s t=z\)
- \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)\)
- Decryption query phase (repeated polynomial times)
\(-c \leftarrow \mathcal{A}(p k, s t)\)
\(-m \leftarrow \operatorname{Dec}(s k, c)\)
\(-s t=(s t, m)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(p k, s t)\)
- \(c^{*} \leftarrow \operatorname{Enc}\left(p k, m_{b}\right)\)
- Output \(b^{\prime} \leftarrow \mathcal{A}\left(p k, c^{*}, s t\right)\)

Definition 2 (IND-CCA-2 Security) A public key encryption scheme (Gen, Enc, Dec) is IND-CCA2 secure if for all n.u. PPT adversaries \(\mathcal{A}\), there exists a negligible function \(\nu(n)\) s.t. for all auxiliary inputs \(z \in\{0,1\}^{*}\) :
\[
\left|\operatorname{Pr}\left[\boldsymbol{\operatorname { E x p }} t_{\mathcal{A}}^{C C A 2}(1, z)=1\right]-\operatorname{Pr}\left[\boldsymbol{E x p t}_{\mathcal{A}}^{C C A 2}(0, z)=1\right]\right| \leq \nu(n)
\]
where \(\boldsymbol{E x p t}_{\mathcal{A}}^{C C A 2}(b, z)\) is defined as:
\(\boldsymbol{E x p}_{\mathcal{A}}^{C C A 2}(0, z)\)
- \(s t=z\)
- \((p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)\)
- Decryption query phase 1 (repeated polynomial times)
\(-c \leftarrow \mathcal{A}(p k, s t)\)
\(-m \leftarrow \operatorname{Dec}(s k, c)\)
\(-s t=(s t, m)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(p k, s t)\)
- \(c^{*} \leftarrow \operatorname{Enc}\left(p k, m_{b}\right)\)
- Decryption query phase 2 (repeated polynomial times)
\(-c \leftarrow \mathcal{A}\left(p k, c^{*}, s t\right)\)
- If \(c=c^{*}\), output reject
\(-m \leftarrow \operatorname{Dec}(s k, c)\)
\(-s t=(s t, m)\)
- Output \(b^{\prime} \leftarrow \mathcal{A}\left(p k, c^{*}, s t\right)\)

Note: CCA-2 is stronger than CCA-1 as it can make queries not only before challenge (as CCA-1) and also after challenge. And to prevent trivial attacks, decryption queries \(c\) should be different from the challenge ciphertext \(c^{*}\).

\subsection*{2.2 Construction}

Main Challenge When building IND-CCA-1 secure PKE starting from IND-CPA secure PKE, we should not use the secret key in the secure experiment. However, we need the secret key to answer the decryption queries of the adversary. Thus the main idea is to use two copies of the encryption scheme.

Main Idea We could encrypt a message twice, using each of the two copies of the encryption scheme. To answer a decryption query \(\left(c_{1}, c_{2}\right)\), we only need to decrypt one of the two ciphertext. That means, we only need to know one of the secret key to answer the decryption queries. We can then use the IND-CPA security of another encryption scheme whose secret key is not used to answer decryption queries. Then switch the secret key and use IND-CPA security of the other one.

But there's a problem. What if the adversary sends \(\left(c_{1}, c_{2}\right)\) such that \(c_{1}\) and \(c_{2}\) are ciphertext of different messages? To solve this, we modify the scheme such that the encryption of messages \(m\) contains a NIZK proof that proves that \(c_{1}\) and \(c_{2}\) encrypts same message \(m\).

Theorem 1 (Naor-Yung) Assuming that NIZKs in the CRS model and IND-CPA secure publickey encryption, the encryption scheme (Gen', Enc', Dec') below is IND-CCA-1 secure public-key encryption.

Let (Gen, Enc, Dec) be an IND-CPA encryption scheme.
Let (K, P, V) be an adaptive NIZK with Simulator \(\mathcal{S}=\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)\).
\(\operatorname{Gen}^{\prime}\left(1^{n}\right)\) :
- Compute \(\left(p k_{1}, s k_{1}\right)\) and \(\left(p k_{2}, s k_{2}\right)\) using \(\operatorname{Gen}\left(1^{n}\right)\)
- Compute \(\sigma \leftarrow \mathrm{K}\left(1^{n}\right)\)
- Output \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
\(\operatorname{Enc}^{\prime}\left(p k^{\prime}, m\right)\) :
- Compute \(c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, m ; r_{i}\right)\) for \(i \in[2]\)
- Compute \(\pi \leftarrow \mathrm{P}(\sigma, x, w)\) where \(x=\left(p k_{1}, p k_{2}, c_{1}, c_{2}\right), w=\left(m, r_{1}, r_{2}\right)\) and \(R(x, w)=1\) iff \(c_{1}\) and \(c_{2}\) encrypts the same message \(m\).
- Output \(C=) c_{1}, c_{2}, \pi\)
\(\operatorname{Dec}^{\prime}\left(s k^{\prime}, c^{\prime}\right)\) : If \(\mathrm{V}(\sigma, \pi)=0\), output \(\perp\). Else, output \(\operatorname{Dec}\left(s k_{1}, c_{1}\right)\).
Proof. We use Hybrid Lemma to prove the theorem. We construct hybrids as follows:

Hybrids \(H_{0}:=\operatorname{Expt}_{\mathcal{A}}^{C C A 1}(0, z)\)
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \(\sigma \leftarrow \mathrm{K}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{0} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathrm{P}\left(\sigma, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right), w^{*}=\left(m_{0}, r_{1}, r_{2}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

Hybrids \(H_{1}\) :
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \((\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{0} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathcal{S}_{1}\left(\sigma, \tau, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

\section*{Hybrids \(H_{2}\) :}
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \((\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{1} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathcal{S}_{1}\left(\sigma, \tau, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

\section*{Hybrids \(H_{3}\) :}
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \((\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{2}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{2}, c_{2}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{1} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathcal{S}_{1}\left(\sigma, \tau, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

Hybrids \(H_{4}\) :
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \((\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{2}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{2}, c_{2}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{1} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{1} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathcal{S}_{1}\left(\sigma, \tau, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

\section*{Hybrids \(H_{5}\) :}
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \((\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{1} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{1} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathcal{S}_{1}\left(\sigma, \tau, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

Hybrids \(H_{6}:=\operatorname{Expt}_{\mathcal{A}}^{C C A 1}(0, z)\)
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \(\sigma \leftarrow \mathrm{K}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On receiving a decryption query \(c=\) \(\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}(\sigma, x=\) \(\left.\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
- \(c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{1} ; r_{1}^{*}\right)\)
- \(c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{1} ; r_{2}^{*}\right)\)
- \(\pi^{*} \leftarrow \mathrm{P}\left(\sigma, x^{*}=\left(c_{1}^{*}, c_{2}^{*}\right), w^{*}=\left(m_{1}, r_{1}, r_{2}\right)\right)\)
- Output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi^{*}\right)\right)\)

In short, the changes in hybrids are:
- \(H_{0}: \operatorname{Expt}_{\mathcal{A}}^{C C A 1}(1, z)\).
- \(H_{1}\) : Simulate the CRS in public-key and simulate the proof in challenge ciphertext.
- \(H_{2}\) : Modify \(c_{2}^{*}\) in challenge ciphertext to be an encryption of \(m_{1}\).
- \(H_{3}\) : Change the decryption key to \(s k_{2}\).
- \(H_{4}\) : Modify \(c_{2}^{*}\) in challenge ciphertext to be an encryption of \(m_{1}\).
- \(H_{5}\) : Change the decryption key back to \(s k_{1}\).
- \(H_{6}: \operatorname{Expt}_{\mathcal{A}}^{C C A 1}(0, z):\)

Now we argue the indistinguishability of these hybrids.
\(H_{0} \approx H_{1}\) : This follows from the zero knowledge property of NIZK. Suppose that \(\mathcal{A}^{\prime}\) can distinguish \(H_{0}\) and \(H_{1}\) with at least a noticeable probability \(\frac{1}{p(n)}\) where \(p(n)\) is a polynomial function. Then we can build a distinguisher \(\mathcal{D}\) against the zero-knowledge property of NIZK: on input ( \(\sigma, \pi\) ), \(\mathcal{D}\) runs the experiment with \((\sigma)\) and \(\pi^{*}\) replaced by input. \(\mathcal{D}\) runs as follows:
\(\mathcal{D}(\sigma, \pi)\)
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- Receive decryption queries from \(\mathcal{A}: c=\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\mathrm{V}\left(\sigma, x=\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(z, p k^{\prime}\right)\)
\(-c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
\(-c_{2}^{*} \leftarrow \operatorname{Enc}\left(p k_{2}, m_{0} ; r_{2}^{*}\right)\)
- Pass the output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi\right)\right)\) to \(\mathcal{A}^{\prime}\). If \(\mathcal{A}^{\prime}\) says the output is sampled from \(H_{0}\), output "real proof". Else if \(\mathcal{A}^{\prime}\) says the output is from \(H_{1}\), output "simulated proof".

Notice that \(\operatorname{Pr}[\mathcal{D}\) outputs real proof \(]=\operatorname{Pr}\left[\mathcal{A}^{\prime}\right.\) output \(\left.H_{0}\right]\) and that \(\operatorname{Pr}[\mathcal{D}\) outputs simulated proof \(]=\) \(\operatorname{Pr}\left[\mathcal{A}^{\prime}\right.\) output \(\left.H_{1}\right]\). It follows that \(\mathcal{D}\) can distinguishes the real and simulated proof with noticeable probability \(\frac{1}{p(n)}\). This contradicts the zero-knowledge property of NIZK.

Actually, notice that even though \(x \notin L\), simulator \(\left(\mathcal{S}_{0}, \mathcal{S}_{1}\right)\) can still come up with a simulated proof. Otherwise, simulator can actually decide \(L\) in polynomial time!
\(H_{1} \approx H_{2}\) : This follows from the IND-CPA security of (Gen, Enc, Dec) with \(s k_{2}\). Suppose that \(\mathcal{A}^{\prime}\) can distinguish \(H_{1}\) and \(H_{2}\) with at least a noticeable probability \(\frac{1}{p(n)}\) where \(p(n)\) is a polynomial function. Then we can build an adversary \(\mathcal{B}\) against the IND-CPA security. \(\mathcal{B}\) runs as follows:
- \(\left(p k_{1}, s k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\).
- Let \(p k_{2}\) be the public key \(\mathcal{B}\) got from challenger.
\(-(\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right)\)
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- Receive decryption queries from \(\mathcal{A}: c=\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\bigvee\left(\sigma, x=\left(c_{1}, c_{2}\right), \pi\right)=1\), return \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right)\)
- Run \(\mathcal{A}\) to get message query \(\left(m_{0}, m_{1}\right)\) and pass \(\left(m_{0}, m_{1}\right)\) to challenger.
\(-c_{1}^{*} \leftarrow \operatorname{Enc}\left(p k_{1}, m_{0} ; r_{1}^{*}\right)\)
- Let \(c_{2}^{*}\) be the cipher text \(\mathcal{B}\) got from challenger.
- Pass the output \(\mathcal{A}\left(z, p k^{\prime}, C=\left(c_{1}^{*}, c_{2}^{*}, \pi\right)\right)\) to \(\mathcal{A}^{\prime}\). If \(\mathcal{A}^{\prime}\) says the output is sampled from \(H_{1}\), output \(b=0\). Else if \(\mathcal{A}^{\prime}\) says the output is from \(H_{2}\), output \(b=1\).

When challenger choose to encrypt \(m_{0}\), the output passed to \(\mathcal{A}^{\prime}\) is identical to that in \(H_{1}\); if it is \(m_{1}\) that is encrypted, the output is identical to \(H_{2}\). Note that \(\mathcal{B}\) can handle the decryption queries from \(\mathcal{A}\) because \(\mathcal{B}\) generates \(\left(p k_{1}, s k_{1}\right)\) itself. Also, it doesn't matter that \(\mathcal{B}\) has no access to the randomness used to encrypt \(m_{0}\), as the simulator \(\mathcal{S}_{1}\) doesn't need \(r_{2}\) to simulate the proof (unlike the real prover). Thus
\[
\operatorname{Pr}\left[\mathcal{B} \text { distinguishes encryption of } m_{0} \text { and } m_{1}\right]=\operatorname{Pr}\left[\mathcal{A} \text { distinguishes } H_{1} \text { and } H_{2}\right] \geq \frac{1}{p(n)}
\]

This contradicts the IND-CPA security of the PKE.
\(H_{2} \approx H_{3}\) : This follows from the soundness of NIZK. Notice that the adversary can only makes successful decryption queries \(\left(c_{1}, c_{2}\right)\) if \(c_{1}\) and \(c_{2}\) encrypts the same message. Suppose \(\mathcal{A}^{\prime}\) can distinguishes \(H_{2}\) and \(H_{3}\) with noticeable probability. Then \(\operatorname{Pr}\left[\mathcal{A}\right.\) distinguishes \(H_{2}\) and \(\left.H_{3}\right]=\operatorname{Pr}[E]\) where \(E\) denotes the event that \(c_{1}\) and \(c_{2}\) encrypts different messages but \(V\left(\sigma,\left(c_{1}, c_{2}\right), \pi\right)=1\). Let \(L=\left\{\left(c_{1}, c_{2}\right) \mid c_{1}\right.\) and \(c_{2}\) encrypts same message \(\}\). According to the soundness property of NIZK, there exists \(\nu(n)\) such that
\[
\operatorname{Pr}\left[\sigma \leftarrow \mathrm{K}\left(1^{n}\right), \exists(x, \pi) \text { s.t. } x \notin L \wedge V(\sigma, x, \pi)=1\right] \leq \nu(n)
\]

Now we argue that
\[
\operatorname{Pr}\left[(\sigma, \tau) \leftarrow \mathcal{S}_{0}\left(1^{n}\right), \exists(x, \pi) \text { s.t. } x \notin L \wedge V(\sigma, x, \pi)=1\right] \leq \nu(n)
\]

If not, suppose the probability above is at least \(\frac{1}{p(n)}\) where \(p(\cdot)\) is a polynomial function. We can then build distinguisher \(\mathcal{B}\) that can tell the random string and the simulated string apart. On input \(\sigma, \mathcal{B}\) runs as follows:
- \(\left(p k_{i}, s k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)\) for \(i \in[2]\).
- \(p k^{\prime}=\left(p k_{1}, p k_{2}, \sigma\right), s k^{\prime}=s k_{1}\)
- On each decryption query \(c=\left(c_{1}, c_{2}, \pi\right)\) from \(\mathcal{A}\left(z, p k^{\prime}\right)\), if \(\operatorname{Dec}\left(s k^{\prime}=s k_{1}, c_{1}\right) \neq \operatorname{Dec}\left(s k^{\prime}=\right.\) \(\left.s k_{2}, c_{2}\right)\) but \(\mathrm{V}\left(\sigma, x=\left(c_{1}, c_{2}\right), \pi\right)=1\), return 1 . Otherwise, repeat dealing with next query.

It's obvious that if \(\sigma\) is real random string, then the probability \(\mathcal{B}\) outputs 1 is negligible. If \(\sigma\) is generated by simulator, then the probability \(\mathcal{B}\) outputs 1 is at least \(1-\left(1-\frac{1}{p(n)}\right)^{N}\) where \(N\) is the number of queries made by \(\mathcal{A}\). Hence \(\mathcal{B}\) could distinguish the real random string with the one simulated by the simulator, which is a contradiction that NIZK is zero-knowledge. Hence \(\operatorname{Pr}[E]\) is negligible, which implies that \(H_{2} \approx H_{3}\).
\(H_{3} \approx H_{4} \quad:\) follows in the same manner as \(H_{1} \approx H_{2}\).
\(H_{4} \approx H_{5} \quad\) : follows in the same manner as \(H_{2} \approx H_{3}\).
\(H_{3} \approx H_{4}\) : follows in the same manner as \(H_{0} \approx H_{1}\). Notice that now \(c_{1}^{*}\) and \(c_{2}^{*}\) are encrypting same message, hence P can come up with a valid proof.

Above all, \(H_{0} \approx H_{6}\), which implies the IND-CCA-1 security of the scheme Gen', Enc', Dec'.```

