
CS 600.442 – Modern Cryptography 09/21/16

Lecture 4: Pseudorandomness (Part II)

Instructor: Abhishek Jain Scribe: Yeon Woo Kim

1 Next-bit Unpredictability ⇒ Pseudorandomness

Theorem 1 (Completeness of Next-bit Test) If {Xn} is next-bit unpredictable then {Xn} is
pseudorandom.

Proof. of Theorem 1.
FSOC, suppose ∃ a n.u. PPT distinguisher D, and a polynomial p(·) s.t. for infinitely many n ∈
N, D distinguishes Xn and Ul(n) with probability 1

p(n) . Let A be a machine that predicts the next
bit of Xn for every n. A sequence of hybrid distributions is defined as:

H i
n = {x← Xn : u← U`(n) : x0x1...xiui+1ui+2...u`(n)}

Note that the first hybrid H0
n is the uniform distribution U`(n), and the last hybrid H

`(n)
n is the

distribution Xn. Thus, D distinguishes between H0
n and H

`(n)
n with probability 1

p(n) . By hybrid

lemma, ∃ some i ∈ [0, `(n)] s.t. D distinguishes between H i
n and H i+1

n with probability 1
p(n)`(n) .

The only difference between H i+1 and H i is that in H i+1, (i + 1)th bit is xi+1, and in H i, it is
ui+1. Thus, given only x1...xi, D can distinguish xi+1 from the random set. The distribution H̃ i

n

is defined as:

H̃ i
n = {x← Xn : u← U`(n) : x0x1...xi−1x̄iui+1ui+2...u`(n)} where x̄i = 1− xi

Since H i
n can be sampled from either H i+1

n or H̃ i+1
n with equal probabilities,∣∣Pr

[
t← H i+1

n : D(t) = 1]− Pr[t← H i
n : D(t) = 1

]∣∣
=

∣∣∣∣Pr
[
t← H i+1

n : D(t) = 1
]
−
(

1

2
Pr
[
t← H i+1

n : D(t) = 1
]

+
1

2
Pr
[
t← H̃ i+1

n : D(t) = 1
])∣∣∣∣

=
1

2

∣∣∣Pr
[
t← H i+1

n : D(t) = 1
]
− Pr

[
t← H̃ i+1

n : D(t) = 1
]∣∣∣ .

The observation that D distinguishes H i
n and H i+1

n with probability 1
p(n)`(n) implies that D distin-

guishes H i+1
n and H̃ i+1

n with probability 2
p(n)`(n) . Therefore, by the prediction lemma, ∃ a machine

A s.t.

Pr
[
b← {0, 1}; t← H i+1,b

n : D(t) = b
]
>

1

2
+

1

p(n)`(n)

where b = 1 if A predicts a sample came from H i+1
n and b = 0 if it is from H̃ i+1

n . Then, we
construct a machine A′ that predicts the (i+1)th bit of the pseudorandom sequence, xi+1. A′ picks
`(n) − i random bits from ui+1...u`(n) ← U `(n)−1 and run g ← A(t1...tiui+1...u`(n)). If g = 1 then
A′ outputs ui+1, else A′ outputs ūi+1 = 1− ui+1. Then,

Pr
[
t← Xn : A′(1n, t1...ti) = ti+1

]
= Pr

[
b← {0, 1}; t← H i+1,b

n : A(t) = 1
]
>

1

2
+

1

p(n)`(n)

4-1

which shows that D correctly predicts the next bit with some noticeable probability. This is a
contradiction.

2 Pseudorandom Generators (PRG)

We have defined the notion of pseudorandomness and next-bit unpredictability. Now, we turn to
construct the definition of pseudorandom generators using the above theorem.

Definition 1 (Pseudorandom Generator) A deterministic algorithm G : {0, 1}n → {0, 1}n is
called a pseudorandom generator (PRG) if:

1. (efficiency): G can be computed in polynomial time

2. (expansion): |G(x)| > |x|

3. {x← {0, 1}n : G(x)} ≈c {U`(n)} where `(n) = |G(0n)|

Definition 2 (Stretch) The stretch of G is defined as: |G(x)| − |x|

We will first construct a PRG by 1-bit stretch. Then, we will show how to generically transform a
PRG with 1-bit stretch into one that achieves polynomial-bit stretch.

3 PRG with 1-bit Stretch

We can think of an initial construction of PRG as G(s) = f(s)‖h(s) where f is a one-way function
and h is the hardcore predicate associated with f . However, while h(s) is indeed unpredictable
even given f(s), this construction is not really a PRG because of the following reasons:

• |f(s)| might be less than |s|.

• f(x) may always start with a prefix, which is not random. Indeed, OWF doesn’t promise
random outputs.

To solve this problem, we will set f to be a one-way permutation (OWP) over {0, 1}n. Now, we
can address both of the above issues:

• Since f is a permutation, the domain and range have the same number of bits, i.e., |f(s)| =
|s| = n.

• f(s) is uniformly random over {0, 1}n if s is randomly chosen. In particular:

∀y : Pr[f(s) = y] = Pr[s = f−1(y)] = 2−n.

Thus, f(s) is uniform and cannot start with a fix value.

Theorem 2 (PRG based on OWP) Let f be a one-way permutation, and h be a hard-core
predicate for f . Then G(s) = f(s)‖h(s) is a PRG with 1-bit stretch.

4-2

Proof.
FSOC, suppose ∃ a n.u. PPT adversary A and a polynomial p(n) s.t. ∀n, ∃ i s.t. A predicts the
ith bit with non-negligible probability 1

p(n) . Since f is a permutation, the first n bits of G(s) are

uniformly distributed. A must predict (n+ 1)th bit with advantage 1
p(n) , i.e.

Pr[A(f(s)) = h(s)] >
1

2
+

1

p(n)

which contradicts the assumption that h(s) is hard-core for f . Thus, G is a PRG.

4 PRG with Poly-Stretch

Lemma 3 Let G : {0, 1}n → {0, 1}n+1 be a PRG. For any polynomial l, G′ : {0, 1}n → {0, 1}`(n)
is defined as:

G′(s) = b1...b`(n) where

X0 ← s

Xi+1‖bi+1 ← G(Xi)

Then, G′ is a PRG.

Proof. We first establish some notation. Let G′(s) = Gm(s), where

G0(x) = ε

Gi(x) = b‖Gi−1(x′) where x′‖b← G(x)

and ε denotes the empty string. FSOC, suppose ∃ a distinguisher D and a polynomial p(·) s.t. ∀n,
D distinguishes {Um(n)}n and {G′(Un)}n with non-negligible probability 1

p(n) .

Let H i
n = Um(n)−i‖Gi(Un) be the hybrid distributions for i = 1, ...,m(n). Then, H0

n = Um(n)

and H
m(n)
n = Gm(n)(Un) and D distinguishes H0

n and H
m(n)
n with probability 1

p(n) . By the hybrid

lemma, ∀n, ∃i s.t. D distinguishes H i
n and H i+1

n with probability 1
m(n)p(n) . Then,

H i
n = Um−i‖Gi(Un)

= Um−i−1‖U1‖Gi(Un)

H i+1
n = Um−i−1‖Gi+1(Un)

= Um−i−1‖b‖Gi(x) where x‖b← G(Un)

Suppose ∃ a n.u. PPT M(y) that outputs from the following experiment:

bprev ← Um−i−1

b← y1

bnext ← Gi(y2...yn+1)

Output bprev‖b‖bnext

The output of D is distributed identically to the output of H i
n if the input was sampled from Un+1

and H i+1
n if it was from G(Un). Since {Un+1}n ≈ {G(Un)}n with advantage 1

p(n)`(n) and G runs in

polynomial time, {H i
n}n ≈ {H i+1

n }n, which is a contradiction.

4-3

5 Going beyond Poly Stretch

PRGs can only generate polynomially long pseudorandom strings. What if we want exponentially
long pseudorandom strings? How can we efficiently generate them? One way to do this is by using
functions that index exponentially long pseudorandom strings.

Towards that end, let us start by defining a random function? Consider a function f : {0, 1}n →
{0, 1}n. If we write f as a table, where first column has input strings from 0n to 1n and the second
column has the function value against each input, each row of the table is of the form (x, f(x)).
Then, the size of the table is 2n × n = n2n. Thus, the total number of functions that map n bits
to n bits is 2n2

n
.

To define a random function, we can use one of the two methods:

1. Select a random function F uniformly at random from all 2n2
n

functions that map n bits to
n bits

2. Use a randomized algorithm to describe the function

• A randomized program M keeps a table T (initially empty) to implement a random
function F

• On input x,

– if x is not in the table, choose a random string y and add the entry (x, y) to T

– otherwise, M picks (x, y) corresponding to x from T , and outputs the entry

• The distribution of M ’s output is identical to that of F .

However, truly random functions are huge random objects. Neither of the methods allows us
to store the entire function efficiently. But with the second method, M will only need polynomial
space and time to store and query T , if one makes polynomial calls to the random function.

Pseudorandom Functions (PRF): Intuition. PRF looks like a random function and is de-
scribed in polynomial bits. At first, it seems like a good idea to use computational indistinguisha-
bility to make PRF “look like” a Random Function. However, the main issue with this idea is that
a random function is of an exponential size. If D can’t even read the input efficiently, then it can
distinguish between PRFs and RFs by looking at its input size, and computational indistinguisha-
bility is violated. One way to solve this issue is to allow D to only query the function on inputs of
its choice, and let it see the output. We’ll formalize this idea in the next lecture.

4-4

