1 Recall definitions from last lecture

Definition 1 A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is one way function if it satisfies:

1. \exists a PPT algorithm \mathcal{C} s.t. $\forall x \in\{0,1\}^{*}, \operatorname{Pr}[\mathcal{C}(x)=f(x)]=1$.
2. \exists a negligible function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ s.t. for every non-uniform PPT adversary \mathcal{A} and $\forall n \in \mathbb{N}$: $\operatorname{Pr}\left[x \stackrel{\$}{\leftarrow}\{0,1\}^{n}, x^{\prime} \stackrel{\$}{\leftarrow} \mathcal{A}\left(1^{n}, f(x)\right): f\left(x^{\prime}\right)=f(x)\right] \leq \mu(n)$.

Definition 2 A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a weak one way function if it satisfies:

1. \exists a PPT algorithm \mathcal{C} s.t. $\forall x \in\{0,1\}^{*}, \operatorname{Pr}[\mathcal{C}(x)=f(x)]=1$.
2. \exists a noticeable function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ s.t. for every non-uniform PPT adversary \mathcal{A} and $\forall n \in \mathbb{N}$: $\operatorname{Pr}\left[x \stackrel{\$}{\leftarrow}\{0,1\}^{n}, x^{\prime} \stackrel{\$}{\leftarrow} \mathcal{A}\left(1^{n}, f(x)\right): f\left(x^{\prime}\right) \neq f(x)\right] \geq \varepsilon(n)$.

$2 f_{\times}$is a weak OWF

$f_{\times}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is defined as:

$$
f_{\times}=\left\{\begin{array}{lc}
\perp & \text { if } \quad x=1 \vee y=1 \\
x \cdot y \quad \text { otherwise }
\end{array}\right.
$$

Theorem $1 f_{\times}$is a weak one way function.

Proof.

Proof via definition: Let GOOD be the set of of input (x, y) that both x and y are prime.
Then we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{A} \text { inverts } f_{\times}\right] \\
= & \operatorname{Pr}\left[\mathcal{A} \text { inverts } f_{\times} \mid(x, y) \in \mathrm{GOOD}\right] \operatorname{Pr}[(x, y) \in \mathrm{GOOD}] \\
+ & \operatorname{Pr}\left[\mathcal{A} \text { inverts } f_{\times} \mid(x, y) \notin \mathrm{GOOD}\right] \operatorname{Pr}[(x, y) \notin \mathrm{GOOD}]
\end{aligned}
$$

Then according to the Factoring Assumption, when $(x, y) \in \operatorname{GOOD}, \mathcal{A}$ could invert f_{\times}with a probability no more than a negligible function $\nu(n)$. Using Chebyshev' theorem, an n bit number is a prime number with probability $\frac{1}{2 n}$, we can get

$$
\operatorname{Pr}[A] \leq \nu(n) \frac{1}{4 n^{2}}+1\left(1-\frac{1}{4 n^{2}}\right)=1-\frac{1}{4 n^{2}}(1-\nu(n))
$$

Now we only need to prove that $\frac{1}{4 n^{2}}(1-\nu(n))$ is a noticeable function. Considering that $\forall c>$ $0, \nu(n) \leq \frac{1}{n^{c}}$, we can conclude that for $n \geq 2,1-\nu(n) \geq \frac{1}{n}$. Thus $\frac{1}{4 n^{2}}(1-\nu(n)) \geq \frac{1}{4 n^{3}}$ is noticeable. Hence f_{\times}is a weak OWF.

Proof via reduction: Suppose that f_{\times}is not a weak OWF, then we can construct an adversary breaking the factoring assumption. Assume that there exists a non-uniform PPT algorithm \mathcal{A} inverting f_{\times}with probability at leats $1-\frac{1}{8 n^{2}}$. That is

$$
\operatorname{Pr}\left[(x, y) \stackrel{\$}{\leftarrow}\{0,1\}^{n} \times\{0,1\}^{n}, z=x \cdot y, \mathcal{A}\left(1^{2 n}, z\right) \in f_{\times}^{-1}(z)\right] \geq 1-\frac{1}{8 n^{2}}
$$

Now we construct a non-uniform adversary algorithm \mathcal{B} on input z (which is a product of two random n-bit prime numbers) to break the factoring assumption. \mathcal{B} runs as follows:

1. Pick (x, y) randomly from $\{0,1\}^{n} \times\{0,1\}^{n}$;
2. if x, y are both prime, let $z^{\prime}=z$;
3. else, let $z^{\prime}=x y$;
4. run $\omega=A\left(1^{2 n}, z^{\prime}\right)$;
5. if x, y are both prime, return ω.

The reason of randomly choosing (x, y) instead of passing the input directly to \mathcal{A} is that, the input of \mathcal{B} is a product of two random n-bit primes while that of \mathcal{A} is the product of two random n-bit numbers. Passing the input directly to \mathcal{A} would destroy the uniformly distribution of the input \mathcal{A} expect.

Now we calculate the probability that \mathcal{B} fails to break factoring assumption. We use notation as below:
$\operatorname{Pr}[\mathcal{B}$ fails to break factoring assumption $]$
$=\operatorname{Pr}[\mathcal{B}$ pass input to $\mathcal{A}] \operatorname{Pr}\left[\mathcal{A}\right.$ fails to invert $\left.f_{\times}\right]+\operatorname{Pr}[\mathcal{B}$ fails to pass input to $\mathcal{A}]$
$\leq \operatorname{Pr}\left[\mathcal{A}\right.$ fails to invert $\left.f_{\times}\right]+\operatorname{Pr}[\mathcal{B}$ fails to pass input to $\mathcal{A}]$
$\leq \frac{1}{8 n^{2}}+\left(1-\frac{1}{4 n^{2}}\right)+\leq 1-\frac{1}{8 n^{2}}$
Thus \mathcal{B} breaks factoring assumption with a noticeable probability. And we get contraction.

3 Weak to strong OWF

Theorem 2 For any weak $O W F f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \exists$ polynomial $N(\cdot)$ s.t. $F:\{0,1\}^{n N(n)} \rightarrow$ $\{0,1\}^{n N(n)}: F\left(x_{1}, \ldots, x_{N}(n)\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right)$ is a strong $O W F$.

Proof.

Since f is weak OWF, then let $q: \mathbb{N} \rightarrow \mathbb{N}$ be a polynomial function, and for every non-uniform \mathcal{A}

$$
\operatorname{Pr}\left[x \stackrel{\$}{\leftarrow}\{0,1\}^{n}, y=f(x), \mathcal{A}\left(1^{n}, y\right) \in f^{-1}(y)\right] \leq 1-\frac{1}{q(n)}
$$

We want to find a N s.t. $\left(1-\frac{1}{q(n)}\right)^{N}$ tends to be very small. Thus we pick $N=2 n q(n)$, and $\left(1-\frac{1}{q(n)}\right)^{N} \sim e^{-2 n}$.

Suppose that F is not a strong OWF. Then \exists polynomial function $p(\cdot)$ and a non-uniform \mathcal{A}^{\prime} s.t.
$\operatorname{Pr}\left[\left(x_{1}, \ldots, x_{N}\right) \stackrel{\$}{\left.\stackrel{\$}{\leftarrow}\{0,1\}^{n N},\left(y_{1}, \ldots, y_{N}\right)=F\left(x_{1}, \ldots, x_{N}\right), \mathcal{A}^{\prime}\left(1^{n N},\left(y_{1}, \ldots, y_{N}\right)\right) \in F^{-1}\left(y_{1}, \ldots, y_{N}\right)\right] \geq \frac{1}{p(n N)}, ~(n)}\right.$
Now we construct a non-uniform $\operatorname{PPT} \mathcal{B}$ to break f with probability more than $1-\frac{1}{q(n)}$.
First we construct \mathcal{B}_{0} on input $y=f(x)$ for random $x \in\{0,1\}^{n}$ as follows:

1. Randomly pick $i \in[1, N]$
2. For $j \neq i$, randomly pick $x_{j} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, let $y_{j}=f\left(x_{j}\right)$. Let $y_{i}=y$.
3. Let $\left(z_{1}, \ldots, z_{N}\right)=\mathcal{A}^{\prime}\left(1^{n N},\left(y_{1}, \ldots, y_{N}\right)\right)$.
4. If $f\left(z_{i}\right)=y$, output Z_{i}; otherwise, output \perp

To improve the chance of inverting f, we define $\mathcal{B}:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \cup \perp$ on input y to run $B_{0}(y)$ for $2 n N p(n N)$ times independently (to choose x_{j} independently and randomly each time). \mathcal{B} outputs the first non- \perp it receives. Otherwise \mathcal{B} returns \perp.

Let BAD be the set that \mathcal{B}_{0} inverts f with a probability at least $\frac{1}{2 N p(n N)}$ if $x \in \operatorname{BAD}$.

$$
\mathrm{BAD}=\left\{x \in\{0,1\}^{n} \left\lvert\, \operatorname{Pr}\left[\mathcal{B}_{0}\left(1^{n}, f(x)\right) \in f^{-1}(f(x))\right] \geq \frac{1}{2 N p(n N)}\right.\right\}
$$

Then the probability that \mathcal{B} fails to invert f on BAD set is $\left(1-\frac{1}{2 N p(n N)}\right)^{2 n N p(n N)} \sim e^{-n}$, which is extremely small.

Now we prove that the fraction of BAD set is noticeable.
Lemma $3 \operatorname{Pr}[x \in \mathrm{BAD}] \geq 1-\frac{1}{2 q(n)}$.
Proof of [lemma 3]
If $\operatorname{Pr}[x \in \mathrm{BAD}]<1-\frac{1}{2 q(n)}$, then we can prove that \mathcal{A}^{\prime} is unable to break F with probability more than $\frac{1}{p(n N)}$. To prove this, we use the notations below:
E_{1} is the event that \mathcal{A}^{\prime} successfully inverts F on input $\left(y_{1}, \ldots, y_{N}\right)$.
E_{2} is the event that \mathcal{B}_{0} successfully inverts f on input y. \bar{E}_{2} is that \mathcal{B}_{0} fails.

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \mid x \in \mathrm{BAD}\right] & =\operatorname{Pr}\left[E_{1} \mid\left(E_{2} \wedge x \in \mathrm{BAD}\right)\right] \operatorname{Pr}\left[E_{2} \wedge x \in \mathrm{BAD}\right]+\operatorname{Pr}\left[E_{1} \mid \bar{E}_{2} \wedge x \in \mathrm{BAD}\right] \operatorname{Pr}\left[\bar{E}_{2} \wedge x \in B A D\right] \\
& =\operatorname{Pr}\left[E_{1} \mid E_{2} \wedge x \in \mathrm{BAD}\right] \operatorname{Pr}\left[E_{2} \wedge x \in \mathrm{BAD}\right] \leq \operatorname{Pr}\left[E_{2} \wedge x \in \mathrm{BAD}\right]
\end{aligned}
$$

Thus now we can compute the probability of $\operatorname{Pr}\left[E_{1}\right]$.

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[E_{1} \mid x \in \mathrm{BAD}\right] \operatorname{Pr}[x \in \mathrm{BAD}]+\operatorname{Pr}\left[E_{1} \mid x \notin \mathrm{BAD}\right] \operatorname{Pr}[x \in \mathrm{BAD}] \\
& =\operatorname{Pr}\left[E_{1} \mid x_{i} \in \mathrm{BAD}, \forall i\right] \operatorname{Pr}\left[x_{i} \in \mathrm{BAD}, \forall i\right]+\operatorname{Pr}\left[E_{1} \mid \exists j, x_{j} \notin \mathrm{BAD}\right] \operatorname{Pr}\left[\exists j, x_{j} \notin \mathrm{BAD}\right] \\
& \leq \operatorname{Pr}\left[E_{1} \mid x_{i} \in \mathrm{BAD}, \forall i\right] \operatorname{Pr}\left[x_{i} \in \mathrm{BAD}, \forall i\right]+\sum_{j} \operatorname{Pr}\left[E_{1} \mid x_{j} \notin \mathrm{BAD}\right] \operatorname{Pr}\left[\exists j, x_{j} \notin \mathrm{BAD}\right] \\
& \leq \operatorname{Pr}\left[E_{1} \mid x_{i} \in \mathrm{BAD}, \forall i\right] \operatorname{Pr}\left[x_{i} \in \mathrm{BAD}, \forall i\right]+\operatorname{Nr}\left[E_{2} \mid x_{j} \in \mathrm{BAD}\right] \operatorname{Pr}\left[\exists j, x_{j} \notin \mathrm{BAD}\right] \\
& \leq \operatorname{Pr}\left[x_{i} \in \mathrm{BAD}, \forall i\right]+N \frac{1}{2 N p(n N)} \\
& \leq\left(1-\frac{1}{2 q(n)}\right)^{2 n q(n)}+\frac{1}{2 p(n N)} \\
& \leq e^{-n}+\frac{1}{2 p(n N)} \\
& \leq \frac{1}{p(n N)}
\end{aligned}
$$

And this means that \mathcal{A}^{\prime} is unable to break F with probability more than $\frac{1}{p(n N)}$. And we get contradiction.

Now that we know $\operatorname{Pr}[x \in \mathrm{BAD}] \geq 1-\frac{1}{2 q(n)}$, we can compute the probability that \mathcal{B} fails to invert f. We denote this event as \bar{E}_{B}.

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{E}_{B}\right] & =\operatorname{Pr}\left[\bar{E}_{B} \mid x \in \mathrm{BAD}\right] \operatorname{Pr}[x \in \mathrm{BAD}]+\operatorname{Pr}\left[\bar{E}_{B} \mid x \notin \mathrm{BAD}\right] \operatorname{Pr}[x \notin \mathrm{BAD}] \\
& \leq e^{-n} \operatorname{Pr}[x \in \mathrm{BAD}]+\operatorname{Pr}[x \notin \mathrm{BAD}] \\
& \leq\left(1-\frac{1}{2 q(n)}\right)+\frac{1}{2 q(n)} \\
& \leq \frac{1}{q(n)}
\end{aligned}
$$

which is contradict with the condition that f is weak OWF. Thus F is a strong OWF.

