
CS 600.442 – Modern Cryptography Nov 7, 2016

Lecture 1: Chosen-Ciphertext Security (I)

Instructor: Abhishek Jain Scribe: Ke Wu

1 Recall

Public-Key Encryption

• Syntax

- Gen(1n)→ (pk, sk)

- Enc(1n)→ (pk, sk)

- Dec(1n)→ (pk, sk)

• Correctness: For every m, Dec(sk,Enc(pk,m)) = m, where (pk, sk)← Gen(1n).

• IND-CPA Security: For all n.u. PPT adversaries A, there exists a negligible function µ(n)
s.t. (pk, sk)

$←− Gen(1n)
(m0,m1)← A(1n, pk), : A(pk,Enc(mb)) = b

b
$←− {0, 1}

 ≤ 1

2
+ µ(n)

Notice: for public-key encryption scheme, IND-CPA security for one-message implies IND-CPA
security for multiple messages.

2 Security against Chosen-Ciphertext Attack (CCA)

2.1 Definition

Motivation: IND-CPA is not secure enough if an adversary is able to find an oracle that decrypts
ciphertexts, which could be real-world possible attack. Hence we need to augment IND-CPA
security to allow the adversary to make decryption queries of its choices. We then get two kinds of
CCA security definitions.

Definition 1 (IND-CCA-1 Security) A public key encryption scheme (Gen,Enc,Dec) is IND-CCA-
1 secure if for all n.u. PPT adversaries A, there exists a negligible function µ(n) s.t. for all auxiliary
inputs z ∈ {0, 1}∗:

|Pr[ExptCCA1
A (1, z) = 1]− Pr[ExptCCA1

A (0, z) = 1]| ≤ µ(n)

where ExptCCA1
A (b, z) is defined as:

ExptCCA1
A (0, z)

• st = z

• (pk, sk)← Gen(1n)

1-1

• Decryption query phase (repeated polynomial times)

– c← A(pk, st)

– m← Dec(sk, c)

– st = (st,m)

• (m0,m1)← A(pk, st)

• c∗ ← Enc(pk,mb)

• Output b′ ← A(pk, c∗, st)

Definition 2 (IND-CCA-2 Security) A public key encryption scheme (Gen,Enc,Dec) is IND-CCA-
2 secure if for all n.u. PPT adversaries A, there exists a negligible function ν(n) s.t. for all auxiliary
inputs z ∈ {0, 1}∗:

|Pr[ExptCCA2
A (1, z) = 1]− Pr[ExptCCA2

A (0, z) = 1]| ≤ ν(n)

where ExptCCA2
A (b, z) is defined as:

ExptCCA2
A (0, z)

• st = z

• (pk, sk)← Gen(1n)

• Decryption query phase 1 (repeated polynomial times)

– c← A(pk, st)

– m← Dec(sk, c)

– st = (st,m)

• (m0,m1)← A(pk, st)

• c∗ ← Enc(pk,mb)

• Decryption query phase 2 (repeated polynomial times)

– c← A(pk, c∗, st)

– If c = c∗, output reject

– m← Dec(sk, c)

– st = (st,m)

• Output b′ ← A(pk, c∗, st)

Note: CCA-2 is stronger than CCA-1 as it can make queries not only before challenge (as CCA-1)
and also after challenge. And to prevent trivial attacks, decryption queries c should be different
from the challenge ciphertext c∗.

1-2

2.2 Construction

Main Challenge When building IND-CCA-1 secure PKE starting from IND-CPA secure PKE,
we should not use the secret key in the secure experiment. However, we need the secret key to
answer the decryption queries of the adversary. Thus the main idea is to use two copies of the
encryption scheme.

Main Idea We could encrypt a message twice, using each of the two copies of the encryption
scheme. To answer a decryption query (c1, c2), we only need to decrypt one of the two ciphertext.
That means, we only need to know one of the secret key to answer the decryption queries. We
can then use the IND-CPA security of another encryption scheme whose secret key is not used to
answer decryption queries. Then switch the secret key and use IND-CPA security of the other one.

But there’s a problem. What if the adversary sends (c1, c2) such that c1 and c2 are ciphertext
of different messages? To solve this, we modify the scheme such that the encryption of messages
m contains a NIZK proof that proves that c1 and c2 encrypts same message m.

Theorem 1 (Naor-Yung) Assuming that NIZKs in the CRS model and IND-CPA secure public-
key encryption, the encryption scheme (Gen′,Enc′,Dec′) below is IND-CCA-1 secure public-key
encryption.

Let (Gen,Enc,Dec) be an IND-CPA encryption scheme.
Let (K,P,V) be an adaptive NIZK with Simulator S = (S0,S1).
Gen′(1n):

• Compute (pk1, sk1) and (pk2, sk2) using Gen(1n)

• Compute σ ← K(1n)

• Output pk′ = (pk1, pk2, σ), sk′ = sk1

Enc′(pk′,m):

• Compute ci ← Enc(pki,m; ri) for i ∈ [2]

• Compute π ← P(σ, x, w) where x = (pk1, pk2, c1, c2), w = (m, r1, r2) and R(x,w) = 1 iff c1
and c2 encrypts the same message m.

• Output C =)c1, c2, π

Dec′(sk′, c′): If V(σ, π) = 0, output ⊥. Else, output Dec(sk1, c1).
Proof. We use Hybrid Lemma to prove the theorem. We construct hybrids as follows:

1-3

Hybrids H0: = ExptCCA1
A (0, z)

• (pki, ski)← Gen(1n) for i ∈ [2]

• σ ← K(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m0; r
∗
1)

• c∗2 ← Enc(pk2,m0; r
∗
2)

• π∗ ← P(σ, x∗ = (c∗1, c
∗
2), w

∗ = (m0, r1, r2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

Hybrids H2:

• (pki, ski)← Gen(1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m0; r
∗
1)

• c∗2 ← Enc(pk2,m1; r
∗
2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c
∗
2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

Hybrids H1:

• (pki, ski)← Gen(1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m0; r
∗
1)

• c∗2 ← Enc(pk2,m0; r
∗
2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c
∗
2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

Hybrids H3:

• (pki, ski)← Gen(1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk2

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk2, c2)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m0; r
∗
1)

• c∗2 ← Enc(pk2,m1; r
∗
2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c
∗
2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

1-4

Hybrids H4:

• (pki, ski)← Gen(1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk2

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk2, c2)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m1; r
∗
1)

• c∗2 ← Enc(pk2,m1; r
∗
2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c
∗
2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

Hybrids H5:

• (pki, ski)← Gen(1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m1; r
∗
1)

• c∗2 ← Enc(pk2,m1; r
∗
2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c
∗
2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

Hybrids H6: = ExptCCA1
A (0, z)

• (pki, ski)← Gen(1n) for i ∈ [2]

• σ ← K(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return Dec(sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← Enc(pk1,m1; r
∗
1)

• c∗2 ← Enc(pk2,m1; r
∗
2)

• π∗ ← P(σ, x∗ = (c∗1, c
∗
2), w

∗ = (m1, r1, r2))

• Output A(z, pk′, C = (c∗1, c
∗
2, π
∗))

In short, the changes in hybrids are:

- H0 : ExptCCA1
A (1, z).

- H1: Simulate the CRS in public-key and simulate the proof in challenge ciphertext.

- H2: Modify c∗2 in challenge ciphertext to be an encryption of m1.

- H3: Change the decryption key to sk2.

1-5

- H4: Modify c∗2 in challenge ciphertext to be an encryption of m1.

- H5: Change the decryption key back to sk1.

- H6 : ExptCCA1
A (0, z):

Now we argue the indistinguishability of these hybrids.

H0 ≈ H1 : This follows from the zero knowledge property of NIZK. Suppose that A′ can distin-
guish H0 and H1 with at least a noticeable probability 1

p(n) where p(n) is a polynomial function.

Then we can build a distinguisher D against the zero-knowledge property of NIZK: on input (σ, π),
D runs the experiment with (σ) and π∗ replaced by input. D runs as follows:
D(σ, π)

- (pki, ski)← Gen(1n) for i ∈ [2]

- pk′ = (pk1, pk2, σ), sk′ = sk1

- Receive decryption queries from A: c = (c1, c2, π) from A(z, pk′), if V(σ, x = (c1, c2), π) = 1,
return Dec(sk′ = sk1, c1)

- (m0,m1)← A(z, pk′)

- c∗1 ← Enc(pk1,m0; r
∗
1)

- c∗2 ← Enc(pk2,m0; r
∗
2)

- Pass the output A(z, pk′, C = (c∗1, c
∗
2, π)) to A′. If A′ says the output is sampled from H0,

output ”real proof”. Else if A′ says the output is from H1, output ”simulated proof”.

Notice that Pr[D outputs real proof] = Pr[A′ output H0] and that Pr[D outputs simulated proof] =
Pr[A′ output H1]. It follows that D can distinguishes the real and simulated proof with noticeable
probability 1

p(n) . This contradicts the zero-knowledge property of NIZK.

Actually, notice that even though x /∈ L, simulator (S0,S1) can still come up with a simulated
proof. Otherwise, simulator can actually decide L in polynomial time!

H1 ≈ H2 : This follows from the IND-CPA security of (Gen,Enc,Dec) with sk2. Suppose that A′
can distinguish H1 and H2 with at least a noticeable probability 1

p(n) where p(n) is a polynomial
function. Then we can build an adversary B against the IND-CPA security. B runs as follows:

- (pk1, sk1)← Gen(1n).

- Let pk2 be the public key B got from challenger.

- (σ, τ)← S0(1n)

- pk′ = (pk1, pk2, σ), sk′ = sk1

- Receive decryption queries from A: c = (c1, c2, π) from A(z, pk′), if V(σ, x = (c1, c2), π) = 1,
return Dec(sk′ = sk1, c1)

1-6

- Run A to get message query (m0,m1) and pass (m0,m1) to challenger.

- c∗1 ← Enc(pk1,m0; r
∗
1)

- Let c∗2 be the cipher text B got from challenger.

- Pass the output A(z, pk′, C = (c∗1, c
∗
2, π)) to A′. If A′ says the output is sampled from H1,

output b = 0. Else if A′ says the output is from H2, output b = 1.

When challenger choose to encrypt m0, the output passed to A′ is identical to that in H1; if
it is m1 that is encrypted, the output is identical to H2. Note that B can handle the decryption
queries from A because B generates (pk1, sk1) itself. Also, it doesn’t matter that B has no access
to the randomness used to encrypt m0, as the simulator S1 doesn’t need r2 to simulate the proof
(unlike the real prover). Thus

Pr[B distinguishes encryption of m0 and m1] = Pr[A distinguishes H1 and H2] ≥
1

p(n)

This contradicts the IND-CPA security of the PKE.

H2 ≈ H3 : This follows from the soundness of NIZK. Notice that the adversary can only makes
successful decryption queries (c1, c2) if c1 and c2 encrypts the same message. Suppose A′ can
distinguishesH2 andH3 with noticeable probability. Then Pr[A distinguishes H2 and H3] = Pr[E]
where E denotes the event that c1 and c2 encrypts different messages but V (σ, (c1, c2), π) = 1. Let
L = {(c1, c2)|c1 and c2 encrypts same message}. According to the soundness property of NIZK,
there exists ν(n) such that

Pr[σ ← K(1n), ∃(x, π)s.t.x /∈ L ∧ V (σ, x, π) = 1] ≤ ν(n)

Now we argue that

Pr[(σ, τ)← S0(1n), ∃(x, π)s.t.x /∈ L ∧ V (σ, x, π) = 1] ≤ ν(n)

If not, suppose the probability above is at least 1
p(n) where p(·) is a polynomial function. We can

then build distinguisher B that can tell the random string and the simulated string apart. On input
σ, B runs as follows:

- (pki, ski)← Gen(1n) for i ∈ [2].

- pk′ = (pk1, pk2, σ), sk′ = sk1

- On each decryption query c = (c1, c2, π) from A(z, pk′), if Dec(sk′ = sk1, c1) 6= Dec(sk′ =
sk2, c2) but V(σ, x = (c1, c2), π) = 1, return 1. Otherwise, repeat dealing with next query.

It’s obvious that if σ is real random string, then the probability B outputs 1 is negligible. If σ is
generated by simulator, then the probability B outputs 1 is at least 1 − (1 − 1

p(n))
N where N is

the number of queries made by A. Hence B could distinguish the real random string with the one
simulated by the simulator, which is a contradiction that NIZK is zero-knowledge. Hence Pr[E] is
negligible, which implies that H2 ≈ H3.

1-7

H3 ≈ H4 : follows in the same manner as H1 ≈ H2.

H4 ≈ H5 : follows in the same manner as H2 ≈ H3.

H3 ≈ H4 : follows in the same manner as H0 ≈ H1. Notice that now c∗1 and c∗2 are encrypting
same message, hence P can come up with a valid proof.

Above all, H0 ≈ H6, which implies the IND-CCA-1 security of the scheme Gen′,Enc′,Dec′.

1-8

