
CS 600.442 – Modern Cryptography October 12, 2016

Lecture 10: Zero Knowledge Proofs (II)

Instructor: Abhishek Jain Scribe: Arka Rai Choudhuri

In this class we will first establish the zero-knowledge property of the interactive proof for graph
isomorphism discussed in the previous class. Later, we will prove that every language in NP has a
zero-knowledge proof[1]. Along the way we will also define and construct commitment schemes.

1 Zero-knowledge Proof for Graph Isomorphism

We recall the definition of zero-knowledge from the last class.

Definition 1 (Zero-knowledge) An interactive proof (P,V) for a language L with witness re-
lation R is said to be zero-knowledge if for every non-uniform PPT adversary V∗, there exists a
PPT simulator S such that for every non-uniform PPT distinguisher D, there exists a negligible
function ν(·) such that for every x ∈ L,w ∈ R(x), z ∈ {0, 1}∗, D distinguishes between the following
distributions with probability at most ν(|x|):{

ViewV ∗ [P(x,w)↔ V∗(x, z)]
}

and
{
S(1n, x, z)

}
.

This definition is based on the computational indistinguishability of the two distributions, and
is thus also referred to as computational zero-knowledge. In similar vein, we have two other variants
of zero-knowledge:
• If the distributions are statistically close, then we call it statistical zero-knowledge.
• If the distributions are identical, then we call it perfect zero-knowledge.

In the last class we described the protocol for an interactive proof for graph isomorphism. This
protocol is reproduced below:
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Interactive proof for Graph Isomorphism

Repeat the following procedure n times using fresh randomness

P((G0, G1), π) V((G0, G1), z)

σ
$←−Πn

H = σ(G0)

H

b
$←−{0, 1}

b

If b = 0, ϕ = σ

Otherwise, ϕ = σ · π−1

ϕ

Output 1 iff H = ϕ(Gb)

We already discussed that the protocol is an interactive proof by demonstrating its completeness
and soundness properties. We now turn our attention to showing that it also satisfies the zero-
knowledge property.

Note that the protocol is iterated n times for the soundness property. We will prove that a
single iteration of the proof is perfect zero-knowledge. This extends to the full protocol from the
following result:

Theorem 1 Sequential repetition of any zero-knowledge protocol is also zero-knowledge.

A proof sketch, which is skipped here, can be seen in section 7.2.1 of [3].
To prove a single iteration of the interactive proof is perfect zero-knowledge, we need to perform

the following steps:

• Construct a simulator S for every PPT V ∗.

• Prove that the expected run time of S is polynomial.

• Prove that the output distribution of S is indistinguishable from the real execution.

The simulator is defined below,
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S(x, z)

b′
$←−{0, 1}, σ $←−Πn

H = σ(Gb′)

Emulate execution of V ∗(x, z) by feeding it H. Let b be its response.

If b = b′

Feed σ to V ∗ and output its view.

Else

Restart above procedure.

We briefly discuss the need to restart the procedure in the simulator. In the case that b 6= b′,
the correct response would require the knowledge of π, which the simulator doesn’t know (if it did,
the adversary has all the ‘knowledge’ it needs). So the procedure is restarted with the hope that
we will have b = b′ eventually.

The following lemma will aid us in performing the remaining two steps.

Lemma 2 In the execution of S(x, z),

• H is identically distributed to σ(G0), and

• Pr[b = b′ ] = 1
2

Proof. Since G0 is isomorphic to G1, for a random σ
$←−Πn, the distributions σ(G0) and σ(G1)

are identically distributed. Thus, H has a distribution that is independent of b′. Therefore, H has
the same distribution as σ(G0).

The simulator chooses b′ independently from x and z. When we emulate the execution of
V ∗(x, z) on feeding H, x, z and H (as argued earlier) are independent of b′. Thus the output of V ∗
will be independent of b′. Since b′ is chosen at random, Pr[b = b′ ] = 1

2 .

Run time: From the above lemma, we see that a single iteration of S has a success probability of
1
2 . Thus the expected number of iterations before S succeeds is 2. Since each iteration emulates a
PPT adversary V ∗ in addition to some other polynomial time operations, it takes polynomial time.
This in turn implies that the expected running time of S is polynomial.

Indistinguishability of Simulated View: The above lemma also shows that H has the same
distribution as σ(G0). If we could always output σ, then the output distribution of S would match
the distribution in the real execution. This is taken care of when we check if b = b′, and outputs
H and σ only if it is true. But since H is independent of b′, this does not change the output
distribution.

2 Reflections on Zero Knowledge

The proof of zero-knowledge property using a simulator may seem a little paradoxical for the
following reasons:

• Protocol execution convinces V of the validity of x.

• But V could have generate the protocol transcript on his own.
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To understand why there is no paradox, consider the following story:

Alice and Bob run the above protocol on input (G0, G1) where Alice acts as P and Bob as
V. Now, Bob goes to Eve and tells her that G0 and G1 are isomorphic. Eve is skeptical
about what Bob knows and asks how he knew this to be true. Bob then shows her the
accepting transcript. But Eve knows all about simulators and doesn’t believe Bob. She
tells him that anyone could have come up with the transcript without actually knowing
the isomorphism. Bob is now annoyed, and persists by telling her that he computed the
transcript talking to Alice, who answered his every query correctly. But Eve remains
unmoved.

The two most important points of the above story are:

• Bob participated in a “live” conversation with Alice, and was convinced how the transcript
was generated.

• Eve on the other hand did not see the live conversation, and has no way to tell if the transcript
is from a real execution or produced by a simulator.

Thus, zero-knowledge is about transcripts while soundness is about “live” executions because
of the random challenges.

3 Zero-knowledge Proofs for NP

We now prove a powerful theorem assuming the existence of one-way permutations. The theorem
essentially states that anything that can be proved (and verified efficiently), can also be proved in
zero-knowledge. The formal statement is,

Theorem 3 If one-way permutations exist, then every language in NP has a zero-knowledge in-
teractive proof.

Remark 1 The assumption of one-way permutations in the above theorem can be relaxed to only
one-way functions.

Now, let us consider how we could prove the above theorem. Could we achieve this by constructing
a zero-knowledge proof for each language in NP? That would be ridiculously inefficient. Instead
we focus on NP-complete languages, and rely on their ‘completeness’ property.

Proof. The proof proceeds in two steps:

Step 1: Construct a zero-knowledge proof for an NP-complete language. We will consider Graph 3-
Coloring, which is the language of all graphs whose vertices can be colored using only three
colors such that no two connected vertices have the same color.

Step 2: To construct zero-knowledge proof for any NPlanguage L, do the following

– Given instance x and witness w, P and V reduce x into an instance x′ of Graph 3-Coloring
using Cook’s deterministic reduction. The determinism ensures that both P and V end
up with the same value x′.
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– P also applies the reduction to the witness w to obtain witness w′ for x′.

– Now, P and V can run the zero-knowledge proof from Step 1 on the common input x′.

We shall first show a “physical” proof. Here the colors are represented by numbers {1, 2, 3}.
Let Π{1,2,3} denote the set of all permutations over {1, 2, 3} and colori refers to the ‘color’ of vertex

vi ∈ V where |V | = n. We also define colori to be a locked box containing colori. As with any
locked box, it has a key keyi which locks and unlocks it. Obviously, it should be hard, if not
impossible, to open or view the contents of this locked box without the key (we assume the box is
opaque). The physical interactive proof follows below,

Interactive proof for Graph Isomorphism

Repeat the following procedure n|E| times using fresh randomness

P(G, (color1, · · · , colorn)) V(G, z)

π
$←−Π{1,2,3}

∀i ∈ [n], c̃olori = π(colori)

∀i ∈ [n], c̃olori
lock−−→
keyi

c̃olori (
c̃olori , · · · , c̃olori

)

(u, v)
$←−E

(u, v)

keyu, keyv

c̃oloru
unlock−−−−→
keyu

c̃oloru

c̃olorv
unlock−−−−→
keyv

c̃olorv

If c̃oloru 6= c̃olorv Accept; else Reject

The completeness is trivial, and the intuitions for soundness follows from the fact that in each
iteration, a cheating prover is caught with probability 1

|E| (we shall explain this later). For zero-
knowledge, in each iteration, V only sees something it knew before - two random but different
colors.

To “digitize” the above proof, we need some way to implement these locked boxes. Specifically,
we need the two following properties about locked boxes:

• Hiding: V should not be able to see the contents inside a locked box.
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• Binding: P should not be able to modify the content inside a box once it is locked.

Why do we even care about the second property? It’s something that’s so obvious about
“physical” locked boxes that we often forget it exists. But this is what stops P from cheating when
it doesn’t know a correct coloring. If this property wasn’t present, P on receiving (u, v) could
modify the contents in the locked boxes containing the colorings of u and v to always unlock to
different values. This would let P always convince V even without knowing the solution (coloring),
thus violating the soundness requirement.

4 Commitment Schemes

The digital analogue of ‘locked’ boxes contains of two phases: A Commit phase: where the sender
locks a value v inside a box. And a reveal phase: where the sender unlocks the box and reveals v.
This can be implemented using interactive protocols, but we will consider the non-interactive case
where both commit and reveal phases will consist of a single message. We call the digital analogue
“commitment schemes” and formally define them,

Definition 2 (Commitment) A randomized polynomial-time algorithm Com is called a com-
mitment scheme for n-bit strings if it satisfies the following properties:

• Binding: For all v0, v1 ∈ {0, 1}n and r0, r1 ∈ {0, 1}n it holds that

Com(v0; r0) 6= Com(v1; r1).

• Hiding: For every non-uniform PPT distinguisher D, there exists a negligible function ν(·)
such that for every v0, v1 ∈ {0, 1}n, D distinguishes between the following distribution with
probability at most ν(n){

r
$←−{0, 1}n : Com(v0; r)

}
and

{
r

$←−{0, 1}n : Com(v1; r)
}
.

The above definition talks about perfect binding and computational hiding. Why don’t we have
perfect binding and perfect hiding? This is unfortunately impossible. It’s left as an exercise to the
reader to see why this is the case.

This definition only guarantees hiding for a single commitment. What about multi-value hiding?
We sketch its definition here, similar to multi-message secure encryption schemes. Specifically, the
adversary A needs to guess the bit b chosen by the challenger below.

Challenger A(
(v01 , v

1
1), · · · , (v0l , v1l )

)
b

$←−{0, 1}

∀i ∈ [l], r
$←−{0, 1}n;Ci = Com(vbi ; ri)

(C1, · · · , Cn)

b′
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For security we require that the adversary A has only a negligible advantage in guessing b.
We now claim that any commitment scheme satisfies multi-value hiding. Like public-key encryp-
tion, commitment schemes do not have any ‘key’, and we follow the same technique. The formal
proof is left as an exercise. The corollary to this claim is that one-bit commitment implies string
commitment.

Construction. The following theorem shows us how to construct a bit commitment scheme based
on one-way permutations. Other such constructions based on pseudorandom generators, among
others, exist too[2].

Theorem 4 If one-way permutations exist, then commitment schemes exist.

Proof. Let f be a one-way permutation and h be the hard core predicate for f . We shall use these
primitives to construct a bit-commitment scheme.

Commit phase: For this phase the sender computes C = Com(b; r) = (f(r), h(r) ⊕ b). The bit b is
being masked by h(r).

Open phase: Sender reveals (b, r). Receiver accepts if C = (f(r), h(r)⊕ b), and reject otherwise.

Binding follows from the fact that f is a permutation. Hence f(r1) = f(r2)⇐⇒ r1 = r2. The hard
core bit is deterministic once r is fixed, thus ensuring binding.

For hiding we follow the proof for proving a secure single bit encryption scheme based on trapdoor
permutation. For us, the trapdoor makes no difference to the binding or hiding properties and thus
follows immediately.

Now that we have our digital “locked boxes”, we can proceed to our zero-knowledge proof for
Graph 3-coloring.

5 Zero-knowledge Proof for Graph 3-coloring

The protocol for the interactive proof is presented below,
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Interactive proof for Graph Isomorphism

Repeat the following procedure n|E| times using fresh randomness

P(G, (color1, · · · , colorn)) V(G, z)

π
$←−Π{1,2,3}

∀i ∈ [n], c̃olori = π(colori)

∀i ∈ [n], Ci = Com(c̃olori; ri)

(C1, · · · , Cn)

(u, v)
$←−E

(u, v)

(c̃oloru; ru), (c̃olorv; rv)

If Cu, Cv are valid

and c̃oloru 6= c̃olorv Accept

else Reject

The completeness trivially follows from the fact that knowledge of the right coloring ensures that
the prover never fails. We need to prove the soundness and zero-knowledge for for the interactive
proof.

Proof of Soundness:
Let G be the graph that is not 3-colorable. Then any coloring color1, · · · , colorn will have at

least one edge which have the same colors on both endpoints. Let one such edge be (i∗, j∗). From

the binding property of Com, we know that C1, · · · , Cn have unique openings c̃olor1 · · · , c̃olorn. In
each iteration P chooses (u, v) = (i∗, j∗) with probability 1

|E| . There might be other such edges
too, but we take the pessimistic approach of assuming only one such edge. The cheating P only
succeeds if it is able to cheat in every iteration. Therefore, the probability P successfully cheats in
every one of the n|E| iterations is at most:(

1− 1

|E|

)n|E|
≈ e−n.

As required, this satisfies the soundness requirement.
We are left with the proof for zero-knowledge, which we shall complete in the next class.
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