CS 600.442 – Modern Cryptography

Lecture 2: One-way functions(Part II)

Instructor: Abhishek Jain

Scribe: Ke Wu

Sep 14th

1 Recall definitions from last lecture

Definition 1 A function $f : \{0,1\}^* \to \{0,1\}^*$ is one way function if it satisfies:

- 1. $\exists a PPT algorithm C s.t. \forall x \in \{0,1\}^*, Pr[C(x) = f(x)] = 1.$
- 2. \exists a negligible function $\mu : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT adversary \mathcal{A} and $\forall n \in \mathbb{N}$: $Pr[x \stackrel{\$}{\leftarrow} \{0,1\}^n, x' \stackrel{\$}{\leftarrow} \mathcal{A}(1^n, f(x)) : f(x') = f(x)] \leq \mu(n).$

Definition 2 A function $f : \{0,1\}^* \to \{0,1\}^*$ is a weak one way function if it satisfies:

- 1. $\exists a PPT algorithm C s.t. \forall x \in \{0,1\}^*, Pr[C(x) = f(x)] = 1.$
- 2. \exists a noticeable function $\varepsilon : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT adversary \mathcal{A} and $\forall n \in \mathbb{N}$: $Pr[x \stackrel{\$}{\leftarrow} \{0,1\}^n, x' \stackrel{\$}{\leftarrow} \mathcal{A}(1^n, f(x)) : f(x') \neq f(x)] \geq \varepsilon(n).$

2 f_{\times} is a weak OWF

 $f_{\times}: \mathbb{N}^2 \to \mathbb{N}$ is defined as:

$$f_{\times} = \begin{cases} \bot & if \quad x = 1 \lor y = 1 \\ x \cdot y & otherwise \end{cases}$$

Theorem 1 f_{\times} is a weak one way function.

Proof.

Proof via definition: Let GOOD be the set of of input (x, y) that both x and y are prime. Then we have

$$\begin{split} & Pr[\mathcal{A} \text{ inverts } f_{\times}] \\ = & Pr[\mathcal{A} \text{ inverts } f_{\times}|(x,y) \in \mathsf{GOOD}]Pr[(x,y) \in \mathsf{GOOD}] \\ & + & Pr[\mathcal{A} \text{ inverts } f_{\times}|(x,y) \notin \mathsf{GOOD}]Pr[(x,y) \notin \mathsf{GOOD}] \end{split}$$

Then according to the Factoring Assumption, when $(x, y) \in \text{GOOD}$, \mathcal{A} could invert f_{\times} with a probability no more than a negligible function $\nu(n)$. Using Chebyshev' theorem, an n bit number is a prime number with probability $\frac{1}{2n}$, we can get

$$Pr[A] \le \nu(n)\frac{1}{4n^2} + 1(1 - \frac{1}{4n^2}) = 1 - \frac{1}{4n^2}(1 - \nu(n))$$

Now we only need to prove that $\frac{1}{4n^2}(1-\nu(n))$ is a noticeable function. Considering that $\forall c > 0, \nu(n) \leq \frac{1}{n^c}$, we can conclude that for $n \geq 2, 1-\nu(n) \geq \frac{1}{n}$. Thus $\frac{1}{4n^2}(1-\nu(n)) \geq \frac{1}{4n^3}$ is noticeable. Hence f_{\times} is a weak OWF.

Proof via reduction: Suppose that f_{\times} is not a weak OWF, then we can construct an adversary breaking the factoring assumption. Assume that there exists a non-uniform PPT algorithm \mathcal{A} inverting f_{\times} with probability at leass $1 - \frac{1}{8n^2}$. That is

$$Pr[(x,y) \stackrel{\$}{\leftarrow} \{0,1\}^n \times \{0,1\}^n, z = x \cdot y, \mathcal{A}(1^{2n},z) \in f_{\times}^{-1}(z)] \ge 1 - \frac{1}{8n^2}$$

Now we construct a non-uniform adversary algorithm \mathcal{B} on input z (which is a product of two random n-bit prime numbers) to break the factoring assumption. \mathcal{B} runs as follows:

- 1. Pick (x, y) randomly from $\{0, 1\}^n \times \{0, 1\}^n$;
- 2. if x, y are both prime, let z' = z;
- 3. else, let z' = xy;
- 4. run $\omega = A(1^{2n}, z');$
- 5. if x, y are both prime, return ω .

The reason of randomly choosing (x, y) instead of passing the input directly to \mathcal{A} is that, the input of \mathcal{B} is a product of two random n-bit primes while that of \mathcal{A} is the product of two random n-bit numbers. Passing the input directly to \mathcal{A} would destroy the uniformly distribution of the input \mathcal{A} expect.

Now we calculate the probability that \mathcal{B} fails to break factoring assumption. We use notation as below:

 $\begin{aligned} &Pr[\mathcal{B} \text{ fails to break factoring assumption}] \\ &= Pr[\mathcal{B} \text{ pass input to } \mathcal{A}]Pr[\mathcal{A} \text{ fails to invert } f_{\times}] + Pr[\mathcal{B} \text{ fails to pass input to } \mathcal{A}] \\ &\leq Pr[\mathcal{A} \text{ fails to invert } f_{\times}] + Pr[\mathcal{B} \text{ fails to pass input to } \mathcal{A}] \\ &\leq \frac{1}{8n^2} + (1 - \frac{1}{4n^2}) + \leq 1 - \frac{1}{8n^2} \end{aligned}$

Thus \mathcal{B} breaks factoring assumption with a noticeable probability. And we get contraction.

3 Weak to strong OWF

Theorem 2 For any weak OWF $f : \{0,1\}^n \to \{0,1\}^n$, \exists polynomial $N(\cdot)$ s.t. $F : \{0,1\}^{nN(n)} \to \{0,1\}^{nN(n)} : F(x_1,...,x_N(n)) = (f(x_1),...,f(x_N))$ is a strong OWF.

Proof.

Since f is weak OWF, then let $q: \mathbb{N} \to \mathbb{N}$ be a polynomial function, and for every non-uniform \mathcal{A}

$$Pr[x \xleftarrow{\$} \{0,1\}^n, y = f(x), \mathcal{A}(1^n, y) \in f^{-1}(y)] \le 1 - \frac{1}{q(n)}$$

We want to find a N s.t. $(1 - \frac{1}{q(n)})^N$ tends to be very small. Thus we pick N = 2nq(n), and $(1 - \frac{1}{q(n)})^N \sim e^{-2n}$.

Suppose that F is not a strong OWF. Then \exists polynomial function $p(\cdot)$ and a non-uniform \mathcal{A}' s.t.

$$Pr[(x_1, ..., x_N) \xleftarrow{\$} \{0, 1\}^{nN}, (y_1, ..., y_N) = F(x_1, ..., x_N), \mathcal{A}'(1^{nN}, (y_1, ..., y_N)) \in F^{-1}(y_1, ..., y_N)] \ge \frac{1}{p(nN)}$$

Now we construct a non-uniform PPT \mathcal{B} to break f with probability more than $1 - \frac{1}{q(n)}$.

First we construct \mathcal{B}_0 on input y = f(x) for random $x \in \{0, 1\}^n$ as follows:

- 1. Randomly pick $i \in [1, N]$
- 2. For $j \neq i$, randomly pick $x_j \xleftarrow{\$} \{0,1\}^n$, let $y_j = f(x_j)$. Let $y_i = y$.
- 3. Let $(z_1, ..., z_N) = \mathcal{A}'(1^{nN}, (y_1, ..., y_N)).$
- 4. If $f(z_i) = y$, output Z_i ; otherwise, output \perp

To improve the chance of inverting f, we define $\mathcal{B} : \{0,1\}^n \to \{0,1\}^n \cup \bot$ on input y to run $B_0(y)$ for 2nNp(nN) times independently (to choose x_j independently and randomly each time). \mathcal{B} outputs the first non- \bot it receives. Otherwise \mathcal{B} returns \bot .

Let BAD be the set that \mathcal{B}_0 inverts f with a probability at least $\frac{1}{2Np(nN)}$ if $x \in \mathsf{BAD}$.

$$\mathsf{BAD} = \{x \in \{0,1\}^n | Pr[\mathcal{B}_0(1^n, f(x)) \in f^{-1}(f(x))] \ge \frac{1}{2Np(nN)}\}$$

Then the probability that \mathcal{B} fails to invert f on BAD set is $(1 - \frac{1}{2Np(nN)})^{2nNp(nN)} \sim e^{-n}$, which is extremely small.

Now we prove that the fraction of BAD set is noticeable.

Lemma 3 $Pr[x \in BAD] \ge 1 - \frac{1}{2q(n)}$.

Proof of [lemma 3]

If $Pr[x \in \mathsf{BAD}] < 1 - \frac{1}{2q(n)}$, then we can prove that \mathcal{A}' is unable to break F with probability more than $\frac{1}{p(nN)}$. To prove this, we use the notations below:

 E_1 is the event that \mathcal{A}' successfully inverts F on input $(y_1, ..., y_N)$.

 E_2 is the event that \mathcal{B}_0 successfully inverts f on input y. \overline{E}_2 is that \mathcal{B}_0 fails.

$$Pr[E_1|x \in \mathsf{BAD}] = Pr[E_1|(E_2 \land x \in \mathsf{BAD})]Pr[E_2 \land x \in \mathsf{BAD}] + Pr[E_1|\bar{E}_2 \land x \in \mathsf{BAD}]Pr[\bar{E}_2 \land x \in BAD]$$
$$= Pr[E_1|E_2 \land x \in \mathsf{BAD}]Pr[E_2 \land x \in \mathsf{BAD}] \le Pr[E_2 \land x \in \mathsf{BAD}]$$

Thus now we can compute the probability of $Pr[E_1]$.

$$\begin{split} Pr[E_1] &= Pr[E_1|x \in \mathsf{BAD}] Pr[x \in \mathsf{BAD}] + Pr[E_1|x \notin \mathsf{BAD}] Pr[x \in \mathsf{BAD}] \\ &= Pr[E_1|x_i \in \mathsf{BAD}, \forall i] Pr[x_i \in \mathsf{BAD}, \forall i] + Pr[E_1|\exists j, x_j \notin \mathsf{BAD}] Pr[\exists j, x_j \notin \mathsf{BAD}] \\ &\leq Pr[E_1|x_i \in \mathsf{BAD}, \forall i] Pr[x_i \in \mathsf{BAD}, \forall i] + \sum_j Pr[E_1|x_j \notin \mathsf{BAD}] Pr[\exists j, x_j \notin \mathsf{BAD}] \\ &\leq Pr[E_1|x_i \in \mathsf{BAD}, \forall i] Pr[x_i \in \mathsf{BAD}, \forall i] + NPr[E_2|x_j \in \mathsf{BAD}] Pr[\exists j, x_j \notin \mathsf{BAD}] \\ &\leq Pr[x_i \in \mathsf{BAD}, \forall i] + N \frac{1}{2Np(nN)} \\ &\leq (1 - \frac{1}{2q(n)})^{2nq(n)} + \frac{1}{2p(nN)} \\ &\leq e^{-n} + \frac{1}{2p(nN)} \\ &\leq \frac{1}{p(nN)} \end{split}$$

And this means that \mathcal{A}' is unable to break F with probability more than $\frac{1}{p(nN)}$. And we get contradiction.

Now that we know $Pr[x \in \mathsf{BAD}] \ge 1 - \frac{1}{2q(n)}$, we can compute the probability that \mathcal{B} fails to invert f. We denote this event as \bar{E}_B .

$$\begin{split} Pr[\bar{E}_B] &= Pr[\bar{E}_B | x \in \mathsf{BAD}] Pr[x \in \mathsf{BAD}] + Pr[\bar{E}_B | x \notin \mathsf{BAD}] Pr[x \notin \mathsf{BAD}] \\ &\leq e^{-n} Pr[x \in \mathsf{BAD}] + \Pr[x \notin \mathsf{BAD}] \\ &\leq (1 - \frac{1}{2q(n)}) + \frac{1}{2q(n)} \\ &\leq \frac{1}{q(n)} \end{split}$$

which is contradict with the condition that f is weak OWF. Thus F is a strong OWF.